
2/27/17

1

Test-Driven	Programming

1

TDD	Workflow

2http://en.wikipedia.org/wiki/File:Test-driven_development.PNG



2/27/17

2

Unit	Testing

• Unit	test:	a	small	piece	of	program	written	by	
the	developer	to	test	the	correctness	of	a	unit	
in	a	particular	case.

• Unit:	In	the	context	of	OOP,	a	method	or	a	
class.

3

Unit	Testing	in	Java

• We	will	use	JUnit.	
• Case	Study:
– Rational	class
– Clock	class

4



2/27/17

3

Rational

• Defines	a	class	called	Rational that	represents	
rational	numbers,	which	are	simply	the	quotient	of	
two	integers (numerator	and	denominator)

• Rational	numbers	support	the	standard	arithmetic	
operations:	

5
From	Eric	Roberts,	The	Art	and	Science	of	Java,	Addison	Wesley.

a
b + c

d = ad	+ bc
bd

a
b

– c
d = ad	– bc

bd

a
b

x c
d = ac

a
b

c
d =..

bd

ad
bc

Addition:

Subtraction:

Multiplication:

Division:

Rational

• The	constructors	for	the	class	are	overloaded.		
– Calling	the	constructor	with	no	argument	creates	
a	Rational	initialized	to	0,	

– calling	it	with	one	argument	creates	a	Rational	
equal	to	that	integer,	and	

– calling	it	with	two	arguments	creates	a	fraction.
• A	rational	number	should	be	normalized:	
numerator	and	denominator	are	reduced	to	
lowest	terms.

6



2/27/17

4

Clock

• Define	a	class	named	Clock	that	represents	
the	daily	time.

• A	clock	keeps	the	hour,	minute	and	second.	
• A	clock	is	printable	via	toString() in	the	
uniform	format	HH:MM:SS.

7

Exercise

• A	tick()method	increments	the	time	of	a	clock	
by	one	second.

• Write	test	cases	for	the	tick()method.

8



2/27/17

5

F.I.R.S.T.

• Fast	
– Tests	should	be	fast.	
– They	should	run	quickly.	When	tests	run	slow,	you	
won’t	want	to	run	them	frequently.	

– If	you	don’t	run	them	frequently,	you	won’t	find	
problems	early	enough	to	fix	them	easily.	

– You	won’t	feel	as	free	to	clean	up	the	code.	
Eventually	the	code	will	begin	to	rot.	

9

F.I.R.S.T.

• Independent	
– Tests	should	not	depend	on	each	other.	
– One	test	should	not	set	up	the	conditions	for	the	
next	test.	

– You	should	be	able	to	run	each	test	independently	
and	run	the	tests	in	any	order	you	like.	

10



2/27/17

6

F.I.R.S.T.

• Repeatable	
– Tests	should	be	repeatable	in	any	environment.	
– You	should	be	able	to	run	the	tests	
• in	the	production	environment,	
• in	the	QA	environment,	and	
• on	your	laptop	while	riding	home	on	the	train	without	a	
network.	

– If	your	tests	aren’t	repeatable	in	any	environment,	
you’ll	always	have	an	excuse	for	why	they	fail.

11

F.I.R.S.T.

• Self-Validating	
– The	tests	should	have	a	boolean output.	
– Either	they	pass	or	fail.	
– You	should	not	have	to	read	through	a	log	file	to	
tell	whether	the	tests	pass.	

– You	should	not	have	to	manually	compare	two	
different	text	files	to	see	whether	the	tests	pass.	

12



2/27/17

7

F.I.R.S.T.

• Timely	
– The	tests	need	to	be	written	in	a	timely	fashion.	
– Unit	tests	should	be	written	just	before	the	
production	code	that	makes	them	pass.	

– If	you	write	tests	after	the	production	code,	you	
may	find	the	production	code	to	be	hard	to	test.	

– You	may	decide	that	some	production	code	is	too	
hard	to	test.	

– You	may	not	design	the	production	code	to	be	
testable.	

13


