
CS 321 Programming Languages
Environments and Closures

Baris Aktemur

Özyeğin University

Last update made on Wednesday 9th November, 2016 at 08:17.

Some of the contents here are taken from Elsa Gunter and Sam
Kamin’s OCaml notes available at
http://courses.engr.illinois.edu/cs421

Özyeğin University — CS 321 Programming Languages 1

Environments

An environment is a set of bindings. It keeps record of what value
is associated with a given name.

A key concept in programming language semantics and
implementation.

Notation

ρ = {name1 7→ v1, name2 7→ v2, . . .}
Note that an environment defines a partial function.

An environment is often implemented as a list or stack, or a stack
of lists.

Özyeğin University — CS 321 Programming Languages 2

let test = 3 < 2;;

val test : bool = false

(* ρ1 = {test 7→ false} *)

let a = 1

and b = a + 4;;

val a : int = 1

val b : int = 5

(* ρ2 = {test 7→ false, a 7→ 1, b 7→ 5} *)

let a = 3;;

val a : int = 3

(* ρ3 = {test 7→ false, a 7→ 3, b 7→ 5} *)

(* New bindings hide old *)

Özyeğin University — CS 321 Programming Languages 3

(* ρ1 = {a 7→ 4} *)

let c = 42;;

val c : int = 42

(* ρ2 = {c 7→ 42, a 7→ 4} *)

let k = let c = a - 1

(* ρ3 = {c 7→ 3, a 7→ 4} *)

in c * a;;

val k : int = 12

(* ρ4 = {c 7→ 42, a 7→ 4, k 7→ 12} *)

k;;

- : int = 12

c;;

- : int = 42

Özyeğin University — CS 321 Programming Languages 4

Function values

I Functions are first-class values in OCaml.

I They can be passed as argument, returned from functions,
bound to variables, etc.

I What value should we keep in the environment for a function?

Answer

A closure: a tuple of the function parameters, function body, and
the environment in effect at the point the function is declared.

(* ρ1 = {. . .} *)

let addFive x = x + 5;;

val add : int -> int = <fun>

(* ρ2 = {addFive 7→ 〈x → x + 5, ρ1〉, . . .} *)

addFive;;

- : (int -> int) = <fun>

Özyeğin University — CS 321 Programming Languages 5

Closures

(* ρ1 = {} *)

let x = 17;;

(* ρ2 = {x 7→ 17} *)

let addX y = x + y;;

(* ρ3 = {addX 7→ 〈y → x + y , ρ2〉, x 7→ 17} *)

let x = 55;;

(* ρ4 = {addX 7→ 〈y → x + y , ρ2〉, x 7→ 55} *)

addX 25;;

- : int = 42

Özyeğin University — CS 321 Programming Languages 6

Evaluation of function application with Static Scoping

Given an application expression e1e2 in an environment ρ:

I Evaluate e1 in ρ, obtain a closure 〈x → eb, ρf 〉.
I Evaluate e2 in ρ, obtain a value v .

I Bind v to x to extend ρf . That is, obtain ρb = {x 7→ v} + ρf .

I Evaluate eb in environment ρb.

Özyeğin University — CS 321 Programming Languages 7

Static scoping example

Evaluate addx 25, assuming the environment
ρ3 = {addx 7→ 〈y → x + y , ρ2〉, x 7→ 55}.

I Evaluate addx in ρ3: gives 〈y → x + y , ρ2〉.
I Evaluate 25 in ρ3: trivially gives 25.

I Bind 25 to y to extend ρ2: gives ρb = {y 7→ 25} + {x 7→ 17}.

I Evaluate x + y in environment ρb: gives 25 + 17 = 42.

Term

Note that we are evaluating the function using the environment
that was saved in the closure (where x is 17); we are NOT using
the current environment (where x is 55).
This is called static scoping.

Özyeğin University — CS 321 Programming Languages 8

Evaluation of function application with Dynamic Scoping

Given an application expression e1e2 in an environment ρ:

I Evaluate e1 in ρ to obtain a closure 〈x → eb〉. (Note: no
environment saved!)

I Evaluate e2 in ρ to obtain a value v .

I Bind v to x to extend ρ. That is, extend the current
enviroment to obtain ρb = {x 7→ v} + ρ.

I Evaluate eb in environment ρb.

Özyeğin University — CS 321 Programming Languages 9

Dynamic scoping example

Evaluate addx 25, assuming the environment
ρ3 = {addx 7→ 〈y → x + y〉, x 7→ 55}.

I Evaluate addx in ρ3: gives 〈y → x + y〉.
I Evaluate 25 in ρ3: trivially gives 25.

I Bind 25 to y to extend ρ3: gives
ρb = {y 7→ 25} + {addx 7→ 〈y → x + y〉, x 7→ 55}.

I Evaluate x + y in environment ρb: gives 25 + 55 = 80.

Term

Note that we are evaluating the function using the current
environment, which may be different each time function is applied.
This is called dynamic scoping.

Özyeğin University — CS 321 Programming Languages 10

Static vs. Dynamic Scoping

I Dynamic scoping is easier to implement an
interpreter/compiler. Lisp, Perl, Clojure have dynamic
scoping.

I Static scoping is used in almost all the languages, because it
is harder for the programmer to reason about a program (e.g.
for debugging, for understanding a program, etc.) when using
dynamic scoping.

Özyeğin University — CS 321 Programming Languages 11

