
CS 321 Programming Languages
Intro to Lambda Calculus

Baris Aktemur

Özyeğin University

Last update made on Monday 11th December, 2017 at 14:36.

Özyeğin University — CS 321 Programming Languages 1

Lambda Calculus

In 1930’s, mathematicians were looking for a foundational calculus
that would allow them study computability. They came up with
Lambda Calculus, whose syntax is given below.

x ∈ V ar
e ∈ Exp ::= x | e e | λx.e

Lambda calculus is able to express anything that’s computable.
This means, anything you write in Java, C, Python, etc. can be
expressed in lambda calculus. I find this fact mind-blowing.

Lambda calculus is equivalent to the universal Turing machine;
either can be used to model computable functions.

Pioneers of lambda calculus include Alonzo Church and Haskell
Curry. Spend some time to read about them.

Özyeğin University — CS 321 Programming Languages 2

Lambda calculus

There are three constructs in Lambda calculus:

1. Variables (e.g. x, y, z). They come from an infinite set.

2. Function application, e1 e2. You’re already familiar with this.

3. Lambda abstraction, λx.e. This is the same as anonymous
functions in OCaml, e.g. fun x -> e.

Özyeğin University — CS 321 Programming Languages 3

β-reduction

In lambda calculus, terms are reduced using β-reduction, as
defined below.

(λx.e1)e2 ⇒ [x/e2]e1

where [x/e2]e1 means “substitute every free occurrence of x in e1
with e2. For instance

(λx.x)y ⇒ y

Or, a slightly bigger example where the reduced term is underlined:

(λf.λx.fx)(λy.y)(λz.zz)

⇒ (λx.(λy.y)x)(λz.zz)

⇒ (λx.x)(λz.zz)

⇒ λz.zz

Özyeğin University — CS 321 Programming Languages 4

Normal form

When there does not exist any opportunities for β-reduction, a
term is said to be in normal form. The previous example showed a
way to reach the normal form λz.zz from the original term
(λf.λx.fx)(λy.y)(λz.zz). In fact, there exist another order of
reductions to reach the same normal form:

(λf.λx.fx)(λy.y)(λz.zz)

⇒ (λx.(λy.y)x)(λz.zz)

⇒ (λy.y)(λz.zz)

⇒ λz.zz

Özyeğin University — CS 321 Programming Languages 5

Confluence

A very strong and important theorem (due to Church and Rosser)
states that for a term, there exists at most one normal form. This
means, if there is a normal form of a term, no matter the order of
reductions, you will eventually reach that normal form.

Note that there may not exist a normal form of a term. A
well-known example is the famous ω (omega) term, which
inifinitely reduces to itself:

(λx.xx)(λx.xx)

⇒ (λx.xx)(λx.xx)

⇒ (λx.xx)(λx.xx)

⇒ . . .

Özyeğin University — CS 321 Programming Languages 6

Church numerals

At the beginning of this lecture, we stated that lambda calculus
can express anything that’s computable. The lambda calculus
syntax does not include integers, addition, multiplication,
if-expressions, etc. All of these are encodable in lambda calculus.
The following is an encoding of natural numbers in lambda
calculus, known as the Church numerals:

0 = (λf.λx.x)

1 = (λf.λx.fx)

2 = (λf.λx.f(fx))

3 = (λf.λx.f(f(fx)))

4 = (λf.λx.f(f(f(fx))))

and so on.

Özyeğin University — CS 321 Programming Languages 7

Church numerals

Then, the successor function, which takes a Church numeral and
returns the next Church numeral, is defined as follows:

succ = λn.λf.λx.f(nfx)

Similarly, addition and multiplication functions, which take two
Church numerals and return, respectively, their sum and product,
are defined below:

add = λm.λn.λf.λx.mf(nfx)

mult = λm.λn.λf.λx.m(nf)x

Özyeğin University — CS 321 Programming Languages 8

Church numerals

As an example, let’s show that succ 1 = 2.

succ 1

= (λn.λf.λx.f(nfx))1

⇒ λf.λx.f(1fx)

= λf.λx.f((λf.λx.fx)fx)

⇒ λf.λx.f((λx.fx)x)

⇒ λf.λx.f(fx)

= 2

Özyeğin University — CS 321 Programming Languages 9

Church numerals

Let’s also show that add 1 2 = 3.

add 1 2

= (λm.λn.λf.λx.mf(nfx))1 2

⇒ (λn.λf.λx.1f(nfx))2

⇒ λf.λx.1f(2fx)

= λf.λx.(λf.λx.fx)f(2fx)

⇒ λf.λx.(λx.fx)(2fx)

⇒ λf.λx.(f(2fx))

= λf.λx.f((λf.λx.f(fx))fx)

⇒ λf.λx.f((λx.f(fx))x)

⇒ λf.λx.f(f(fx))

= 3
Özyeğin University — CS 321 Programming Languages 10

Church numerals

Here is the encoding for the pred function that is the dual of succ;
it returns the predecessor of the given number.

pred = λn.λf.λx.n(λg.λh.h(gf))(λu.x)(λu.u)

For instance, pred (add 2 3) now gives you the lambda term
corresponding to 4.

Note: The definition of pred is quite difficult to comprehend. You
do not need to spend too much time understanding how it could
be derived.

Özyeğin University — CS 321 Programming Languages 11

Booleans

Here is the encoding for booleans and two useful functions.

true = λa.λb.a

false = λa.λb.b

if = λc.λt.λe. c t e

isZero = λn.n(λx.false)true

Özyeğin University — CS 321 Programming Languages 12

Implementation

Now see these encodings in action at

https://github.com/aktemur/cs321/tree/master/Lambda

Özyeğin University — CS 321 Programming Languages 13

Recursion

An important question you may ask is how to encode recursion
(since we don’t have let/let-rec bindings in lambda calculus). Let’s
begin by an attempt to define the factorial function.

fact = λm.if(isZero m)(1)(mult m (fact(pred m)))

In this definition, there is circularity; fact depends on its own
definition. We may attempt to make the definition a closed, pure
lambda calculus term, by substituting fact with its definition, but
this does not work because it leads to infinite expansion. So what
to do?

Özyeğin University — CS 321 Programming Languages 14

Fixed points

Let’s have a short pause and give a definition:

Definition

Given a function f and a value x, it is said that x is a fixed point
of f if f(x) = x.

For example, 3 is a fixed point of f(x) = x2 − 6 because f(3) = 3.

Özyeğin University — CS 321 Programming Languages 15

Recursion

Let’s go back to our definition of the factorial function. To fix the
circular definition problem, let’s make the factorial function receive
the recursive function as a parameter.

F = λfact.λm.if(isZero m)(1)(mult m (fact(pred m)))

Now, F is a closed, valid lambda expression. If we were able to
apply F on the fact function, we would get the factorial function.
That is:

F(fact) = fact

Hey, this means fact is a fixed point of F. If we can find the fixed
point of F, we can find a proper definition for fact.

Özyeğin University — CS 321 Programming Languages 16

Recursion

Suppose we have a function fix that finds the fixed point of a
given function. We could then define fact as

fact = fix F

Fortunately, there exist infinitely many fixed point calculators
(called fixed point combinators) in lambda calculus. The most
famous is the Y-combinator1 (due to Haskell Curry):

Y = λg.(λx.g(xx))(λx.g(xx))

As an exercise, compute fact 2. Also read the Wikipedia article:
http://en.wikipedia.org/wiki/Fixed-point_combinator.

1There also is a company with this name that provides seed funding to
startups. See http://ycombinator.com.

Özyeğin University — CS 321 Programming Languages 17

Note

A final note: the encodings we’ve seen here work in untyped
lambda calculus. There also exist typed versions of lambda
calculus. In a simply typed setting, recursion and many terms such
as ω can’t be written because they don’t type-check. Also,
Y-combinator does not work under call-by-value semantics because
it diverges (i.e. causes infinite reductions). When using
call-by-value semantics, another fixed point combinator must be
used. See PLC Section 5.6 for an example.

Özyeğin University — CS 321 Programming Languages 18

Lambda calculus

One language to rule them all

Özyeğin University — CS 321 Programming Languages 19

