
CS 321 Programming Languages
Eager vs. Lazy Evaluation

Baris Aktemur

Özyeğin University

Last update made on Wednesday 21st December,
2016 at 11:10.

Özyeğin University — CS 321 Programming Languages 1

OCaml is an eager (aka call-by-value, strict) language. So are
many of the main stream languages such as Java, C, etc. Being
eager, informally, means that the function arguments are evaluated
to values before evaluating the function body.
Consider this artificial example:

let foo n = 42;;

val foo : ’a -> int = <fun>

foo (fibonacci(40));;

- : int = 42

In this example, 40th fibonacci number is calculated and passed to
the function foo although foo does not use it. In case fibonacci

is poorly implemented, we may have to spend a significant time for
no use.

Özyeğin University — CS 321 Programming Languages 2

There are, however, lazy (aka call-by-name) features in OCaml.
Being lazy, informally, means that an expression is not evaluated
unless necessary.
Consider this artificial example:

if true then 42 else 23/0;;

- : int = 42

Here, no error occurs although there exists the expression “23/0”
which would normally raise a division by zero error. “If” expression
in OCaml is lazy for its then and else branches; a branch is
evaluated only if necessary as indicated by the boolean value
obtained from the condition.

Özyeğin University — CS 321 Programming Languages 3

To make the distinction between eager and lazy evaluation better,
now consider this case: To avoid having to type extra characters, I
define my own “if” using the following function:

let myif cond thenBranch elseBranch =

if cond then thenBranch else elseBranch;;

val myif : bool -> ’a -> ’a -> ’a = <fun>

myif (5>4) 42 23;;

- : int = 42

myif (5>4) 42 (23/0);;

Exception: Division_by_zero.

Because OCaml is an eager language, the function argument
“23/0” is evaluated before we execute the function body, even
though only the value obtained from the thenBranch expression is
used.

Özyeğin University — CS 321 Programming Languages 4

Simulating lazy evaluation in an eager language

Preventing the evaluation of an expression in an eager language
can be done by putting that expression “under a lambda”.

fun () -> 23/0;;

- : unit -> int = <fun>

let g = fun () -> 23/0;;

val g : unit -> int = <fun>

g();;

Exception: Division_by_zero.

Here, we’re relying on the fact that a function definition
immediately evaluates to a closure, without evaluating the body.
The body is evaluated when the function is applied.

Özyeğin University — CS 321 Programming Languages 5

Simulating lazy evaluation in an eager language

Now we can re-define “myif” as follows:

let myif cond thenBranch elseBranch =

if cond then thenBranch() else elseBranch();;

val myif : bool -> (unit -> ’a) -> (unit -> ’a) -> ’a = <fun>

myif (5>4) (fun() -> 42) (fun() -> 23/0);;

- : int = 42 (* Yuppie, no error! *)

The function in the form fun () -> ..., which is used for the
purposes of delaying a computation, is called a thunk. Evaluating
the function to get the value of the delayed expression is called
forcing. Enclosing a computation inside a thunk so that it can be
delayed is called thunking. Lazy languages such as Haskell
automatically do thunking and forcing.

Özyeğin University — CS 321 Programming Languages 6

Efficiency of lazy vs. eager

Our first example can be re-written as follows:

let foo n = 42;;

val foo : ’a -> int = <fun>

foo (fun() -> fibonacci(40));;

- : int = 42

This completely avoids computing fibonacci(40) because it is not
needed. Therefore, lazy version is more efficient compared to the
eager one.

Özyeğin University — CS 321 Programming Languages 7

Efficiency of lazy vs. eager

Lazy evaluation, when simulated the way we did, is not always
more efficient compared to the eager model. It can avoid
unnecessary computations, but it can also repeat computations
although not needed. Consider the following artificial example.

let double n = (n, n);;

val double : ’a -> ’a * ’a = <fun>

double (fibonacci(40));;

- : int * int = (165580141, 165580141)

let doubleLazy n = (n(), n());;

val doubleLazy : (unit -> ’a) -> ’a * ’a = <fun>

doubleLazy (fun() -> fibonacci(40));;

- : int * int = (165580141, 165580141)

Do you see the difference?
Özyeğin University — CS 321 Programming Languages 8

Streams

Özyeğin University — CS 321 Programming Languages 9

Streams

A stream is a possibly infinite sequence of data. E.g. key strokes,
tweets ffrom Twitter, video/audio stream, location changes on a
cell-phone, etc. For instance, the infinite list of natural numbers
would be
[0; 1; 2; 3; 4; ...].

A (failing) attempt to define the infinite list of natural numbers
could be the following:

let rec naturalsFrom n = n :: naturalsFrom (n+1);;

val naturalsFrom : int -> int list = <fun>

let naturals = naturalsFrom 0;;

Stack overflow during evaluation (looping recursion?).

where naturalsFrom is a function that is supposed to return the
list of natural numbers starting from a given number n. Hence,
naturalsFrom 0 shall return the naturals numbers, however, it
goes into infinite recursion.

Özyeğin University — CS 321 Programming Languages 10

Streams

Recall that you could manually define the regular OCaml list
datatype using the following definition:

type ’a mylist =

| Empty

| Cons of ’a * ’a mylist

Then, the list [1;2;3], which is just syntactic sugar for 1::2::3::[],
could be represented as

Cons(1, Cons(2, Cons(3, Empty)))

Özyeğin University — CS 321 Programming Languages 11

Streams

We can define streams using a similar approach. But this time, we
use a “thunk” to delay the evaluation of the tail of the stream to
avoid the infinite trap. (We also ignore the base case constructor
because we are interested in infinite data.)

type ’a stream =

| Cons of ’a * (unit -> ’a stream)

Note that the second element in the Cons constructor above is a
closure. That allows us suspend the computation of the tail of a
stream. Here is how to define the stream of natural numbers.

let rec naturalsFrom n = Cons(n, fun() -> naturalsFrom(n+1));;

val naturalsFrom : int -> int stream = <fun>

let naturals = naturalsFrom 0;;

val naturals : int stream = Cons (0,<fun>)

Özyeğin University — CS 321 Programming Languages 12

Streams

Let us continue by defining useful functions on streams, inspired
from the corresponding functions for lists.

let head st =

match st with

| Cons(v, _) -> v;;

val head : ’a stream -> ’a = <fun>

let tail st =

match st with

| Cons(_, f) -> f();;

val tail : ’a stream -> ’a stream = <fun>

Note how the definition of tail above forces the computation of
the tail of the stream (i.e. f()).

Özyeğin University — CS 321 Programming Languages 13

Streams

To make debugging streams easy, a take function that takes the
first n elements of a stream and returns a list would be very useful.

let rec take n st =

if n = 0 then []

else (head st)::(take (n-1) (tail st))

val take : int -> ’a stream -> ’a list = <fun>

take 5 naturals;;

- : int list = [0; 1; 2; 3; 4]

take 6 (tail (tail naturals));;

- : int list = [2; 3; 4; 5; 6; 7]

Özyeğin University — CS 321 Programming Languages 14

Streams

Let’s define the map function for streams.

let rec map f st =

Cons(f(head st), fun () -> map f (tail st));;

val map : (’a -> ’b) -> ’a stream -> ’b stream = <fun>

take 8 (map ((+) 2) naturals);;

- : int list = [2; 3; 4; 5; 6; 7; 8; 9]

take 6 (map (fun n -> n * n) naturals);;

- : int list = [0; 1; 4; 9; 16; 25]

Özyeğin University — CS 321 Programming Languages 15

Streams

Here is the filter function.

let rec filter p st =

if p(head st)

then Cons(head st, fun () -> filter p (tail st))

else filter p (tail st);;

val filter : (’a -> bool) -> ’a stream -> ’a stream = <fun>

let threes = filter (fun x -> x mod 3 = 0) naturals;;

val threes : int stream = Cons (0,<fun>)

take 5 threes;;

- : int list = [0; 3; 6; 9; 12]

Özyeğin University — CS 321 Programming Languages 16

Streams

See the sample code for other examples.

Özyeğin University — CS 321 Programming Languages 17

