
www.itu.dk 1

Programs as Data

Garbage collection techniques

Peter Sestoft
Monday 2013-10-21*

Note by Baris Aktemur:
These slides have been adapted from the originals available at http://www.itu.dk/courses/BPRD/E2013/.
I thank Peter Sestoft for making the PPT’s available.

www.itu.dk 2

Garbage collection
•  A: Reference counting
•  B: Mark-sweep
•  C: Two-space stop-and-copy, compacting
•  D: Generational

The heap as a graph
•  The heap is a graph: node=object, edge=reference
•  An object is live if reachable from roots
•  Garbage collection roots = stack elements

frames

STACK HEAP

Node
next
prev
item

Node
next
prev
item

LinkedList
first
last

5

7

lst
nodem

old
stack

www.itu.dk 4

The freelist
•  A freelist is a linked list of free heap blocks:

live

free

dead

heap

free

•  Allocation from freelist:
– Search for a large enough free block
–  If none found, do garbage collection
– Try the search again
–  If it fails, we are out of memory

www.itu.dk 5

A: Reference counting with freelist
•  Each object knows the number of references to it
•  Allocate objects from the freelist
•  After assignment x=o; the runtime system

–  Increments the count of object o
–  Decrements the count of x’s old reference (if any)
–  If that count becomes zero,

•  put that object on the freelist
•  recursively decrement count of all objects it points to

•  Good
–  Simple to implement

•  Bad
–  Reference count field takes space in every object
–  Reference count updates and checks take time
–  A cascade of decrements takes long time, gives long pause
–  Cannot deallocate cyclic structures

www.itu.dk 6

B: Mark-sweep with freelist
•  Allocate objects from the freelist
•  GC phase 1: mark phase

–  Assume all objects are white to begin with
–  Find all objects that are reachable from the stack, and color

them black
•  GC phase 2: sweep phase

–  Scan entire heap, put all white objects on the freelist, and
color black objects white

•  Good
–  Rather simple to implement

•  Bad
–  Sweep must look at entire heap, also dead objects;

inefficient when many small objects die young
–  Risk of heap fragmentation

www.itu.dk 7

C: Two-space stop and copy
•  Divide heap into to-space and from-space
•  Allocate objects in from-space
•  When full, recursively move all reachable objects

from from-space to the empty to-space
•  Swap (empty) from-space with to-space
•  Good

–  Need only to look at live objects
–  Good reference locality and cache behavior
–  Compacts the live objects: no fragmentation

•  Bad
–  Uses twice as much memory as maximal live object size
–  Needs to update references when moving objects
–  Moving a large object (e.g. an array) is slow
–  Very slow (much copying) when heap is nearly full

www.itu.dk 8

D: Generational garbage collection
•  Observation: Most objects die young
•  Divide heap into young (nursery) and old generation
•  Allocate in young generation
•  When full, move live objects to old gen. (minor GC)
•  When old gen. full, perform a (major) GC there
•  Good

–  Recovers much garbage fast
•  Bad

–  May suffer fragmentation of old generation (if mark-sweep)
–  Needs a write barrier test on field assignments:

After assignment o.f=y where o in old and y in young,
need to remember that y is live

www.itu.dk 9

Concurrent garbage collection
•  In a multi-cpu machine, let one cpu run GC
•  Complicated

– Race conditions when allocating objects
– Race conditions when moving objects

•  Typically suspends threads at "GC safe" points
– May considerably reduce concurrency (because one

thread may take long to reach a safe point)

www.itu.dk 10

GC in mainstream virtual machines
•  Sun/Oracle Hotspot JVM (client+server)

–  Three generations
–  When gen. 0 is full, move live objects to gen. 1
–  Gen. 1 uses two-space stop-and-copy GC; when objects get

old they are moved to gen. 2
–  Gen. 2 uses mark-sweep with compaction

•  IBM JVM (used in e.g. Websphere server)
–  Highly concurrent generational; see David Bacon’s paper

•  Microsoft .NET (desktop+server)
–  Three generation small-obj heap + large-obj heap
–  When gen. 0 is full, move to gen. 1
–  When gen. 1 is full, move to gen. 2
–  Gen. 2 uses mark-sweep with occasional compaction

•  Mono .NET implementation
–  Boehm’s conservative collector (still standard May 2012)
–  New two-generational (stop-and-copy plus M-S or S-&-C)

www.itu.dk 11

Other GC-related topics
•  Large object space: Large arrays and other

long-lived objects may be stored separately
•  Weak reference: A reference that cannot

itself keep an object live
•  Finalizer: Code that will be executed when an

object dies and gets collected (e.g. close file)
•  Resurrection: A finalizer may make a dead

object live again (yrk!)
•  Pinning: When Java/C# exports a reference

to C/C++ code, the object must be pinned;
if GC moves it, the reference will be wrong

www.itu.dk 12

GC stress (StringConcatSpeed.java)
•  What do these loops do? Which is better?
StringBuilder buf
 = new StringBuilder();
for (int i=0; i<n; i++)
 buf.append(ss[i]);
res = buf.toString();

String res = "";
for (int i=0; i<n; i++)
 res += ss[i];

