
www.itu.dk 1

PLC Chapter 04
first-order functional language, type

checking

Peter Sestoft
Monday 2013-09-09

Note by Baris Aktemur:
These slides have been shortened and rearranged from the originals available at
http://www.itu.dk/courses/BPRD/E2013/.
I thank Peter Sestoft for making the PPT’s available.

www.itu.dk 2

Micro-ML: A small functional language

•  First-order: A value cannot be a function
•  Dynamically typed, so this is OK:

if true then 1+2 else 1+false

•  Eager, or call-by-value: In a call f(e) the
argument e is evaluated before f is called

•  Example Micro-ML programs (an F# subset):

5+7

let f x = x + 7 in f 2 end

let fac x = if x=0 then 1 else x * fac(x - 1)
in fac 10 end

Abstract syntax of Micro-ML
type expr =
 | CstI of int
 | CstB of bool
 | Var of string
 | Let of string * expr * expr
 | Prim of string * expr * expr
 | If of expr * expr * expr
 | Letfun of string * string * expr * expr
 | Call of expr * expr

(f, x, fBody, letBody)

Letfun ("f", "x", Prim ("+",Var "x",CstI 7),
 Call (Var "f",CstI 2))

let f x = x + 7 in f 2 end

3

www.itu.dk 4

Lexer and parser for Micro-ML
•  Lexer:

– Nested comments, as in F#, Standard ML

•  Parser:
– To parse applications e1 e2 e3 correctly,

distinguish atomic expressions from others

•  Problem: f(x-1) parses as f(x(-1))
•  Solution:

– FunLex.fsl: make CSTINT just [0-9]+ without sign
– FunPar.fsy: add rule Expr := MINUS Expr

1 + (* 33 (* was 44 *) *) 22

Runtime values, function closures
•  Run-time values: integers and functions

type value =
 | Int of int
 | Closure of string * string * expr * value env

let y = 11
in let f x = x + y
 in let y = 22 in f 3 end
 end
end

Should always
have value 11

•  Closure: a package of a function’s body and its
declaration environment

•  A name should refer to a statically enclosing binding:

 (f, x, x+y, [(y,11)])

Evaluate as
3 + y

5

Interpretation of Micro-ML
•  Constants, variables, primitives, let, if: as for expressions
•  Letfun: Create function closure and bind f to it
•  Function call f(e):

–  Look up f, it must be a closure
–  Evaluate e
–  Create environment and evaluate the function’s body

let rec eval (e : expr) (env : value env) : int =
 match e with
 | ...
 | Letfun(f, x, fBody, letBody) ->
 let bodyEnv = (f, Closure(f, x, fBody, env)) :: env
 in eval letBody bodyEnv
 | Call(Var f, eArg) ->
 let fClosure = lookup env f
 in match fClosure with
 | Closure (f, x, fBody, fDeclEnv) ->
 let xVal = Int(eval eArg env)
 let fBodyEnv = (x, xVal) :: (f, fClosure) :: fDeclEnv
 in eval fBody fBodyEnv
 | _ -> failwith "eval Call: not a function"

Evaluate fBody
in declaration
environment

6

www.itu.dk

Dynamic scope (instead of static)
•  With static scope, a variable refers to the

lexically, or statically, most recent binding
•  With dynamic scope, a variable refers to

the dynamically most recent binding:

7

let y = 11
in let f x = x + y
 in let y = 22 in f 3 end
 end
end Evaluate as

3 + y

www.itu.dk 8

A dynamic scope variant of Micro-ML
•  Very minimal change in interpreter:

•  fDeclEnv is ignored; function is just (f, x, fBody)
•  Good and bad:

–  simple to implement (no closures needed)
–  makes type checking difficult
–  makes efficient implementation difficult

•  Used in macro languages, and Lisp, Perl, Clojure

let rec eval (e : expr) (env : value env) : int =
 ...
 | Call(Var f, eArg) ->
 let fClosure = lookup env f
 in match fClosure with
 | Closure (f, x, fBody, fDeclEnv) ->
 let xVal = Int(eval eArg env)
 let fBodyEnv = (x, xVal) :: (f, fClosure) :: env
 in eval fBody fBodyEnv

Evaluate fBody
in call

environment

www.itu.dk

Evaluation by logical rules

9

In environment ρ,
expression x

evaluates to v

www.itu.dk

How to read a rule

•  IF
–  in environment ρ, expression e1 reduces to v1, and
–  in environment ρ, expression e2 reduces to v2, and
–  b is whether v1 is less then v2

•  THEN
–  in environment ρ, expression e1<e2 reduces to b

Premises

Conclusion

Judgment: In
environment ρ,
expression e2

reduces to value v2

Environment
(rho)

10

www.itu.dk 11

Joint exercise: How read these?

www.itu.dk

Evaluation by logical rules:
Function declaration and call

•  Compare these with the eval interpreter:

•  Also, note recursive evaluation of f's body

12

www.itu.dk 13

Combining evaluation rules to trees
•  Stacking logical rules on top of each other
•  One rule’s conclusion is another’s premise
•  Evaluating let x=1 in x<2 end => true

in some environment ρ:

•  The eval function implements the rules,
from conclusion to premise!

true

true

www.itu.dk 14

Combining evaluation rules to trees

www.itu.dk

Type Checking
•  Type checking: making sure that operators,

functions, names, etc. are used properly.E.g:
– Addition is done between integers
– Functions are applied on correct number of

arguments of correct types
– No use of undefined names

•  Catch errors early, before runtime.

•  Typed Micro-ML.
– No inference (yet). Annotate functions with types.

15

if (random() = 823857)
then junk(5(42))
else max(5, 42)

www.itu.dk 16

An explicitly typed fun. language

type tyexpr =
 | CstI of int
 | CstB of bool
 | Var of string
 | Let of string * tyexpr * tyexpr
 | Prim of string * tyexpr * tyexpr
 | If of tyexpr * tyexpr * tyexpr
 | Letfun of string * string * typ * tyexpr * typ * tyexpr
 | Call of tyexpr * tyexpr

type typ =
 | TypI
 | TypB
 | TypF of typ * typ

(f, x, xTyp, fBody, rTyp, letBody

let f (x : int) : int = x+1
in f 12 end

Letfun("f", "x", TypI,
 Prim("+", Var "x", CstI 1), TypI,
 Call(Var "f", CstI 12));;

(TypF(TypI, TypI)

www.itu.dk

When does type checking happen?

17

Program
text

Program
tokens

Program
AST Lexer Parser

Lexer
spec.

Lexer
generator

Parser
spec.

Parser
generator

typ

type evalValue

let x=17 in x+25

[LET; NAME “x”;
 CSTINT 17; IN;
 NAME “x”; PLUS;
 CSTINT 25]

Let(“x”, CstI(17),
 Prim(“+”, Var(“x”),
 CstI(25)))

TypI Int(42)

www.itu.dk 18

Type checking versus evaluation
•  The type checker typ and the interpreter
eval have similar structure

•  Type checking can be thought of as abstract
interpretation of the program

•  We calculate “TypI + TypI gives TypI”
instead of “Int 3 + Int 5 gives Int 8”

•  One major difference:
– Type checking a function call f(e) does not require

type checking the function’s body again
–  Interpreting a function call f(e) does require

interpreting the function’s body
•  Type checking always terminates

Type checking by logical rules

19

www.itu.dk

How to read a type rule

•  IF
–  in environment ρ, expression e1 has type int, and
–  in environment ρ, expression e2 has type int

•  THEN
–  in environment ρ, expression e1<e2 has type bool

Premises

Conclusion

Judgement: In
environment ρ,
expression e2
has type int

Environment
(rho)

20

Note:
rho is a type
environment,
not a value
environment.

www.itu.dk 21

Joint exercise: How read these?

An integer constant
has type int

www.itu.dk 22

Joint exercise: How read these?

www.itu.dk

Type checking by recursive function
•  Using a type environment [(“x”, TypI)]:
let rec typ (e : tyexpr) (env : typ env) : typ =
 match e with
 | CstI i -> TypI
 | CstB b -> TypB
 | Var x -> lookup env x
 | Prim(ope, e1, e2) ->
 let t1 = typ e1 env
 let t2 = typ e2 env
 in match (ope, t1, t2) with
 | ("*", TypI, TypI) -> TypI
 | ("+", TypI, TypI) -> TypI
 | ("-", TypI, TypI) -> TypI
 | ("=", TypI, TypI) -> TypB
 | ("<", TypI, TypI) -> TypB
 | ("&&", TypB, TypB) -> TypB
 | _ -> failwith "unknown primitive, or type error"
 | ...

23

www.itu.dk 24

Type checking, part 2
•  Checking let x=eRhs in letBody end
•  Checking if e1 then e2 else e3
let rec typ (e : tyexpr) (env : typ env) : typ =
 match e with
 | Let(x, eRhs, letBody) ->
 let xTyp = typ eRhs env
 let letBodyEnv = (x, xTyp) :: env
 in typ letBody letBodyEnv
 | If(e1, e2, e3) ->
 match typ e1 env with
 | TypB -> let t2 = typ e2 env
 let t3 = typ e3 env
 in if t2 = t3 then t2
 else failwith "If: branch types differ"
 | _ -> failwith "If: condition not boolean"
 | ...

Type checking, part 3
•  Checking let f x=eBody in letBody end
•  Checking f eArg

let rec typ (e : tyexpr) (env : typ env) : typ =
 match e with
 | ...
 | Letfun(f, x, xTyp, fBody, rTyp, letBody) ->
 let fTyp = TypF(xTyp, rTyp)
 let fBodyEnv = (x, xTyp) :: (f, fTyp) :: env
 let letBodyEnv = (f, fTyp) :: env
 if typ fBody fBodyEnv = rTyp then typ letBody letBodyEnv
 else failwith "Letfun: wrong return type in function"
 | Call(Var f, eArg) ->
 match lookup env f with
 | TypF(xTyp, rTyp) ->
 if typ eArg env = xTyp then rTyp
 else failwith "Call: wrong argument type"
 | _ -> failwith "Call: unknown function"
 | Call(_, eArg) -> failwith "Call: illegal function in call"

25

www.itu.dk 26

Combining type rules to trees
•  Stacking type rules on top of each other
•  One rule’s conclusion is another’s premise
•  Checking let x=1 in x<2 end : bool

in some environment ρ:

•  The typ function implements the rules, from
conclusion to premise!

www.itu.dk 27

Joint exercises: Invent type rules
and evaluation rules

•  For e1 && e2 (logical and)
•  For e1 :: e2 (list cons operator)
•  For match e with [] -> e1 | x::xr -> e2

www.itu.dk 28

Dynamically or statically typed
•  Dynamically typed:

– Types are checked during evaluation (micro-ML,
Postscript, JavaScript, Python, Ruby, Scheme, …)

•  Statically typed:
– Types are checked before evaluation (our typed

fun. language, F#, most of Java and C#)

if true then 11 else 22+false

true { 11 } { 22 false add } ifelse =

true ? 11 : (22 + false)

OK, gives 11

Compile-time
type error

Compile-time
type error

www.itu.dk 29

Dynamic typing in Java/C# arrays
•  For a Java/C# array whose element type is a

reference type, all assignments are type-
checked at runtime
void M(Object[] arr, Object x) {
 arr[0] = x;
}

Type check needed
at run-time

•  Why is that necessary?

String[] ss = new String[1];
M(ss, new Object());
String s0 = ss[0];

