Programs as data
Higher-order functions,
polymorphic types,
and type inference

Peter Sestoft
Monday 2013-09-16

Note by Baris Aktemur:
These slides have been adapted from the originals available at http://www.itu.dk/courses/BPRD/E2013/.
I thank Peter Sestoft for making the PPT’s available.

Eé IT University of Copenhagen www.itu.dk

ML/F#-style
parametric polymorphism

2 +®true

e Each expression has a compile-time type

e The type may be polymorphic (‘many forms’)
and have multiple type instances

Eé IT University of Copenhagen www.itu.dk 2

Type generalization and specialization

o If f has type (o — int) and a appears
nowhere else, the type gets generalized to a
type scheme written Va.(a — int):

o If f has type scheme Va.(o — int) then a may
be instantiated by/specialized to any type:

Fa2 frint—int
£ false ——FETBOON==TRE R

Eé IT University of Copenhagen www.itu.dk 3

Polymorphic type inference

e F# and ML have polymorphic type inference
e Static types, but not explicit types on functions
let twice g y =

5 (g v
() = (B

e We generalize B, so twice gets the type scheme
VB. (B—B) — (B—PB), hence “B may be any type”

let mul2 y = 2 * y ~{muliint=>"int
twice mul2 11

a

Basic elements of type inference

e “Guess” types using type variables a, B, ...
e Build and solve “type equations” a = pB—9 ...

e Generalize types of let-bound variables/funs.
to obtain type schemes Vp. (—p) — (B—B)

e Specialize type schemes at variable use

e This type system has several names:
— ML-polymorphism
— let-polymorphism

- Hindley-Milner polymorphism (Hindley 1969 &
Milner 1978)

& 1T University of Copenhagen www.itu.dk

Restrictions on ML polymorphism, 1

e Only let-bound variables and functions can
have a polymorphic type

e A parameter’ s type is never polymorphic:

let £f g =g 7 + g false

e A function is not polymorphic in its own body:

let rec h x =
if true then 22
else h 7 + h false

Eé} IT University of Copenhagen www.itu.dk 6

Restrictions on ML polymorphism, 2

e Types must be finite and non-circular

f £ “JIIIIIIIIIIIIIIII

e Guess X has type a
e Then £ must have type a—f for some

e But because we apply £ to itself in (£ £), we
must have a = oa—p

e But then a = (a—B)—p = ((a—p) —=P)—P = ...
IS not a finite type
e So the example is ill-typed

let rec £ x

N
:C;? IT University of Copenhagen www.itu.dk 7

Restrictions on ML polymorphism, 3

e A type parameter that is used in an enclosing
scope cannot be generalized

let f X —12 !! /

let g y 1f x-y then 11 else 22

in false
) f42gliiIIIIIIIIIIIIII ‘II'IIIIIIIIIIIIII'

e Reason: If this were well-typed, we would
compare X (42) with y (false), not good...

ﬁé IT University of Copenhagen www.itu.dk 8

Joint exercises

e Which of these are well-typed, and why/not?

let £ x =1
in £ £

let £ g g g

let £ x =
let gy =y
in g false
in £ 42

let £ x =
let g y = 1f true then y else x
in g false

in £ 42

Properties of ML-style polymorphism

e The type found by the inference algorithm is
the most general one: the principal type

e Consequence: Type checking can be modular
e But types can be large, type inference slow:

let 1d x = x

let pair x y p=p x VY
let pl p = pair id id p
let p2 p = pair pl pl p
let p3 p = pair p2 p2 p
let p4 p = pair p3 p3 p;;

e In practice types are small and inference fast

&> IT University of Copenhagen www.itu.dk

Polymorphism (generics) in Java and C#

e Polymorphic types

interface IEnumerable<T> { ... }
class List<T> : IEnumerable<T> { ... }
struct Pair<T,U> { T f£st; U snd; ... }

delegate R Func<A,R>(A x);

e Polymorphic methods
void Process<T> (Action<T> act, T[] xs) ’
void <T> Process (Action<T> act, T[] arr) ’

e Type parameter constraints
void Sort<T> (T[] arr) where T : IComparable<T> -

void <T extends Comparable<T>> Sort (T[] arr) ‘
11

= IT University of Copenhagen www.itu.dk

Variance in type parameters

e Assume Student subtype of Person

void PrintPeople (IEnumerable<Person> ps) { ... }

IEnumerable<Student> students = ...,

PrintPeople (students) ; j
e C# 3 and Java:

— A generic type is invariant in its parameter

— I<Student> is not subtype of I<Person>
e Co-variance (co=with):

- I<Student> is subtype of I<Person>
e Contra-variance (contra=against):

— I<Person> is subtype of I<Student>

&> IT University of Copenhagen www.itu.dk 12

Co-/contra-variance is unsafe in general

e Co-variance is unsafe in general

List<Student> ss = new List<Stude :

List<Person> ps = ss;
ps.Add (new Person(...));
Student s0 = ss[0];

e Contra-variance is unsafe in general

List<Person> ps = ...; d
List<Student> ss = ps;
Student s0 = ss[0];

e But:
— co-variance OK if we only read (output) from list
— contra-variance OK if we only write (input) to list

ﬁé IT University of Copenhagen www.itu.dk 13

Java 5 wildcards

e Use-side co-variance

void PrintPeople (ArrayList<? extends Person> ps) {
for (Person p : ps) { .. }

}
PrintPeople (new ArrayList<Student>()) ; ‘

e Use-side contra-variance

void AddStudentTolList (ArrayList<? super Student> ss) {
ss.add (new Student()) ;

}

AddStudentTolist (new ArrayList<Person>()) ;

&> IT University of Copenhagen www.itu.dk 14

