
www.itu.dk 1

Programs as data
Higher-order functions,

polymorphic types,
and type inference

Peter Sestoft
Monday 2013-09-16

Note by Baris Aktemur:
These slides have been adapted from the originals available at http://www.itu.dk/courses/BPRD/E2013/.
I thank Peter Sestoft for making the PPT’s available.

www.itu.dk 2

ML/F#-style
parametric polymorphism

let f x = 1
in f 2 + f true

•  Each expression has a compile-time type
•  The type may be polymorphic (‘many forms’)

and have multiple type instances

Type for f is
’a -> int

int -> int bool -> int

www.itu.dk 3

Type generalization and specialization

•  If f has type (α → int) and α appears
nowhere else, the type gets generalized to a
type scheme written ∀α.(α → int):

let f x = 1

•  If f has type scheme ∀α.(α → int) then α may
be instantiated by/specialized to any type:

f 42
f false
f [22]
f (3,4)

 ∀α.(α → int)

f : int → int

f : int list → int
f : bool → int

f : int*int → int

Polymorphic type inference
•  F# and ML have polymorphic type inference
•  Static types, but not explicit types on functions

let mul2 y = 2 * y

let twice g y = g (g y)

twice mul2 11

α β
α = β→δ

α = δ→ε

β=δ=ε
so

α = β→β

β=δ and δ=ε
so

α = β→β
(β→β) → (β→β)

•  We generalize β, so twice gets the type scheme
 ∀β. (β→β) → (β→β), hence “β may be any type”

mul: int -> int

twice : (int->int)->(int->int)

www.itu.dk 5

Basic elements of type inference
•  “Guess” types using type variables α, β, …
•  Build and solve “type equations” α = β→δ …
•  Generalize types of let-bound variables/funs.

to obtain type schemes ∀β. (β→β) → (β→β)
•  Specialize type schemes at variable use

•  This type system has several names:
– ML-polymorphism
–  let-polymorphism
– Hindley-Milner polymorphism (Hindley 1969 &

Milner 1978)

www.itu.dk 6

Restrictions on ML polymorphism, 1
•  Only let-bound variables and functions can

have a polymorphic type
•  A parameter’s type is never polymorphic:

let f g = g 7 + g false

Ill-typed:
parameter g never

polymorphic

•  A function is not polymorphic in its own body:
let rec h x =
 if true then 22
 else h 7 + h false

Ill-typed: h not
polymorphic in its

own body

www.itu.dk 7

Restrictions on ML polymorphism, 2
•  Types must be finite and non-circular

let rec f x = f f

f not polymorphic
in its own body

•  Guess x has type α
•  Then f must have type α→β for some β
•  But because we apply f to itself in (f f), we

must have α = α→β
•  But then α = (α→β)→β = ((α→β) →β)→β = …

is not a finite type
•  So the example is ill-typed

www.itu.dk 8

let f x =
 let g y = if x=y then 11 else 22
 in g false
in f 42

Restrictions on ML polymorphism, 3
•  A type parameter that is used in an enclosing

scope cannot be generalized

Ill-typed: function g
not polymorphic

α bound in outer
scope, cannot
generalize β

α
β

α = β

•  Reason: If this were well-typed, we would
compare x (42) with y (false), not good…

g : β→int

Joint exercises
•  Which of these are well-typed, and why/not?

let f x = 1
in f f

let f g = g g

let f x =
 let g y = y
 in g false
in f 42

let f x =
 let g y = if true then y else x
 in g false
in f 42

www.itu.dk

Properties of ML-style polymorphism
•  The type found by the inference algorithm is

the most general one: the principal type
•  Consequence: Type checking can be modular
•  But types can be large, type inference slow:

•  In practice types are small and inference fast

let id x = x
let pair x y p = p x y
let p1 p = pair id id p
let p2 p = pair p1 p1 p
let p3 p = pair p2 p2 p
let p4 p = pair p3 p3 p;;
let p5 p = pair p4 p4 p;;

Exponentially
many type
variables!

www.itu.dk 11

Polymorphism (generics) in Java and C#

•  Polymorphic types
interface IEnumerable<T> { ... }
class List<T> : IEnumerable<T> { ... }
struct Pair<T,U> { T fst; U snd; ... }
delegate R Func<A,R>(A x);

•  Polymorphic methods
void Process<T>(Action<T> act, T[] xs)

void <T> Process(Action<T> act, T[] arr)

•  Type parameter constraints

void <T extends Comparable<T>> Sort(T[] arr)

void Sort<T>(T[] arr) where T : IComparable<T>

Java

C#

Java

C#

www.itu.dk 12

Variance in type parameters
•  Assume Student subtype of Person

void PrintPeople(IEnumerable<Person> ps) { ... }

IEnumerable<Student> students = ...;
PrintPeople(students);

Java and C# 3 say
NO: Ill-typed!

•  C# 3 and Java:
–  A generic type is invariant in its parameter
–  I<Student> is not subtype of I<Person>

•  Co-variance (co=with):
–  I<Student> is subtype of I<Person>

•  Contra-variance (contra=against):
–  I<Person> is subtype of I<Student>

www.itu.dk 13

Co-/contra-variance is unsafe in general

•  Co-variance is unsafe in general
List<Student> ss = new List<Student>();
List<Person> ps = ss;
ps.Add(new Person(...));
Student s0 = ss[0];

•  Contra-variance is unsafe in general
List<Person> ps = ...;
List<Student> ss = ps;
Student s0 = ss[0];

Wrong!

Because would allow
writing Person to

Student list

•  But:
–  co-variance OK if we only read (output) from list
–  contra-variance OK if we only write (input) to list

Wrong!

Because would allow
reading Student from

Person list

www.itu.dk 14

Java 5 wildcards
•  Use-side co-variance

void PrintPeople(ArrayList<? extends Person> ps) {
 for (Person p : ps) { … }
}
...
PrintPeople(new ArrayList<Student>());

void AddStudentToList(ArrayList<? super Student> ss) {
 ss.add(new Student());
}
...
AddStudentToList(new ArrayList<Person>());

OK!

•  Use-side contra-variance

OK!

