
www.itu.dk 1

Programs as Data 6
Imperative languages, environment

and store, micro-C

Peter Sestoft
Monday 2013-09-30*

Note by Baris Aktemur:
These slides have been adapted from the originals available at http://www.itu.dk/courses/BPRD/E2013/.
I thank Peter Sestoft for making the PPT’s available.

www.itu.dk 2

C pointer basics
•  A pointer p refers to a storage location
•  The dereference expression *p means:

–  the content of the location as in *p + 4
–  the storage location itself as in *p = x+4

•  The pointer that points to x is &x
•  Pointer arithmetics:

–  *(p+1) is the content of the location just after *p
•  If p equals &a[0]

then *(p+i) equals p[i] equals a[i],
so an array is a pointer

•  Strange fact: a[2] can be written 2[a] too

www.itu.dk 3

Using pointers for return values
•  Example ex5.c, computing square(x):

void main(int n) {
 ...
 int r;
 square(n, &r);
 print r;
}

void square(int i, int *rp) {
 *rp = i * i;
}

for input

for return value: a
pointer to where to
put the result

www.itu.dk 4

Recursion and return values
•  Computing factorial with MicroC/ex9.c
void main(int i) {
 int r;
 fac(i, &r);
 print r;
}

void fac(int n, int *res) {
 if (n == 0)
 *res = 1;
 else {
 int tmp;
 fac(n-1, &tmp);
 *res = tmp * n;
 }
}

•  n is input parameter
•  res is output parameter:
 a pointer to where to
 put the result
•  tmp holds the result
 of the recursive call
•  &tmp gets a pointer
 to tmp

www.itu.dk 5

Lvalue and rvalue of an expression
•  Rvalue is “normal”

value, right-hand side
of assignment: 17, true

•  Lvalue is “location”,
left-hand side of
assignment: x, a[2]

•  In assignment e1=e2,
expression e1 must
have lvalue

•  Where else must an
expression have lvalue
in C#? In C?

Has
lvalue

Has
rvalue

x yes yes
a[2] yes yes

*p yes yes
x+2 no yes
&x no yes

www.itu.dk 6

Operators &x and *p are inverses
•  The address-of operator &e

– evaluates e to its lvalue
–  returns the lvalue (address) as if it were an rvalue

•  The dereferencing operator *e
– evaluates e to its rvalue
–  returns the rvalue as if it were an lvalue

•  It follows
–  that &(*e) equals e
–  that *(&e) equals e, provided e has lvalue

www.itu.dk 7

C variable declarations

Declaration Meaning
int n n is an integer
int *p p is a pointer to integer

int ia[3] ia is array of 3 integers

int *ipa[4] ipa is array of 4 pointers to integers

int (*iap)[3] iap is pointer to array of 3 integers

int *(*ipap)[4] ipap is pointer to array of 4 pointers to ints

Unix program cdecl or www.cdecl.org may help:

cdecl> explain int *(*ipap)[4]
declare ipap as pointer to array 4 of pointer to int
cdecl> declare n as array 7 of pointer to pointer to int
int **n[7]

www.itu.dk 8

A naive-store imperative language
•  Naive store model:

– a variable name maps to an integer value
–  so store is just a runtime environment

•  Executing a statement gives a new store
•  Assignment x=e updates the store

i = 1;
sum = 0;
while sum < 10000 do begin
 sum = sum + i;
 i = 1 + i;
end;

i

sum

142

10011

www.itu.dk 9

Environment and store, micro-C
•  The naive model cannot describe pointers

and variable aliasing
•  A more realistic store model:

– Environment maps a variable name to an address
– Store maps address to value

100 … 5050 …
41 42 43 44 45

i: 42
sum: 44

Environment

Store

The essence of C: Pointers
•  Main innovations of C (1972) over Algol 60:

– Structs, as in COBOL and Pascal
– Pointers, pointer arithmetics, pointer types,

array indexing as pointer indexing
– Syntax: { } for blocks, as in C++, Java, C#

44 … 5050 …
41 42 43 44 45

p: 42
sum: 44

•  Very different from Java and C#, which have
no pointer arithmetics, but garbage collection

*(p+1)

www.itu.dk

Call-by-value and call-by-reference, C#

static void swapR(ref int x, ref int y) {
 int tmp = x; x = y; y = tmp;
}

static void swapV(int x, int y) {
 int tmp = x; x = y; y = tmp;
}

int a = 11;
int b = 22;
swapV(a, b);
swapR(ref a, ref b);

11
41 44

22 22 11
42 43

a: 41
b: 42

45

x: 43
y: 44
tmp: 45

11

by
 v

al
ue

by

 r
ef

er
en

ce

addresses

store

x: 41
y: 42
tmp: 43

www.itu.dk 12

Micro-C array layout
•  An array int arr[4] consists of

–  its 4 int elements
– a pointer to arr[0]

•  This is the uniform array representation of B
•  Real C treats array parameters and local

arrays differently; complicates compiler

…
41 44 46 47

71 67 73 79 42
42 43 45

…

arr: 46

Expression statements
in C, C++, Java and C#

•  The “assignment statement”
 x = 2+y;

is really an expression
 x = 2+y

followed by a semicolon

•  The semicolon means: ignore value

Value: 2+y
Effect: change x

Value: none
Effect: change x

