
CS 321 Programming Languages
Intro to OCaml – Part I

Baris Aktemur

Özyeğin University

Last update made on Tuesday 24th October, 2017 at 09:18.

Much of the contents here are taken from Elsa Gunter and Sam
Kamin’s OCaml notes available at
http://courses.engr.illinois.edu/cs421

Özyeğin University — CS 321 Programming Languages 1

Running a program

I Compilation: Convert a given program to a native (or
native-like) format, e.g. object file, bytecode, etc., first. Then
execute the native file.

I Interpretation: Evaluate a program directly, without a
conversion to a native form.

Özyeğin University — CS 321 Programming Languages 2

Running a program

let power x n =
 if n = 0 then 1
 else x * power (n-1) x

Program	(ASCII)	

Interpreter	 result	

int power(int n,int x){
 if(n==0) return 1;
 else return
 x * power(n-1,x);
}

Program	(ASCII)	

Compiler	 result	

Compila6on	(e.g.	C,	C++):	

Interpreta6on	(e.g.	OCaml,	F#,	Python):	

executable	

Özyeğin University — CS 321 Programming Languages 3

OCaml

I OCaml programs can be both interpreted and compiled.

I We will use both models for executing programs.
I The interpreter is a so-called REPL, a read-eval-print-loop.

I It reads what we type, evaluates our input, prints the results
on the screen, then waits for the user’s next input.

I Evaluation is the process of simplifying an expression as
much as possible. An expression that cannot be simplified
further is a value.

I By evaluation, we reduce programs to values.

Özyeğin University — CS 321 Programming Languages 4

[aktemur@ceviz]$ ocaml

OCaml version 4.05.0

2 + 3;;

- : int = 5

(* This is a comment *) 3 < 8;;

- : bool = true

3 = 2;; (* Use single ’=’ for equality *)

- : bool = false

Özyeğin University — CS 321 Programming Languages 5

2.5 + 5;; (* No implicit coercion *)

2.5 + 5;;

------^

Error: This expression has type float but an expression was expected of type

int

Özyeğin University — CS 321 Programming Languages 6

Declarations

With a declaration we “bind” a value to a name. The association
of a name with a value is a “binding”.

Declarations are made using the let keyword. After a declaration
is made, the bound name can be used when declaring other names
and in subsequent expressions.

Note:

Declarations can be made only at the top level.

Note:

I deliberately used the word “name”, not “variable”. This is
because in OCaml, once bound, the value of a name cannot be
changed.

Özyeğin University — CS 321 Programming Languages 7

Declarations

let x = 2 + 3;; (* x is bound to 5 *)

val x : int = 5

let test = 3 < 2;; (* test is bound to false *)

val test : bool = false

x;;

- : int = 5

x + 37;;

- : int = 42

test && true;;

- : bool = false

Özyeğin University — CS 321 Programming Languages 8

’if’

let a = 3;;

val a : int = 3

let y = x + a + 5;;

val y : int = 13

(* ’if’ is similar to (e1 ? e2 : e3) in C *)

if y > a then 42 else 24;;

- : int = 42

if not(y > a) then 42 else 24;;

- : int = 24

Özyeğin University — CS 321 Programming Languages 9

Environments

An environment is a set of bindings. It keeps record of what value
is associated with a given name.

A key concept in programming language semantics and
implementation.

Notation

I We will denote an environment as a table or a list of
name-value associations.

I When a declaration is evaluated, we will append a new
binding to the end of the table.

I When looking up the value of a name, we will search the table
from the end to the beginning.

Özyeğin University — CS 321 Programming Languages 10

let test = 3 < 2;;

val test : bool = false

Env: [test 7→ false]

let a = 1

and b = a + 4;;

val a : int = 1

val b : int = 5

Env: [b 7→ 5, a 7→ 1, test 7→ false]

let a = 3;;

val a : int = 3

Env: [a 7→ 3, b 7→ 5, a 7→ 1, test 7→ false]

a;;

- : int = 3

New bindings shadow the old!!!

Özyeğin University — CS 321 Programming Languages 11

Tuples

let pair = (4, 6);;

val pair : int * int = (4, 6)

Env: [pair 7→ (4,6)]

let s = (3, "hi", 4.5);;

val s : int * string * float = (3, "hi", 4.5)

Env: [s 7→ (3, “hi”, 4.5), pair 7→ (4,6)]

let (a,b,c) = s;; (* (a,b,c) is a pattern *)

val a : int = 3

val b : string = "hi"

val c : float = 4.5

Env: [c 7→ 4.5, b 7→ “hi”, a 7→ 3, s 7→ (3, “hi”, 4.5), pair 7→ (4,6)]

let a = 9 + 9;;

val a : int = 18

let b = a < 10;;

val b : bool = false

Env: [b 7→ false, a 7→ 18, c 7→ 4.5, b 7→ “hi”, a 7→ 3, s 7→ (3, “hi”, 4.5), pair

7→ (4,6)]

Özyeğin University — CS 321 Programming Languages 12

Tuples

(* Tuples can be nested *)

let d = ((1,2,3), ("hi", 3.4), ’a’);;

val d : (int * int * int) * (string * float) * char =

((1, 2, 3), ("hi", 3.4), ’a’)

let (p, (st, _), _) = d;; (* Patterns can be nested *)

(* _ matches everything *)

val st : string = "hi"

val p : int * int * int = (1, 2, 3)

Özyeğin University — CS 321 Programming Languages 13

d;;

- : (int * int * int) * (string * float) * char =

((1, 2, 3), ("hi", 3.4), ’a’)

let (p, (st, _, f), _) = d;;

Error: This expression has type (int * int * int) * (string * float) * char

but an expression was expected of type

(int * int * int) * (’a * ’b * ’c) * ’d

Type string * float is not compatible with type ’a * ’b * ’c

Özyeğin University — CS 321 Programming Languages 14

Exercise

Create a tuple for each of the given types.

???;;

- : int * (float * string) * float * char = ...

???;;

- : int * (float * string) * (float * char) = ...

Özyeğin University — CS 321 Programming Languages 15

Exercise

What is the environment at the end of the following OCaml
session, assuming we start with an empty environment?

let a = 5 + 7;;

let b = 5 > 8;;

let point = (5, 7, 9);;

let a = 99;;

let (a, b, c) = point;;

let a = 55;;

let point = (77, 88, 99);;

let p = (a, b > 5, a + c);;

Özyeğin University — CS 321 Programming Languages 16

Java

Here is how you might define pairs in Java: Define a class Pair,
and use its instances.

class Pair<A,B> {

A first;

B second;

Pair(A first, B second) {

this.first = first;

this.second = second;

}

}

...

new Pair<Integer, Pair<Float, String>>(42, new Pair<Float, String>(3.14, "hi"))

Argh... This is not as neat as OCaml.

Özyeğin University — CS 321 Programming Languages 17

Java

let (x, (y,z)) = p

would translate to

int x = p.first;

float y = p.second.first;

String z = p.second.second;

For triples, similar to Pair, define a class named Triple. But how
about tuples of arbitrary size?

Özyeğin University — CS 321 Programming Languages 18

Functions

let plusTwo = fun n -> n + 2;;

val plusTwo : int -> int = <fun>

Env: [plusTwo 7→ 〈n → n+2〉]
Functions are values as well. They go into the environment
just like any other value, such as integer, string, tuple, etc.

plusTwo 98;;

- : int = 100

plusTwo;;

- : (int -> int) = <fun>

Özyeğin University — CS 321 Programming Languages 19

Functions

A shorter/cleaner syntax for

let plusTwo = fun n -> n + 2;;

is

let plusTwo n = n + 2;;

These two things are exactly the same.

Özyeğin University — CS 321 Programming Languages 20

