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» First example of a recursive datatype (aka algebraic datatype).
» Unlike tuples, lists are homogeneous in type (all elements
same type).

» A list has two forms.

» Empty: written as [].
» Non-empty: with a head element and a tail, written as x: :xs.

» The tail of a list is a list of the same type.

> :: operation, read as “cons”, combines a head element and a
tail.
» Syntactic sugar:
» [x] isx::[]
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# [1;;
- : ’a list = []

# [1]1;;
- : int list = [1]
# 1::[01;;

- : 1nt 1list
# [1;2;3;4];;
- : int list = [1; 2; 3; 4]

# 1::2::[3;4];;

- : int list = [1; 2; 3; 4]

# let a::b = [1;2;3;4];; (* Pattern matching on lists *)
(* A warning suppressed *)

val a : int =1

val b : int list = [2; 3; 4]

[1]
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Lists are homogeneous

# let badList = [1; 2.3; 5];;

Error: This expression has type float but an expression was expected of type
int
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Lists

# [2.5; 3.8; 0.77];;

- : float list = [2.5; 3.8; 0.77]

# [true; false; truel;;

- : bool 1list = [true; false; true]
# [7a7; 7b7; JC); )d)];;

- : char 1list = [’a’; ’b’; ’c’; ’d’]
# ["hello"; "world"];;

- : string list = ["hello"; "world"]
# [[1;2]; [3;4;5]; [1; [6]1];;

- : int list list = [[1; 2]; [3; 4; 5]; [1; [6]]
# [2,3];;

: (int * int) list = [(2, 3)]
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Lists are homogeneous

Which of the following lists is invalid?
1. [2; 3; 4; 6]
[2.3; 4.5; 6.7]
[2,3; 4,5; 6,7]
[2,3.4; 4,5.6; 6.8,7]
[["hi"; "there"]; ["whatcha"]l; []; ["doin"]]

ok b
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Exercise

What are the types? (or flag error)
# [’a’; Jb)] s

# [78.7; JbJ; "C"];;
# [(1,2); (3,4)];;
# [(1,2); (3,4,5)];;

# [(1,02]); (3,[4;5D)1;;
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Exercise

Provide values (other than empty list) to form lists of given types.
# 7?7

- : 1int 1list
# ?°77;

- ¢ int list list
# 777,

- : (int * string) list
# 707,

- : string list list
# 777,

- : (int * string list) list
# 7707,

o
3

- : (int * string list) list list

Ozyegin University — CS 321 Programming Languages



Purity

cons operation is “pure”; it does not destroy/modify existing lists,
but rather it constructs a new one.

# let 1st = [2;3;4;5];;

val 1lst : int list = [2; 3; 4; 5]

# 1::1st;;

- : int 1list
# 1st;;

- : 1nt 1list

[1; 2; 3; 4; 5]
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[2; 3; 4; 5]

# let a::b::c = [1;2;3;4];; (* Pattern matching on lists *)
(* A warning suppressed *)

val ¢ : int list = [3; 4]

val b : int = 2

val a : int =1

# let a::_::c = [1;2;3;4];; (* Pattern matching on lists *)
(* A warning suppressed *)

val ¢ : int list = [3; 4]

val a : int =1

# let listl = [1;2;3;4];;
val listl : int list = [1; 2; 3; 4]
# let list2 = [5;6;7];;

val 1list2 : int list = [5; 6; 7]
# list1Qlist2;; (* Append lists *)
- : int list = [1; 2; 3; 4; 5; 6; 7]
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match expression for pattern-matching

# let rec power x n =
match n with
| 0 -> 1
| m -> x * power x (n - 1);;

val power : int -> int -> int = <fun>
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match expression for pattern-matching

# let foo triple =
match triple with
| (0, x, y) > 1
| (x, 0, y) -> 2
| (x, y, 0) —> 3
| _ => 4;;
val foo : int * int * int -> int = <fun>

# foo (0,3,4);;

- : int =1
# foo (3,0,4);;
- : int = 2
# foo (3,0,0);;
- : int = 2
# foo (0,0,0);;
- : int =1
# foo (1,2,3);;
- : int = 4
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match expression for pattern-matching

# let incomplete n =
match n with
| 0 => "zero"
| 1 -> "one";;

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:

2

val incomplete : int -> string = <fun>
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match expression for pattern-matching

# let redundant n =
match n with
| 0 -> "zero"
| m -> "number"
| 1 -> "one";;

| 1 -> "one";;

~

Warning 11: this match case is unused.

val redundant : int -> string = <fun>
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Functions on lists

# let headOf 1lst =
match 1lst with
| [1 -> failwith "Empty list doesn’t have a head"
| x::_ -> x;; (* don’t care the tail *)

val head0Of : ’a list -> ’a = <fun>

# let tailOf 1st =
match 1lst with
| [ -> failwith "Empty list doesn’t have a tail"
| _::xs -> x8;; (* don’t care the head *)

val tailOf : ’a list -> ’a list = <fun>
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Functions on lists

# head0f [3;5;7;9];;

- : int = 3

# tailOf [3;5;7;9];;

: int list = [6; 7; 9]
tailOf (tailOf [3;5;7;9]1);;
: int list = [7; 9]

headOf (tail0f [3;5;7;91);;
- : int = 5

+*

+*

(* head and tatl already defined in the library *)
# List.hd [1;2;3];;

- ¢ int =1

# List.tl [1;2;3];;

- : int list = [2; 3]
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Functions on lists

# let secondElement0f 1lst =
match 1lst with
| x::y::rest -> y;;

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:

(::001 D

val secondElementOf : ’a list -> ’a
# secondElementO0f [1;2;3:;4:;5];;

- : int = 2

# secondElementOf [1];;

Exception: Match_failure ("//toplevel//", 20, 4).
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Exercise

Write a function to compute the sum of the first two elements of
an int list. You can assume the list is of length at least 2.

# let addfirsttwo

# addfirsttwo [5; 3; 2; 6]1;;
- : int = 8
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Functions on lists

# let rec lengthOf 1lst =
match 1lst with
| [1 ->0
| x::xs -> 1 + lengthOf xs;;

val lengthOf : ’a list -> int

# lengthOf [];;

- : int = 0

# lengthOf [1;2;3;4;5];;

- : int = 5

# List.length [1;2;3;4];; (* defined in the library *)
- : int = 4
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Exercise

# let rec tally 1lst = 777;;
val tally : int list -> int

# tally [1;;

- : int = 0

# tally [1;2;3;4;5;6];;
- : int = 21
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Exercise

Write a function to compute the sum of the lengths of the first two
elements of an (int list) list. You can assume the list is of
length at least 2:

# let addfirsttwolengths

# addfirsttwolengths [[5; 3]; [2]; [6; 2; 5; 311;;
- : int = 3
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Exercise

# let rec numZeros 1lst =

val numZeros : int list -> int

# numZeros [];;

- : int = 0

# numZeros [1;2;3;4;5];;
- : int = 0

# numZeros [1;2;0;4;0];;
- : int = 2
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Exercise

# let rec numZeros 1lst =

match 1lst with

| [1 -> 0

| 0::xs -> 1 + numZeros Xxs
| _::xs -> numZeros Xs;;

val numZeros : int list —-> int

# numZeros [];;

- : int = 0

# numZeros [1;2;3;4;5];;
- : int = 0

# numZeros [1;2;0;4;0];;
- : int = 2
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Functions on lists

(* Alternatively *)
# let rec numZeros lst =
match 1lst with
| [1 ->0
| x::xs -> (if x = 0 then 1 else 0) + numZeros Xs;;

val numZeros : int list -> int
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Functions on lists

(* Yet another alternative *)
# let rec numZeros lst =
match 1lst with
| [ ->0
| x::xs when x = 0 -> 1 + numZeros xs
| x::xs8 —> numZeros Xs;;

val numZeros : int list —-> int
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Exercise

# let rec doubleUp 1lst = 777;;

val doubleUp : ’a list -> ’a list

# doubleUp [1;2;3;4];;
- : int list = [1; 1; 2; 2; 3; 3; 4; 4]
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Functions on lists

# let rec poorRev 1lst =
match lst with

| O -> [
| x::xs -> poorRev xs @ [x];;

val poorRev : ’a list -> ’a list

# poorRev [1;2;3;4;5];;
- : int list = [5; 4; 3; 2; 1]

Ozyegin University — CS 321 Programming Languages

Exercise — zipAdd

Define a function zipAdd that takes two integer lists, and returns
a list that contains the sum of corresponding elements in its input
lists. You may assume that the input lists are of the same length.

# let rec zipAdd 1lstl 1st2 =

val zipAdd : 1lstl:int list -> 1lst2:int list -> int list

# zipAdd [1;2;3;4;5] [6;7;8;9;10];;
- : int 1list = [7; 9; 11; 13; 15]
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Exercise — zipAdd

Define a function zipAdd that takes two integer lists, and returns
a list that contains the sum of corresponding elements in its input
lists. You may assume that the input lists are of the same length.

# let rec zipAdd 1lstl 1st2 =

(* pattern-match a pair of lists! *)
match 1lstl, 1st2 with

0,00 > [
| x::xs, yr:ys —> (x+y)::zipAdd xs ys;;
(* Incomplete pattern-matching warning omitted *)

val zipAdd : 1lstl:int list -> 1lst2:int list -> int list

# zipAdd [1;2;3;4;5] [6;7;8;9;10];;
- : int list = [7; 9; 11; 13; 15]
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Exercise — zipAdd, Alternative implementation

You can write any expression corresponding to the case of a
match, including another match.

# let rec zipAdd 1stl 1st2 =
match 1stl with
| 1 > [
| x::xs -> (match 1lst2 with
| [] -> failwith "This shouldn’t happen."
| y:i:ys —> (x+y)::zipAdd xs ys);;

val zipAdd : 1lstl:int list -> 1lst2:int list -> int list

# zipAdd [1;2;3;4;5] [6;7;8;9;10];;
- : int list = [7; 9; 11; 13; 15]
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Functions on lists — map

Define a function map such that map f [x1; X2;...;Xn]
computes [f(x1); £(x2);...;f(x,)] J

# let rec map f 1lst =
match 1lst with
| [0 -> []

| x::xs -> £ x :: map f xs;;

val map : (’a -> ’b) -> ’a list -> ’b list
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Exercise: map

# let rec map f 1st =
match 1lst with
|1 -> [

| x::xs -> f x :: map f xs;;
val map : (’a -> ’b) -> ’a list -> ’b list

# map (fun n -> n + 2) [1;2;3;4;5];;

- : int list = [3; 4; 5; 6; 7]

# map (fun s -> s = "I") ["a"; "b"; "c"];;
- : string list = ["al"; "b!"; "c!"]

# map (777) [1;2;3;4;5];;

- : int list = [1; 4; 9; 16; 25]

# map (777) [1;-2;3;-4;5;0;-99];;

int list = [1; 2; 3; 4; 5; 0; 99]

(* map is defined in the library’s List module *)
# List.map abs [1;-2;3;-4;5;0;-99];;
- : int list = [1; 2; 3; 4; 5; 0; 99]
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lterating over lists — fold_left

# let rec fold_left f a 1lst =
match lst with
| [ —> a
| x::x8 -> fold_left f (f a x) xs;;

val fold_ left : (’a -> b -> ’a) -> ’a -> ’b list -> ’a

fold_left is an extremely important function that is used
frequently.

fold_left f a [x1;X2;...;X,] computes
f(...(f (f a x1) %2)...)%,.

So, f takes two arguments: (1) the accumulated value over the list
from the left, (2) the current element of the list. a is the initial
value of accumulation, which is also the result if the list is empty.

v
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Exercise: fold_left

(* tally *)
# fold_left (fun acc x -> acc + x) 0 [1;2;3;4;5;6];;
- : int = 21

(¥ Or, also as *)
# fold_left (+) 0 [1;2;3;4;5;6];;
- : int = 21

(* lengthOf *)
# fold_left (fun acc x -> acc + 1) 0 [4;9;0;45;3;6];;
- : int = 6

(* numZeros *)
# fold_left (fun acc x -> 777 ) 0 [4;9;0;45;0;0];;
- : int = 3

(* fold_left is already defined in the library *)
# List.fold_left (fun acc x -> acc + x) 0 [1;2:;3;4:;5;6];;
- : int = 21
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lterating over lists — fold right

# let rec fold_right f 1st a =
match lst with
[1 -> a
| x::xs > f x (fold_right f xs a);;

val fold_right : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

fold right is the other extremely important function that is used
frequently to iterate over lists.

fold right £ [x1;X2;...;X,] a computes
f x1(f (.. (f x, a)...)).

So, f takes two arguments: (1) the current element of the list, (2)
the accumulated value over the list from the right. a is the initial
value of accumulation, which is also the result if the list is empty.

V.
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Exercise: fold right

(* tally *)

# fold_right (fun x a -> 777 ) [1;2;3;4;5;6] 0;;
- : int = 21

# fold_right ( * ) [1;2;3;4;5;6] 1;;

- : int = 720

(* squareUp *)
# fold_right (fun x a -> 777 ) [1;2;3;4;5;6] [1;;
- : int list = [1; 4; 9; 16; 25; 36]

(* fold_right ts already defined in the library *)

# List.fold_right;;

- : (’a->"’b ->’b) -> ’a list -> ’b -> ’b = <fun>

# List.fold_right (fun x a -> if x=0 then a else x::a) [1;0;3;0;5;6;0] [];;
- : int list = [1; 3; 5; 6]
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Exercise

(* Reversing a list, written with fold_left and fold_right *)
# fold_left (fun a x -> 777 ) [] [1;2:;3:;4;5;6];;
- : int list = [6; 5; 4; 3; 2; 1]

# fold_right (fun x a -> 777 ) [1;2;3;4;5;6] [1;;
- : int list = [6; 5; 4; 3; 2; 1]

(* Which one ts more efficient? *)
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List functions

The List module contains very useful functions. See the API
documentation at

http://caml.inria.fr/pub/docs/manual-ocaml/libref/
List.html J

Some important functions, in addition to map, fold left and
fold right.

» E.g.: rev, flatten, mem, filter.
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What happened to while/for loops?

In functional programming, you seldomly use while/for loops, which
are highly associated with procedural /imperative programming.
You excessively use recursion instead. Recursion is more powerful
than simple loops, and if you form your recursion right, you don't
compromise performance. (will talk about this soon)
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