CS 321 Programming Languages

Intro to OCaml — Lists

Baris Aktemur

(")zyeéin University

Last update made on Monday 2" October, 2017 at 19:27.

Some of the contents here are taken from Elsa Gunter and Sam
Kamin's OCaml notes available at
http://courses.engr.illinois.edu/cs421

Ozyegin University — CS 321 Programming Languages

» First example of a recursive datatype (aka algebraic datatype).
» Unlike tuples, lists are homogeneous in type (all elements
same type).

» A list has two forms.

» Empty: written as [].
» Non-empty: with a head element and a tail, written as x: :xs.

» The tail of a list is a list of the same type.

> :: operation, read as “cons”, combines a head element and a
tail.
» Syntactic sugar:
» [x] isx::[]

Ozyegin University — CS 321 Programming Languages



# [1;;
- : ’a list = []

# [1]1;;
- : int list = [1]
# 1::[01;;

- : 1nt 1list
# [1;2;3;4];;
- : int list = [1; 2; 3; 4]

# 1::2::[3;4];;

- : int list = [1; 2; 3; 4]

# let a::b = [1;2;3;4];; (* Pattern matching on lists *)
(* A warning suppressed *)

val a : int =1

val b : int list = [2; 3; 4]

[1]

Ozyegin University — CS 321 Programming Languages

Lists are homogeneous

# let badList = [1; 2.3; 5];;

Error: This expression has type float but an expression was expected of type
int

Ozyegin University — CS 321 Programming Languages



Lists

# [2.5; 3.8; 0.77];;

- : float list = [2.5; 3.8; 0.77]

# [true; false; truel;;

- : bool 1list = [true; false; true]
# [7a7; 7b7; JC); )d)];;

- : char 1list = [’a’; ’b’; ’c’; ’d’]
# ["hello"; "world"];;

- : string list = ["hello"; "world"]
# [[1;2]; [3;4;5]; [1; [6]1];;

- : int list list = [[1; 2]; [3; 4; 5]; [1; [6]]
# [2,3];;

: (int * int) list = [(2, 3)]

Ozyegin University — CS 321 Programming Languages

Lists are homogeneous

Which of the following lists is invalid?
1. [2; 3; 4; 6]
[2.3; 4.5; 6.7]
[2,3; 4,5; 6,7]
[2,3.4; 4,5.6; 6.8,7]
[["hi"; "there"]; ["whatcha"]l; []; ["doin"]]

ok b

Ozyegin University — CS 321 Programming Languages



Exercise

What are the types? (or flag error)
# [’a’; Jb)] s

# [78.7; JbJ; "C"];;
# [(1,2); (3,4)];;
# [(1,2); (3,4,5)];;

# [(1,02]); (3,[4;5D)1;;

Ozyegin University — CS 321 Programming Languages

Exercise

Provide values (other than empty list) to form lists of given types.
# 7?7

- : 1int 1list
# ?°77;

- ¢ int list list
# 777,

- : (int * string) list
# 707,

- : string list list
# 777,

- : (int * string list) list
# 7707,

o
3

- : (int * string list) list list

Ozyegin University — CS 321 Programming Languages



Purity

cons operation is “pure”; it does not destroy/modify existing lists,
but rather it constructs a new one.

# let 1st = [2;3;4;5];;

val 1lst : int list = [2; 3; 4; 5]

# 1::1st;;

- : int 1list
# 1st;;

- : 1nt 1list

[1; 2; 3; 4; 5]

Ozyegin University — CS 321 Programming Languages

[2; 3; 4; 5]

# let a::b::c = [1;2;3;4];; (* Pattern matching on lists *)
(* A warning suppressed *)

val ¢ : int list = [3; 4]

val b : int = 2

val a : int =1

# let a::_::c = [1;2;3;4];; (* Pattern matching on lists *)
(* A warning suppressed *)

val ¢ : int list = [3; 4]

val a : int =1

# let listl = [1;2;3;4];;
val listl : int list = [1; 2; 3; 4]
# let list2 = [5;6;7];;

val 1list2 : int list = [5; 6; 7]
# list1Qlist2;; (* Append lists *)
- : int list = [1; 2; 3; 4; 5; 6; 7]

Ozyegin University — CS 321 Programming Languages



match expression for pattern-matching

# let rec power x n =
match n with
| 0 -> 1
| m -> x * power x (n - 1);;

val power : int -> int -> int = <fun>

Ozyegin University — CS 321 Programming Languages

match expression for pattern-matching

# let foo triple =
match triple with
| (0, x, y) > 1
| (x, 0, y) -> 2
| (x, y, 0) —> 3
| _ => 4;;
val foo : int * int * int -> int = <fun>

# foo (0,3,4);;

- : int =1
# foo (3,0,4);;
- : int = 2
# foo (3,0,0);;
- : int = 2
# foo (0,0,0);;
- : int =1
# foo (1,2,3);;
- : int = 4

Ozyegin University — CS 321 Programming Languages



match expression for pattern-matching

# let incomplete n =
match n with
| 0 => "zero"
| 1 -> "one";;

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:

2

val incomplete : int -> string = <fun>

Ozyegin University — CS 321 Programming Languages

match expression for pattern-matching

# let redundant n =
match n with
| 0 -> "zero"
| m -> "number"
| 1 -> "one";;

| 1 -> "one";;

~

Warning 11: this match case is unused.

val redundant : int -> string = <fun>

Ozyegin University — CS 321 Programming Languages



Functions on lists

# let headOf 1lst =
match 1lst with
| [1 -> failwith "Empty list doesn’t have a head"
| x::_ -> x;; (* don’t care the tail *)

val head0Of : ’a list -> ’a = <fun>

# let tailOf 1st =
match 1lst with
| [ -> failwith "Empty list doesn’t have a tail"
| _::xs -> x8;; (* don’t care the head *)

val tailOf : ’a list -> ’a list = <fun>

Ozyegin University — CS 321 Programming Languages

Functions on lists

# head0f [3;5;7;9];;

- : int = 3

# tailOf [3;5;7;9];;

: int list = [6; 7; 9]
tailOf (tailOf [3;5;7;9]1);;
: int list = [7; 9]

headOf (tail0f [3;5;7;91);;
- : int = 5

+*

+*

(* head and tatl already defined in the library *)
# List.hd [1;2;3];;

- ¢ int =1

# List.tl [1;2;3];;

- : int list = [2; 3]

Ozyegin University — CS 321 Programming Languages



Functions on lists

# let secondElement0f 1lst =
match 1lst with
| x::y::rest -> y;;

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:

(::001 D

val secondElementOf : ’a list -> ’a
# secondElementO0f [1;2;3:;4:;5];;

- : int = 2

# secondElementOf [1];;

Exception: Match_failure ("//toplevel//", 20, 4).

Ozyegin University — CS 321 Programming Languages

Exercise

Write a function to compute the sum of the first two elements of
an int list. You can assume the list is of length at least 2.

# let addfirsttwo

# addfirsttwo [5; 3; 2; 6]1;;
- : int = 8

Ozyegin University — CS 321 Programming Languages



Functions on lists

# let rec lengthOf 1lst =
match 1lst with
| [1 ->0
| x::xs -> 1 + lengthOf xs;;

val lengthOf : ’a list -> int

# lengthOf [];;

- : int = 0

# lengthOf [1;2;3;4;5];;

- : int = 5

# List.length [1;2;3;4];; (* defined in the library *)
- : int = 4

Ozyegin University — CS 321 Programming Languages

Exercise

# let rec tally 1lst = 777;;
val tally : int list -> int

# tally [1;;

- : int = 0

# tally [1;2;3;4;5;6];;
- : int = 21

Ozyegin University — CS 321 Programming Languages



Exercise

Write a function to compute the sum of the lengths of the first two
elements of an (int list) list. You can assume the list is of
length at least 2:

# let addfirsttwolengths

# addfirsttwolengths [[5; 3]; [2]; [6; 2; 5; 311;;
- : int = 3

Ozyegin University — CS 321 Programming Languages

Exercise

# let rec numZeros 1lst =

val numZeros : int list -> int

# numZeros [];;

- : int = 0

# numZeros [1;2;3;4;5];;
- : int = 0

# numZeros [1;2;0;4;0];;
- : int = 2

Ozyegin University — CS 321 Programming Languages



Exercise

# let rec numZeros 1lst =

match 1lst with

| [1 -> 0

| 0::xs -> 1 + numZeros Xxs
| _::xs -> numZeros Xs;;

val numZeros : int list —-> int

# numZeros [];;

- : int = 0

# numZeros [1;2;3;4;5];;
- : int = 0

# numZeros [1;2;0;4;0];;
- : int = 2

Ozyegin University — CS 321 Programming Languages

Functions on lists

(* Alternatively *)
# let rec numZeros lst =
match 1lst with
| [1 ->0
| x::xs -> (if x = 0 then 1 else 0) + numZeros Xs;;

val numZeros : int list -> int

Ozyegin University — CS 321 Programming Languages



Functions on lists

(* Yet another alternative *)
# let rec numZeros lst =
match 1lst with
| [ ->0
| x::xs when x = 0 -> 1 + numZeros xs
| x::xs8 —> numZeros Xs;;

val numZeros : int list —-> int

Ozyegin University — CS 321 Programming Languages

Exercise

# let rec doubleUp 1lst = 777;;

val doubleUp : ’a list -> ’a list

# doubleUp [1;2;3;4];;
- : int list = [1; 1; 2; 2; 3; 3; 4; 4]

Ozyegin University — CS 321 Programming Languages



Functions on lists

# let rec poorRev 1lst =
match lst with

| O -> [
| x::xs -> poorRev xs @ [x];;

val poorRev : ’a list -> ’a list

# poorRev [1;2;3;4;5];;
- : int list = [5; 4; 3; 2; 1]

Ozyegin University — CS 321 Programming Languages

Exercise — zipAdd

Define a function zipAdd that takes two integer lists, and returns
a list that contains the sum of corresponding elements in its input
lists. You may assume that the input lists are of the same length.

# let rec zipAdd 1lstl 1st2 =

val zipAdd : 1lstl:int list -> 1lst2:int list -> int list

# zipAdd [1;2;3;4;5] [6;7;8;9;10];;
- : int 1list = [7; 9; 11; 13; 15]

Ozyegin University — CS 321 Programming Languages



Exercise — zipAdd

Define a function zipAdd that takes two integer lists, and returns
a list that contains the sum of corresponding elements in its input
lists. You may assume that the input lists are of the same length.

# let rec zipAdd 1lstl 1st2 =

(* pattern-match a pair of lists! *)
match 1lstl, 1st2 with

0,00 > [
| x::xs, yr:ys —> (x+y)::zipAdd xs ys;;
(* Incomplete pattern-matching warning omitted *)

val zipAdd : 1lstl:int list -> 1lst2:int list -> int list

# zipAdd [1;2;3;4;5] [6;7;8;9;10];;
- : int list = [7; 9; 11; 13; 15]

Ozyegin University — CS 321 Programming Languages

Exercise — zipAdd, Alternative implementation

You can write any expression corresponding to the case of a
match, including another match.

# let rec zipAdd 1stl 1st2 =
match 1stl with
| 1 > [
| x::xs -> (match 1lst2 with
| [] -> failwith "This shouldn’t happen."
| y:i:ys —> (x+y)::zipAdd xs ys);;

val zipAdd : 1lstl:int list -> 1lst2:int list -> int list

# zipAdd [1;2;3;4;5] [6;7;8;9;10];;
- : int list = [7; 9; 11; 13; 15]

Ozyegin University — CS 321 Programming Languages



Functions on lists — map

Define a function map such that map f [x1; X2;...;Xn]
computes [f(x1); £(x2);...;f(x,)] J

# let rec map f 1lst =
match 1lst with
| [0 -> []

| x::xs -> £ x :: map f xs;;

val map : (’a -> ’b) -> ’a list -> ’b list

Ozyegin University — CS 321 Programming Languages

Exercise: map

# let rec map f 1st =
match 1lst with
|1 -> [

| x::xs -> f x :: map f xs;;
val map : (’a -> ’b) -> ’a list -> ’b list

# map (fun n -> n + 2) [1;2;3;4;5];;

- : int list = [3; 4; 5; 6; 7]

# map (fun s -> s = "I") ["a"; "b"; "c"];;
- : string list = ["al"; "b!"; "c!"]

# map (777) [1;2;3;4;5];;

- : int list = [1; 4; 9; 16; 25]

# map (777) [1;-2;3;-4;5;0;-99];;

int list = [1; 2; 3; 4; 5; 0; 99]

(* map is defined in the library’s List module *)
# List.map abs [1;-2;3;-4;5;0;-99];;
- : int list = [1; 2; 3; 4; 5; 0; 99]

Ozyegin University — CS 321 Programming Languages



lterating over lists — fold_left

# let rec fold_left f a 1lst =
match lst with
| [ —> a
| x::x8 -> fold_left f (f a x) xs;;

val fold_ left : (’a -> b -> ’a) -> ’a -> ’b list -> ’a

fold_left is an extremely important function that is used
frequently.

fold_left f a [x1;X2;...;X,] computes
f(...(f (f a x1) %2)...)%,.

So, f takes two arguments: (1) the accumulated value over the list
from the left, (2) the current element of the list. a is the initial
value of accumulation, which is also the result if the list is empty.

v

Ozyegin University — CS 321 Programming Languages

Exercise: fold_left

(* tally *)
# fold_left (fun acc x -> acc + x) 0 [1;2;3;4;5;6];;
- : int = 21

(¥ Or, also as *)
# fold_left (+) 0 [1;2;3;4;5;6];;
- : int = 21

(* lengthOf *)
# fold_left (fun acc x -> acc + 1) 0 [4;9;0;45;3;6];;
- : int = 6

(* numZeros *)
# fold_left (fun acc x -> 777 ) 0 [4;9;0;45;0;0];;
- : int = 3

(* fold_left is already defined in the library *)
# List.fold_left (fun acc x -> acc + x) 0 [1;2:;3;4:;5;6];;
- : int = 21

Ozyegin University — CS 321 Programming Languages




lterating over lists — fold right

# let rec fold_right f 1st a =
match lst with
[1 -> a
| x::xs > f x (fold_right f xs a);;

val fold_right : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

fold right is the other extremely important function that is used
frequently to iterate over lists.

fold right £ [x1;X2;...;X,] a computes
f x1(f (.. (f x, a)...)).

So, f takes two arguments: (1) the current element of the list, (2)
the accumulated value over the list from the right. a is the initial
value of accumulation, which is also the result if the list is empty.

V.

Ozyegin University — CS 321 Programming Languages

Exercise: fold right

(* tally *)

# fold_right (fun x a -> 777 ) [1;2;3;4;5;6] 0;;
- : int = 21

# fold_right ( * ) [1;2;3;4;5;6] 1;;

- : int = 720

(* squareUp *)
# fold_right (fun x a -> 777 ) [1;2;3;4;5;6] [1;;
- : int list = [1; 4; 9; 16; 25; 36]

(* fold_right ts already defined in the library *)

# List.fold_right;;

- : (’a->"’b ->’b) -> ’a list -> ’b -> ’b = <fun>

# List.fold_right (fun x a -> if x=0 then a else x::a) [1;0;3;0;5;6;0] [];;
- : int list = [1; 3; 5; 6]

Ozyegin University — CS 321 Programming Languages



Exercise

(* Reversing a list, written with fold_left and fold_right *)
# fold_left (fun a x -> 777 ) [] [1;2:;3:;4;5;6];;
- : int list = [6; 5; 4; 3; 2; 1]

# fold_right (fun x a -> 777 ) [1;2;3;4;5;6] [1;;
- : int list = [6; 5; 4; 3; 2; 1]

(* Which one ts more efficient? *)

Ozyegin University — CS 321 Programming Languages

List functions

The List module contains very useful functions. See the API
documentation at

http://caml.inria.fr/pub/docs/manual-ocaml/libref/
List.html J

Some important functions, in addition to map, fold left and
fold right.

» E.g.: rev, flatten, mem, filter.

Ozyegin University — CS 321 Programming Languages



What happened to while/for loops?

In functional programming, you seldomly use while/for loops, which
are highly associated with procedural /imperative programming.
You excessively use recursion instead. Recursion is more powerful
than simple loops, and if you form your recursion right, you don't
compromise performance. (will talk about this soon)

Ozyegin University — CS 321 Programming Languages




