CS 321 Programming Languages

1 i Ozl — L » First example of a recursive datatype (aka algebraic datatype).

v

Unlike tuples, lists are homogeneous in type (all elements
same type).

Baris Aktemur

A list has two forms.

v

» Empty: written as [].
» Non-empty: with a head element and a tail, written as x: : xs.

Last update made on Monday 2"¢ October, 2017 at 19:27. > The tail of a list is a list of the same type.
» :: operation, read as “cons”, combines a head element and a
tail.

Syntactic sugar:

C")zyegin University

v

Some of the contents here are taken from Elsa Gunter and Sam
Kamin's OCaml notes available at > [x] is x::[] _
http://courses.engr.illinois.edu/cs421 » [x1;x2;x3;...;xn] isxl::x2::x3::...::xn::[]

Ozyegin University — CS 321 Programming Languages Ozyegin University — CS 321 Programming Languages

Lists are homogeneous

[

- : ’a list = []

[1]1;;

- : int list = [1]

1::[01;; # let badList = [1; 2.3; 5];;

- : int list = [1]

[1;2;3;4] 5 Error: Thilsltexpression has type float but an expression was expected of type
- : int list = [1; 2; 3; 4]

1::2::[3;4];;

- : int list = [1; 2; 3; 4]

let a::b = [1;2;3;4];; (* Pattern matching on lists *)
(* A warning suppressed *)

val a : int = 1

val b : int list = [2; 3; 4]

Ozyegin University — CS 321 Programming Languages 0 University — CS 321 Programming Languages

#

#

#

#

#

#

[2.5; 3.8; 0.771;;
: float list = [2.5; 3.8; 0.77]

[true; false; truel;;
: bool list = [true; false; truel

@155

7a7; JbJ; ’C’;
= [)al; Jb); ’C’;)d]]

: char list

["hello"; "world"];;
: string list = ["hello"; "world"]

[[1;2]; [3;4;5]; [1; [611;;
: int list list = [[1; 2]; [3; 4; 5]; [1; [6]]

[2,3];;
: (int * int) list = [(2, 3)]

Ozyegin University — CS 321 Programming Languages

Exercise

What are the types? (or flag error)

#

[’a’; ’b’15;

[’a’; ’b’; "c"Is;
[(1,2); 3,4)]1;;
[(1,2); (3,4,5)];;
[(1,[2]1); (3,[4;51)]5;

[JaJ , ’b’] B

Ozyegin University — CS 321 Programming Languages

Lists are homogeneous

Which of the following lists is invalid?

[2; 3; 4; 6]

[2.3; 4.5; 6.7]

[2,3; 4,5; 6,7]

[2,3.4; 4,5.6; 6.8,7]

[["hi"; "there"]; ["whatcha"]; [];

AN

Ozyegin University — CS 321 Programming Languages

Exercise

Provide values (other than empty list) to form lists of given types.

#

775
int list
2?7 :
??75
int list list
2?7
???;5;
(int * string) list
2?7 :
???55
string list list
2?7 :
??7;5;
(int * string list) list
775,

(int * string list) 1list list

Ozyegin University — CS 321 Programming Languages

[Ildoinll]]

Purity

cons operation is “pure”; it does not destroy/modify existing lists,

but rather it constructs a new one.

let 1lst = [2;3;4;5];;
val 1st : int list = [2; 3; 4; 5]

1::1st;;

- : int list = [1; 2; 3; 4; 5]
1st;;

- : int list = [2; 3; 4; 5]

Ozyegin University — CS 321 Programming Languages

match expression for pattern-matching

let rec power x n =
match n with
| 0 ->1
| m -> x * power x (n - 1);;

val power : int -> int -> int = <fun>

Lists

let a::b::c = [1;2;3;4];; (* Pattern matching on lists *)

(* A warning suppressed *)
val ¢ : int list = [3; 4]
val b : int = 2

val a : int =1

let a::_::c = [1;2;3;4];; (* Pattern matching on lists *)

(* A warning suppressed *)
val ¢ : int list = [3; 4]
val a : int =1

let 1listl = [1;2;3;4];;

val listl : int list = [1; 2; 3; 4]
let 1ist2 = [5;6;7];;

val list2 : int list = [5; 6; 7]

1list1@list2;; (* Append lists *)
- : dint list = [1; 2; 3; 4; 5; 6; 7]

Ozyegin University — CS 321 Programming Languages

match expression for pattern-matching

let foo triple =
match triple with
[(0, x, y) > 1
| (x, 0, y) -> 2
| (x, y, 0) -> 3
I => 455
val foo : int * int * int -> int = <fun>

+*+

foo (0,3,4);;
- : int =1
foo (3,0,4);;
- : int = 2
foo (3,0,0);;
- : int = 2
foo (0,0,0);;
- : int =1
foo (1,2,3);;
- : int = 4

+*+

niversity — CS 321 Programming Languages

match expression for pattern-matching match expression for pattern-matching

let redundant n =

let incomplete n = match n with

match n with

| 0 -> "zero"
| 0 -> "zero"

[m -> "number"
| 1 -> "one";; | 1 -> "one";;
Warning 8: this pattern-matching is not exhaustive. | 1 -> "one";;
Here is an example of a value that is not matched: ————r

2

Warning 11: this match case is unused.
val incomplete : int -> string = <fun>

val redundant : int -> string = <fun>

Ozyegin University — CS 321 Programming Languages Ozyegin University — CS 321 Programming Languages

Functions on lists Functions on lists

let head0f 1st = ¥ headdf 13:5;7;913
) - : int = 3
match 1st with # tailOf [3;5;7;9];;
| [1 -> failwith "Empty list doesn’t have a head" - ¢ int list = [5; 7; 9]
| x::_ -> x;; (* don’t care the tail *) # tailOf (tailOf [3;5;7;9]1);;
val head0f : ’a list -> ’a = <fun> - i int list = [7; 9]
headOf (tailOf [3;5;7;91);;
- : int =5
let tailOf 1st =
match lst with (* head and tail already defined in the library *)
| [-> failwith "Empty list doesn’t have a tail" # List.hd [1;2;3];;
- :int =1

| _::xs -> xs;; (* don’t care the head *)

: : . # List.tl [1;2;3];;
val tailOf : ’a list -> ’a list = <fun>

- : int list = [2; 3]

Ozyegin University — CS 321 Programming Languages Ozyegin University — CS 321 Programming Languages

Functions on lists Exercise

let secondElementOf 1st =
match 1lst with . . .
| %::y::rest -> y;; Write a function to compute the sum of the first two elements of

an int list. You can assume the list is of length at least 2.
Warning 8: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched: # let addfirsttwo
C:: 001

val secondElementOf : ’a list -> ’a

secondElementOf [1;2;3;4;5];; # addfirsttwo [5; 3; 2; 6];;
Codnt =2 - :int = 8

secondElement0f [1];;

Exception: Match_failure ("//toplevel//", 20, 4).

Ozyegin University — CS 321 Programming Languages Ozyegin University — CS 321 Programming Languages

Functions on lists Exercise

let rec lengthOf 1lst =
match 1st with
I 1 >0

let rec tally 1lst = 777;;
| x::xs -> 1 + lengthOf xs;;

val tally : int list -> int

val lengthOf : ’a list —-> int # tally [1;;
- :int =0
1e1'1gth0f (1;; # tally [1;2;3;4;5;6];;
- :int = 0 - : int = 21
lengthOf [1;2;3;4;5];;
- : int =5
List.length [1;2;3;4];; (* defined in the library *)
- : int = 4

University — CS 321 Programming Languages Ozyegin University — CS 321 Programming Languages

Exercise Exercise

let rec numZeros 1lst =

Write a function to compute the sum of the lengths of the first two
elements of an (int list) list. You can assume the list is of
length at least 2:

let addfirsttwolengths . . .
val numZeros : int list -> int

numZeros [];;

- : int =0

numZeros [1;2;3;4;5];;
- : int = 0

numZeros [1;2;0;4;0];;
- : int = 2

addfirsttwolengths [[5; 31; [2]; [6; 2; 5; 3]1;;
- : int = 3

Ozyegin University — CS 321 Programming Languages Ozyegin University — CS 321 Programming Languages

Exercise Functions on lists

let rec numZeros 1lst =

match 1lst with
| [1 -> 0

(* Alternatively *)
| O0::xs -> 1 + numZeros xs

let rec numZeros 1lst =
| _::xs -> numZeros xs;; match lst with

val numZeros : int list -> int | [>0
| x::xs -> (if x = 0 then 1 else 0) + numZeros xs;;

numZeros [];;

- : int =0 val numZeros : int list -> int
numZeros [1;2;3;4;5];;

- : int =0

numZeros [1;2;0;4;0];;

- : int = 2

Ozyegin University — CS 321 Programming Languages Ozyegin University — CS 321 Programming Languages

Functions on lists Exercise

= 2?27
(* Yet another alternative *) # let rec doublelUp lst o

let rec numZeros lst =
match 1lst with
| [1 ->0
| x::x8 when x = 0 -> 1 + numZeros xs

val doubleUp : ’a list -> ’a list
| x::xs -> numZeros xs;;

doubleUp [1;2;3;4];;

val numZeros : int list -> int . i
- : int list = [1; 1; 2; 2; 3; 3; 4; 4]

Ozyegin University — CS 321 Programming Languages Ozyegin University — CS 321 Programming Languages

Functions on lists Exercise — zipAdd

Define a function zipAdd that takes two integer lists, and returns
a list that contains the sum of corresponding elements in its input

let rec poorRev lst = lists. You may assume that the input lists are of the same length.

match 1lst with
I [0 -> [# let rec zipAdd 1lstl 1st2 =

| x::xs -> poorRev xs @ [x];;
val poorRev : ’a list -> ’a list

poorRev [1;2;3;4;5];;

- : int list = [5; 4; 3; 2; 1] . . . _ . . _
val zipAdd : 1lstl:int list -> 1lst2:int list -> int list

zipAdd [1;2;3;4;5] [6;7;8;9;10];;
- : int list = [7; 9; 11; 13; 15]

Ozyegin University — CS 321 Programming Languages Ozyegin University — CS 321 Programming Languages

Exercise — zipAdd

Define a function zipAdd that takes two integer lists, and returns
a list that contains the sum of corresponding elements in its input
lists. You may assume that the input lists are of the same length.

let rec zipAdd 1lstl 1st2 =

(* pattern-match a pair of lists! *)

match 1stl, 1lst2 with

0,0 > 0

| x::xs, y::ys —> (x+y)::zipAdd xs ys;;
(* Incomplete pattern-matching warning omitted *)

val zipAdd : 1lstl:int list -> 1lst2:int list -> int list

zipAdd [1;2;3;4;5] [6;7;8;9;10];;
- : int list = [7; 9; 11; 13; 15]

Ozyegin University — CS 321 Programming Languages

Exercise — zipAdd, Alternative implementation

You can write any expression corresponding to the case of a
match, including another match.

let rec zipAdd 1lstl 1st2 =
match 1stl with
I 00 ->1
| x::xs -> (match 1st2 with
| [J -> failwith "This shouldn’t happen."
| y::ys => (x+y)::zipAdd xs ys);;

val zipAdd : 1lstl:int list -> 1lst2:int list -> int list

zipAdd [1;2;3;4;5] [6;7;8;9;10];;
- : int list = [7; 9; 11; 13; 15]

Ozyegin University — CS 321 Programming Languages

Functions on lists — map

Define a function map such that map £ [x1; x2;...;%,]
computes [f(x1); £(x2);...;£(xy)] J

let rec map f 1st =
match 1st with
00 -> 1

| x::xs -> f x :: map f xs;;

val map : (’a -> ’b) -> ’a list -> ’b list

Ozyegin University — CS 321 Programming Languages

Exercise: map

let rec map f 1st =
match 1lst with
00 ->1

| x::xs -> f x :: map f xs;;

val map : (’a -> ’b) -> ’a list -> ’b list

map (fun n -> n + 2) [1;2;3;4;5];;

- : int list = [3; 4; 5; 6; 7]

map (fun s -> s = "!") ["a"; "b"; "c"I;;
- : string list = ["a!"; "b!"; "c!"]

map (777) [1;2;3;4;5];;

- : int list = [1; 4; 9; 16; 25]

map (777) [1;-2;3;-4;5;0;-99];;

: int list = [1; 2; 3; 4; 5; 0; 99]

(* map is defined in the library’s List module *)
List.map abs [1;-2;3;-4;5;0;-99];;
- : int list = [1; 2; 3; 4; 5; 0; 99]

Ozyegin University — CS 321 Programming Languages

Iterating over lists — fold left Exercise: fold left

let rec fold_left f a 1lst =

(* tally *)
match lst with # fold_left (fun acc x -> acc + x) 0 [1;2;3;4;5;6];;
| [T -> a - : int = 21
| x::xs -> fold_left f (f a x) xs;; (* Or, also as *)

fold_left (+) 0 [1;2;3;4;5;6];;

- : int = 21

val fold_left : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a
(* lengthOf *)

fold left is an extremely important function that is used # fold_left (fun acc x -> acc + 1) 0 [4;9;0;45;3;6];;
frequently. - :int = 6
fold left f a [x1;x2;...;X,] computes (x numZeros *)
fold_left (fun acc x -> 777) 0 [4;9;0;45;0;0];;

fC...(f (£ a x1) X2)...0%,. T

: int = 3
So, f takes two arguments: (1) the accumulated value over the list (* fold_left is already definmed in the library)
from the left, (2) the current element of the list. a is the initial # List.fold_left (fun acc x -> acc + x) 0 [1;2;3;4;5;6];;
value of accumulation, which is also the result if the list is empty. -t int = 21

Ozyegin University — CS 321 Programming Languages Ozyegin University — CS 321 Programming Languages

lterating over lists — fold right Exercise: fold right

let rec fold_right f 1st a =

match 1lst with

[] -> a (* tally =)
| x::xs -> £ x (fold right £ xs a):: # fold_right (fun x a -> 777) [1;2;3;4;5;6] 0;;
o _ 5 .

: int = 21
fold_right (*) [1;2;3;4;5;6] 1;;
- : int = 720

val fold_right : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b
(* squareUp *)
fold right is the other extremely important function that is used # fold_right (fun x a -> 777) [1;2;3;4;5;6] [1;;
frequently to iterate over lists. - @ imt list = [1; 4; 9; 16; 25; 36]
(* fold_right ts already defined in the library *)
fold right £ [x1;x%2;...;x5] a computes # List.fold_right;;
- : (a->"’b ->’b) -> ’a list -> ’b -> ’b = <fun>
f Xl(f X2(' o (f = a)' :)) # List.fold_right (fun x a -> if x=0 then a else x::a) [1;0;3;0;5;6;0] [I;;
- : int list = [1; 3; 5; 6]
So, f takes two arguments: (1) the current element of the list, (2)
the accumulated value over the list from the right. a is the initial

value of accumulation, which is also the result if the list is empty.

University — CS 321 Programming Languages Ozyegin University — CS 321 Programming Languages

Exercise List functions

The List module contains very useful functions. See the API

(* Reversing a list, written with fold_left and fold_right *) documentation at

fold_left (fun a x -> 777) [1 [1;2;3;4;5;6];;

- ¢ int list = [6; 5; 4; 3; 2; 1] http://caml.inria.fr/pub/docs/manual-ocaml/libref/

fold_right (fun x a —> 777) [1;2;3;4;5;6] [1;; List.htanl J

- ¢ int list = [6; 5; 4; 3; 2; 1] Some important functions, in addition to map, fold_left and
fold right.

(* Which one ts more efficient? *)

» E.g.: rev, flatten, mem, filter.

Ozyegin University — CS 321 Programming Languages Ozyegin University — CS 321 Programming Languages

What happened to while/for loops?

Fact

In functional programming, you seldomly use while/for loops, which
are highly associated with procedural/imperative programming.
You excessively use recursion instead. Recursion is more powerful
than simple loops, and if you form your recursion right, you don't
compromise performance. (will talk about this soon)

| A\

University — CS 321 Programming Languages

