
CS 321 Programming Languages
Intro to OCaml – Recursion (tail vs forward)

Baris Aktemur

Özyeğin University

Last update made on Thursday 12th October, 2017 at 11:25.

Much of the contents here are taken from Elsa Gunter and Sam
Kamin’s OCaml notes available at
http://courses.engr.illinois.edu/cs421

Özyeğin University — CS 321 Programming Languages 1

Forward recursion

In forward recursion, you first call the function recursively on all
the recursive components, and then build the final result from the
partial results.

Wait until the whole structure has been traversed to start building
the answer.

let rec tally lst =

match lst with

| [] -> 0

| x::xs -> x + tally xs;;

let rec squareUp lst =

match lst with

| [] -> []

| x::xs -> (x*x)::squareUp xs;;

Özyeğin University — CS 321 Programming Languages 2

Functions calls and the stack

tally [] y0

tally [8] y8+0

tally [6;8] y6+8

tally [2;6;8] y2+14

tally [4;2;6;8]

y4+16

20

Özyeğin University — CS 321 Programming Languages 3

Functions calls and the stack

tally [] y0

tally [8] y8+0

tally [6;8] y6+8

tally [2;6;8]

y2+14

tally [4;2;6;8]

y4+16

20

Özyeğin University — CS 321 Programming Languages 3

Functions calls and the stack

tally [] y0

tally [8] y8+0

tally [6;8]

y6+8

tally [2;6;8]

y2+14

tally [4;2;6;8]

y4+16

20

Özyeğin University — CS 321 Programming Languages 3

Functions calls and the stack

tally [] y0

tally [8]

y8+0

tally [6;8]

y6+8

tally [2;6;8]

y2+14

tally [4;2;6;8]

y4+16

20

Özyeğin University — CS 321 Programming Languages 3

Functions calls and the stack

tally []

y0

tally [8]

y8+0

tally [6;8]

y6+8

tally [2;6;8]

y2+14

tally [4;2;6;8]

y4+16

20

Özyeğin University — CS 321 Programming Languages 3

Functions calls and the stack

tally [] y0

tally [8]

y8+0

tally [6;8]

y6+8

tally [2;6;8]

y2+14

tally [4;2;6;8]

y4+16

20

Özyeğin University — CS 321 Programming Languages 3

Functions calls and the stack

tally [] y0

tally [8] y8+0

tally [6;8]

y6+8

tally [2;6;8]

y2+14

tally [4;2;6;8]

y4+16

20

Özyeğin University — CS 321 Programming Languages 3

Functions calls and the stack

tally [] y0

tally [8] y8+0

tally [6;8] y6+8

tally [2;6;8]

y2+14

tally [4;2;6;8]

y4+16

20

Özyeğin University — CS 321 Programming Languages 3

Functions calls and the stack

tally [] y0

tally [8] y8+0

tally [6;8] y6+8

tally [2;6;8] y2+14

tally [4;2;6;8]

y4+16

20

Özyeğin University — CS 321 Programming Languages 3

Functions calls and the stack

tally [] y0

tally [8] y8+0

tally [6;8] y6+8

tally [2;6;8] y2+14

tally [4;2;6;8] y4+16

20

Özyeğin University — CS 321 Programming Languages 3

Functions calls and the stack

tally [] y0

tally [8] y8+0

tally [6;8] y6+8

tally [2;6;8] y2+14

tally [4;2;6;8] y4+16

20

Özyeğin University — CS 321 Programming Languages 3

Tail recursion

A recursive function is tail-recursive if all recursive calls are the last
thing that the function does.

Tail recursion generally requires extra “accumulator” arguments to
pass partial results.

I May require an auxiliary function.

let rec tally lst acc =

match lst with

| [] -> acc

| x::xs -> tally xs (x+acc);;

val tally : ’a list -> int -> int

tally [1;2;3;4;5] 0;;

(* Have to give an initial accumulated value *)

val it : int = 15

Özyeğin University — CS 321 Programming Languages 4

Functions calls and the stack

tally [] 20 y20

tally [8] 12 y20

tally [6;8] 6 y20

tally [2;6;8] 4 y20

tally [4;2;6;8] 0

y20

20

Özyeğin University — CS 321 Programming Languages 5

Functions calls and the stack

tally [] 20 y20

tally [8] 12 y20

tally [6;8] 6 y20

tally [2;6;8] 4

y20

tally [4;2;6;8] 0

y20

20

Özyeğin University — CS 321 Programming Languages 5

Functions calls and the stack

tally [] 20 y20

tally [8] 12 y20

tally [6;8] 6

y20

tally [2;6;8] 4

y20

tally [4;2;6;8] 0

y20

20

Özyeğin University — CS 321 Programming Languages 5

Functions calls and the stack

tally [] 20 y20

tally [8] 12

y20

tally [6;8] 6

y20

tally [2;6;8] 4

y20

tally [4;2;6;8] 0

y20

20

Özyeğin University — CS 321 Programming Languages 5

Functions calls and the stack

tally [] 20

y20

tally [8] 12

y20

tally [6;8] 6

y20

tally [2;6;8] 4

y20

tally [4;2;6;8] 0

y20

20

Özyeğin University — CS 321 Programming Languages 5

Functions calls and the stack

tally [] 20 y20

tally [8] 12

y20

tally [6;8] 6

y20

tally [2;6;8] 4

y20

tally [4;2;6;8] 0

y20

20

Özyeğin University — CS 321 Programming Languages 5

Functions calls and the stack

tally [] 20 y20

tally [8] 12 y20

tally [6;8] 6

y20

tally [2;6;8] 4

y20

tally [4;2;6;8] 0

y20

20

Özyeğin University — CS 321 Programming Languages 5

Functions calls and the stack

tally [] 20 y20

tally [8] 12 y20

tally [6;8] 6 y20

tally [2;6;8] 4

y20

tally [4;2;6;8] 0

y20

20

Özyeğin University — CS 321 Programming Languages 5

Functions calls and the stack

tally [] 20 y20

tally [8] 12 y20

tally [6;8] 6 y20

tally [2;6;8] 4 y20

tally [4;2;6;8] 0

y20

20

Özyeğin University — CS 321 Programming Languages 5

Functions calls and the stack

tally [] 20 y20

tally [8] 12 y20

tally [6;8] 6 y20

tally [2;6;8] 4 y20

tally [4;2;6;8] 0 y20

20

Özyeğin University — CS 321 Programming Languages 5

Functions calls and the stack

tally [] 20 y20

tally [8] 12 y20

tally [6;8] 6 y20

tally [2;6;8] 4 y20

tally [4;2;6;8] 0 y20

20

Özyeğin University — CS 321 Programming Languages 5

An optimization idea

Observation

When we have tail recursion, a function that is waiting for the
called function to return a value simply propagates the return value
to its caller.

Idea

We don’t need to keep the frame of a tail-recursive function on the
stack. Simply replace the tail-recursive function’s stack frame with
the called function.

Özyeğin University — CS 321 Programming Languages 6

Functions calls and the stack

tally [4;2;6;8] 0

Özyeğin University — CS 321 Programming Languages 7

Functions calls and the stack

tally [2;6;8] 4

Özyeğin University — CS 321 Programming Languages 8

Functions calls and the stack

tally [6;8] 6

Özyeğin University — CS 321 Programming Languages 9

Functions calls and the stack

tally [8] 12

Özyeğin University — CS 321 Programming Languages 10

Functions calls and the stack

tally [] 20

y20

Özyeğin University — CS 321 Programming Languages 11

Functions calls and the stack

tally [] 20 y20

Özyeğin University — CS 321 Programming Languages 11

Functions calls and the stack

20

Özyeğin University — CS 321 Programming Languages 12

Why do we care?

Reusing the stack frame of the tail-recursive function is known as
the tail call optimization. It is an automatic optimization applied
by the compilers and interpreters.

Özyeğin University — CS 321 Programming Languages 13

Experiment

Write a function that takes a value x and an integer n, and returns
a list of length n whose elements are all x.

let rec makeList x n =

if n = 0 then []

else x :: makeList x (n-1);;

val makeList : ’a -> int -> ’a list = <fun>

makeList "a" 5;;

- : string list = ["a"; "a"; "a"; "a"; "a"]

makeList 3 40;;

- : int list =

[3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3;

3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3;

3; 3; 3; 3; 3; 3; 3; 3; 3; 3]

Özyeğin University — CS 321 Programming Languages 14

Experiment

Write a function that takes a value x and an integer n, and returns
a list of length n whose elements are all x.

let rec makeList x n =

if n = 0 then []

else x :: makeList x (n-1);;

val makeList : ’a -> int -> ’a list = <fun>

makeList "a" 5;;

- : string list = ["a"; "a"; "a"; "a"; "a"]

makeList 3 40;;

- : int list =

[3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3;

3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3;

3; 3; 3; 3; 3; 3; 3; 3; 3; 3]

Özyeğin University — CS 321 Programming Languages 14

Experiment

makeList 3 99999;;

- : int list =

[3; 3;

3; 3;

3; 3;

3; 3;

...]

makeList 3 1234567;;

Stack overflow during evaluation (looping recursion?).

Özyeğin University — CS 321 Programming Languages 15

Experiment

let rec makeList x n acc =

if n = 0 then acc

else makeList x (n-1) (x::acc);;

val makeList : ’a -> int -> ’a list -> ’a list = <fun>

makeList 3 10 [];;

- : int list = [3; 3; 3; 3; 3; 3; 3; 3; 3; 3]

makeList 3 12345678 [];;

- : int list =

[3; 3;

3; 3;

3; 3;

3; 3;

...]

Observation

Hmm... So there really is a difference between tail vs. forward recursion.

Özyeğin University — CS 321 Programming Languages 16

How to write tail-recursive functions?

To write functions in tail-recursive form, answer the following
question:
What information do I need to pass from the caller to the callee
(i.e. from a lower stack frame to the upper stack frame) so that I
won’t need the caller again, and can simply throw it away?

Özyeğin University — CS 321 Programming Languages 17

Tail recursion

let rec squareUp lst =

match lst with

| [] -> []

| x::xs -> (x*x)::squareUp xs;;

val squareUp : int list -> int list = <fun>

let rec squareUp lst acc =

match lst with

| [] -> acc

| x::xs -> squareUp xs (acc@[x*x]);;

val squareUp : int list -> int list -> int list = <fun>

squareUp [1;2;3;4;5] [];;

- : int list = [1; 4; 9; 16; 25]

Özyeğin University — CS 321 Programming Languages 18

Exercise

Convert the following functions to tail-recursive form.

let rec factorial n =

if n = 0 then 1

else n * factorial (n - 1);;

let rec power x n =

if n = 0 then 1

else x * power x (n - 1);;

let rec fib n =

if n = 0 then 1 else

if n = 1 then 1 else

fib(n-1) + fib(n-2);;

Özyeğin University — CS 321 Programming Languages 19

Exercise solutions

let rec factorial n acc =

if n = 0 then acc

else factorial (n-1) (n*acc);;

val factorial : int -> int -> int

factorial 0 1;;

- : int = 1

factorial 1 1;;

- : int = 1

factorial 5 1;;

- : int = 120

factorial 6 1;;

- : int = 720

Özyeğin University — CS 321 Programming Languages 20

Exercise solutions

let rec fib n nm1 nm2 =

if n = 0 then nm2

else if n = 1 then nm1

else fib (n-1) (nm1+nm2) nm1;;

val fib : int -> int -> int -> int = <fun>

fib 0 1 1;; (* Initial values for nm1 and nm2 are 1 and 1 *)

- : int = 1

fib 1 1 1;;

- : int = 1

fib 2 1 1;;

- : int = 2

fib 3 1 1;;

- : int = 3

fib 4 1 1;;

- : int = 5

fib 5 1 1;;

- : int = 8

fib 6 1 1;;

- : int = 13
Özyeğin University — CS 321 Programming Languages 21

Better Programming

Use an auxiliary function to hide the accumulator from the user.
let tally numbers =

let rec sum lst acc =

match lst with

| [] -> acc

| x::xs -> sum xs (x+acc)

in sum numbers 0;;

val tally : int list -> int = <fun>

let squareUp numbers =

let rec aux lst acc =

match lst with

| [] -> acc

| x::xs -> aux xs (acc@[x*x])

in aux numbers [];;

val squareUp : int list -> int list = <fun>

Özyeğin University — CS 321 Programming Languages 22

Better Programming

Use an auxiliary function to hide the accumulator from the user.
let factorial n =

let rec fact m acc =

if m = 0 then acc

else fact (m-1) (m*acc)

in fact n 1;;

val factorial : int -> int = <fun>

let fib m =

let rec aux n nm1 nm2 =

if n = 0 then nm2

else if n = 1 then nm1

else aux (n-1) (nm1 + nm2) nm1

in aux m 1 1;;

val fib : int -> int = <fun>

Özyeğin University — CS 321 Programming Languages 23

Exercise

Convert the following function to tail-recursive form.

let rec rev aList =

match aList with

| [] -> []

| x::xs -> rev xs @ [x];;

val rev : ’a list -> ’a list = <fun>

rev [1;2;3;4;5;6];;

- : int list = [6; 5; 4; 3; 2; 1]

let rev aList =

let rec aux lst acc =

match lst with

| [] -> acc

| x::xs -> rev xs (x::acc)

in aux aList [];;

val rev : ’a list -> ’a list = <fun>

Özyeğin University — CS 321 Programming Languages 24

Exercise

Convert the following function to tail-recursive form.

let rec rev aList =

match aList with

| [] -> []

| x::xs -> rev xs @ [x];;

val rev : ’a list -> ’a list = <fun>

rev [1;2;3;4;5;6];;

- : int list = [6; 5; 4; 3; 2; 1]

let rev aList =

let rec aux lst acc =

match lst with

| [] -> acc

| x::xs -> rev xs (x::acc)

in aux aList [];;

val rev : ’a list -> ’a list = <fun>

Özyeğin University — CS 321 Programming Languages 24

Tail vs. Forward

Note:
In general, it is possible for a recursion to be neither forward nor
tail. This is the case when a function does some stuff, makes the
recursive call, then further processes the return value of the
recursive call. For simplicity and without loss of the point we are
making in this lecture, we consider only forward vs. tail recursion.

Özyeğin University — CS 321 Programming Languages 25

Exercise

Convert the following function to tail-recursive form.

let rec numZeros lst =

match lst with

| [] -> 0

| 0::xs -> 1 + numZeros xs

| x::xs -> numZeros xs;;

Özyeğin University — CS 321 Programming Languages 26

How long will it take?

I Remember the big-oh notation from CS201?

I Question: given input of size n, how long to generate output?

I Express output time in terms of input size, omit constants and
take the biggest power.

Özyeğin University — CS 321 Programming Languages 27

Common big-O times

I Constant time O(1)
I input size doesn’t matter

I Linear time O(n)
I double input =⇒ double time

I Quadratic time O(n2)
I double input =⇒ quadruple time

I Exponential time O(2n)
I increment input =⇒ double time

Özyeğin University — CS 321 Programming Languages 28

Linear time

I Expect most list operations to take linear time O(n).

I Each step of the recursion can be done in constant time.

I Each step makes only one recursive call.

I List example: length, squareUp, append

I Integer example: factorial

let rec length lst =

match lst with

| [] -> 0

| x::xs -> 1 + length xs;;

Özyeğin University — CS 321 Programming Languages 29

Quadratic time

I Each step of the recursion takes time proportional to input

I Each step of the recursion makes only one recursive call.

I List example:

let rec poorRev lst =

match lst with

| [] -> []

| x::xs -> poorRev xs @ [x];;

(* Compare poorRev to the function below *)

let rec rev_aux lst acc =

match lst with

| [] -> acc

| x::xs -> rev_aux xs (x::acc);;

let rev lst = rev_aux lst [];;

Özyeğin University — CS 321 Programming Languages 30

Comparison

poorRev [1;2;3] =

(poorRev [2;3])@[1] =

((poorRev[3])@[2])@[1] =

(((poorRev[])@[3])@[2])@[1] =

(([]@[3])@[2])@[1] =

([3]@[2])@[1] = (* append is linear *)

(3::([]@[2]))@[1] =

[3;2]@[1] =

3::([2]@[1]) =

3::(2::([]@[1])) =

[3;2;1]

Özyeğin University — CS 321 Programming Languages 31

Comparison

rev [1;2;3] =

rev_aux [1;2;3] [] =

rev_aux [2;3] [1] =

rev_aux [3] [2;1] =

rev_aux [] [3;2;1] =

[3;2;1]

Özyeğin University — CS 321 Programming Languages 32

Exponential time

I Hideous running times on input of any size

I Each step of recursion takes constant time

I Each recursion makes two recursive calls

I Easy to write naive code that is exponential for functions that
can be linear

Özyeğin University — CS 321 Programming Languages 33

Exponential time

let rec naiveFib n =

match n with

| 0 -> 1

| 1 -> 1

| _ -> naiveFib (n-1) + naiveFib (n-2);;

let fib n =

let rec tailFib n nm1 nm2 =

if n = 0 then nm2 else

if n = 1 then nm1 else

tailFib (n-1) (nm1+nm2) nm1

in tailFib n 1 1;;

Experiment

Run the two versions with various big inputs. (e.g. 40) What
difference do you see?

Özyeğin University — CS 321 Programming Languages 34

