
Parsing
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Parser is the part of the interpreter/compiler that takes the tokenized input from the lexer (aka scanner)
and builds an abstract syntax tree out of it. See the big picture below.
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In order to speak about parsing, we first need to talk about “grammar”. A grammar is the set of rules
that define the structure of valid inputs in a language. Just like there are grammar rules for natural
languages such as Turkish, English, Korean, etc., there are grammar rules for programming languages as
well. The grammar of a language specifies only what the correct structure of an input is; it does not say
anything about the “meaning” of the input. That is, the grammar is about the syntactic properties, it is
not about semantical properties. For instance, the following sentence is grammar-wise just fine, although
it has semantic problems.

The weather tomorrow was a green bazinga.

We define the grammar rules of a language using the Backus-Naur Form (BNF) notation. Here is the
grammar of a simple language in BNF:

(A) main ::= exp EOF

(B) exp ::= INT

(C) | NAME

(D) | exp PLUS exp

(E) | exp STAR exp

(F) | LET NAME EQ exp IN exp

(G) | IF exp THEN exp ELSE exp
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This notation as shown here may look like OCaml code to you. But it is not. Do NOT confuse it
with executable code. It is just some notation for specifying grammar. Here, there are terminal symbols,
written in UPPERCASE letters; and non-terminals written in lowercase letters. Terminals correspond to
the tokens received from the lexer. The grammar has 7 rules, marked as (A), (B), etc. These rules are called
productions. Finally, a grammar should have a starting symbol. In the grammar above, the starting
symbol is main.

The rules tell us the following:

• A main is defined as an exp followed by the EOF token. (rule A)

• An exp is defined as any of the following:

– the INT token, (rule B)

– the NAME token, (rule C)

– an exp followed by the PLUS token, followed by an exp, (rule D)

– ...

– the IF token followed by an exp, followed by the THEN token, followed by an exp, followed by
the ELSE token, followed by an exp. (rule G)

Using these rules, we derive inputs. Derivation is carried out as follows:

• Start with the starting symbol.

• At each step, pick a non-terminal, and expand it by applying one of the productions.

• Stop when no more non-terminals remain (i.e. all we have are terminals).

• The result is a grammatically correct input according to the specified grammar.

We can show the expansions (i.e. applications of the production rules) as a tree. Here is a simple example:

main

EOFexp

exp

INT(5)

PLUSexp

NAME(“x”)

This is called a parse tree, or sometimes a derivation tree, or sometimes a concrete syntax tree (CST). If
you can derive a parse tree for a list of tokens, this means that token list is a valid input of the language.
So, NAME(“x”) PLUS INT(5) EOF (i.e. “x+5”) is a valid input.

Below is just another example showing the parse tree for LET NAME EQ INT IN NAME PLUS INT
EOF (i.e. “let x=5 in x+7”).
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main

EOFexp

exp

exp

INT(7)

PLUSexp

NAME(“x”)

INexp

INT(5)

EQNAME(“x”)LET

Parsing is the activity of answering the following question: Is there a parse tree for a given input?
However, we are not only interested in this yes/no question, we also would like to know what that tree is, so
that we can achieve our ultimate goal of building an abstract syntax tree (AST). “An abstract syntax tree?
What the hell is that? What’s the difference between an abstract and concrete syntax tree?” I hear you
asking.

A concrete syntax tree is the derivation tree for an input that contains all the tokens in the input. It
contains all the details. We do not need to keep unnecessary details, however. They just create clutter.
We can throw away those unneeded details and represent the input using a leaner tree. That’s the abstract
syntax tree; it is abstraction of the concrete tree to contain just enough information to be able to represent
the input program.

Below you see the AST for the input “x+5”. The AST is built using our definition of the exp data type.

Add

CstI 5Var “x”

Here is the AST for the input “let x=5 in x+7”. Compare this to the CST given previously for the same
input.

LetIn

Add

7CstIVar “x”

CstI 5“x”

Implementing the Parser

Let us now start implementing a parser for the Deve language. We will assume a simple grammar at the
beginning. We will gradually add more rules. Here is the initial version:

main ::= exp EOF

exp ::= INT

| NAME

So, a valid input in this grammar is just an integer literal or a name, followed by the EOF marker. Here
is the parser for this grammar:
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(* parseExp: token list -> (exp, token list)

Parses an exp out of the given token list,

returns that exp together with the unconsumed tokens.

*)

let rec parseExp tokens =

match tokens with

| INT i :: rest -> (CstI i, rest)

| NAME x :: rest -> (Var x, rest)

| _ -> failwith "Unexpected token."

(* parseMain: token list -> exp *)

let parseMain tokens =

match parseExp tokens with

| (e, [EOF]) -> e

| _ -> failwith "I was expecting to see an EOF."

(* parse: string -> exp *)

let rec parse s =

parseMain (scan s)

In this implementation, the parseExp function takes a token list, builds an exp out of the tokens it reads
from that list, and returns that exp together with the tokens that it did not consume. For example:

# parseExp (scan "321 + x");;

- : exp * token list = (CstI 321, [PLUS; NAME "x"; EOF])

# parseExp (scan "xyz abc k");;

- : exp * token list = (Var "xyz", [NAME "abc"; NAME "k"; EOF])

The parseMain function uses the parseExp function build an exp, and expects the remaining token list
to contain just the EOF token. If not, the function fails. For convenience, we can use the parse function to
scan the input string and build the AST:

# parse "321";;

- : exp = CstI 321

# parse "abc";;

- : exp = Var "abc"

# parse "abc 321";;

Exception: Failure "I was expecting to see an EOF.".

# parse "abc +";;

Exception: Failure "I was expecting to see an EOF.".

Let us now add a simple rule to the grammar to also contain boolean literals:

main ::= exp EOF

exp ::= INT

| NAME

| BOOL

Of course, we assume here that the lexer is capable of recognizing “true” and “false” as the BOOL token.
We update the definition of the parseExp function to be able to parse booleans as below. Other parts stay
the same.
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let rec parseExp tokens =

match tokens with

...

| BOOL b :: rest -> (CstB b, rest)

Let’s test this.

# parse "true";;

- : exp = CstB true

# parse "false";;

- : exp = CstB false

Good. Let us add two more rules to the grammar:

main ::= exp EOF

exp ::= INT

| NAME

| BOOL

| LET NAME EQ exp IN exp

| IF exp THEN exp ELSE exp

We update the definition of the parseExp function as follows:

let rec parseExp tokens =

match tokens with

...

| LET::(NAME x)::EQUALS::rest ->

(match parseExp rest with

| (e1, IN::rest1) -> let (e2, rest2) = parseExp rest1

in (LetIn(x, e1, e2), rest2)

)

| IF::rest ->

(match parseExp rest with

| (e1, THEN::rest1) ->

(match parseExp rest1 with

| (e2, ELSE::rest2) -> let (e3, rest3) = parseExp rest2

in (If(e1, e2, e3), rest3)

)

)

Here, we call the parseExp function recursively to build the subexpressions of the if-then-else and let-in
expressions. Let’s test this:

# parse "let x = 5 in y";;

- : exp = LetIn ("x", CstI 5, Var "y")

# parse "let x = 5 in let z = 42 in sum";;

- : exp = LetIn ("x", CstI 5, LetIn ("z", CstI 42, Var "sum"))

# parse "let x = let w = g in 42 in y";;

- : exp = LetIn ("x", LetIn ("w", Var "g", CstI 42), Var "y")

# parse "if true then 4 else 5";;
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- : exp = If (CstB true, CstI 4, CstI 5)

# parse "if true then 4 else if c then a else b";;

- : exp = If (CstB true, CstI 4, If (Var "c", Var "a", Var "b"))

# parse "if true then if k then a else b else 5";;

- : exp = If (CstB true, If (Var "k", Var "a", Var "b"), CstI 5)

Excellent! I’m proud of the progress we’re making. Note that the match expressions in the code above are
not exhaustive. If the input is bad, a match failure may occur. To fail gracefully with slightly more useful
error messages, we can update the code as follows:

let rec parseExp tokens =

match tokens with

...

| LET::(NAME x)::EQUALS::rest ->

(match parseExp rest with

| (e1, IN::rest1) -> let (e2, rest2) = parseExp rest1

in (LetIn(x, e1, e2), rest2)

| (e1, _) -> failwith "I was expecting to see an IN."

)

| IF::rest ->

(match parseExp rest with

| (e1, THEN::rest1) ->

(match parseExp rest1 with

| (e2, ELSE::rest2) -> let (e3, rest3) = parseExp rest2

in (If(e1, e2, e3), rest3)

| (e2, _) -> failwith "I was expecting to see an ELSE."

)

| (e1, _) -> failwith "I was expecting to see a THEN."

)

Here you go:

# parse "let x = foo then 4";;

Exception: Failure "I was expecting to see an IN.".

# parse "if 3";;

Exception: Failure "I was expecting to see a THEN.".

# parse "if 3 then 8";;

Exception: Failure "I was expecting to see an ELSE.".

This is good, but the code looks messy to me. We can clean it up a bit by writing a function that will enforce
a certain token in the given list.

(* consume: token -> token list -> token list

Enforces that the given token list’s head is the given token;

returns the tail.

*)

let consume tok tokens =

match tokens with

| t::rest when t = tok -> rest

| t::rest -> failwith ("I was expecting a " ^ (toString tok) ^

", but I found a " ^ toString(t))
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This way, error checking can be done in a separate place, and we can go with the happy path inside parseExp.
See below:

let rec parseExp tokens =

match tokens with

| INT i :: rest -> (CstI i, rest)

| BOOL b :: rest -> (CstB b, rest)

| NAME x :: rest -> (Var x, rest)

| LET::(NAME x)::EQUALS::rest ->

let (e1, tokens1) = parseExp rest in

let tokens2 = consume IN tokens1 in

let (e2, tokens3) = parseExp tokens2 in

(LetIn(x, e1, e2), tokens3)

| IF::rest ->

let (e1, tokens1) = parseExp rest in

let tokens2 = consume THEN tokens1 in

let (e2, tokens3) = parseExp tokens2 in

let tokens4 = consume ELSE tokens3 in

let (e3, tokens5) = parseExp tokens4 in

(If(e1, e2, e3), tokens5)

| t::rest -> failwith ("Unsupported token: " ^ toString(t))

(* parseMain: token list -> exp *)

let parseMain tokens =

let (e, tokens1) = parseExp tokens in

let tokens2 = consume EOF tokens1 in

if tokens2 = [] then e

else failwith "Oops."

Parsing Binary Operators

Let us now add binary operators to the grammar.

(A) main ::= exp EOF

(B) exp ::= INT

(C) | NAME

(D) | BOOL

(E) | exp PLUS exp

(F) | exp MINUS exp

(G) | exp STAR exp

(H) | exp SLASH exp

(I) | LET NAME EQ exp IN exp

(J) | IF exp THEN exp ELSE exp

Note that the new rules are quite different than the previous ones in that they don’t start with a terminal
while the others do. That is, when we see a LET as the first token of the given list, we can understand that
we must be parsing a LetIn. Similarly, when we see an IF, we can understand that we must be parsing an
If. We cannot do this for the Add, Subt, Mult, Div cases. You may be tempted to add a case such as

let rec parseExp tokens =

match tokens with
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...

| _ -> let (e1, tokens1) = parseExp tokens in

match tokens1 with

| PLUS::rest -> ...

But this does not work, because it has infinite recursion. Moreover, we have another serious problem brought
by the new grammar rules: Ambiguity. We should now take a side step, and discuss ambiguity. Then,
we’ll come back to this point.

Ambiguity

A grammar is ambiguous if more than one parse trees exist for the same input. Consider the last grammar
given above. Here are two possible trees for the input “x + y * z”.

main

EOFexp

exp

exp

NAME(“z”)

STARexp

NAME(“y”)

PLUSexp

NAME(“x”)

main

EOFexp

exp

NAME(“z”)

STARexp

exp

NAME(“y”)

PLUSexp

NAME(“x”)

A similar ambiguity exists for “x + y + z”:
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main

EOFexp

exp

exp

NAME(“z”)

PLUSexp

NAME(“y”)

PLUSexp

NAME(“x”)

main

EOFexp

exp

NAME(“z”)

PLUSexp

exp

NAME(“y”)

PLUSexp

NAME(“x”)

This problem is not unique to binary operators. Consider “if c then 42 else 5 + x”:

main

EOFexp

exp

exp

NAME(“x”)

PLUSexp

INT(5)

ELSEexp

INT(42)

THENexp

NAME(“c”)

IF
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main

EOFexp

exp

NAME(“z”)

PLUSexp

exp

INT(5)

ELSEexp

INT(42)

THENexp

NAME(“c”)

IF

Intuitively, the ambiguity problem is caused by different rules having “overlaps” over terms and fighting
for ownership. Consider rule (E) and (G):

(E) | exp PLUS exp

(G) | exp STAR exp

Both the left-end and the right-end of these rules are “open” in the sense that they are not delimited by
a concrete token. Therefore, the left-end of rule (E) can overlap with the right-end of rule (G) on an exp

term, like so:

exp PLUS exp STAR exp

We can make the same observation about the left- and right-ends of the rule (E) itself!

exp PLUS exp PLUS exp

As another example, now also consider rules (I) and (J).

(E) | exp PLUS exp

(G) | exp STAR exp

(I) | LET NAME EQ exp IN exp

(J) | IF exp THEN exp ELSE exp

They have concrete tokens on their left-ends, and are “closed” at that side, in the sense that they cannot
overlap with another production. However, their right-ends are “open” and can overlap with the left-ends of
the rules (E), (F), (G), and (H). See the diagram below. Note that an overlap is not possible between rule
(I) and (J), so there is no ambiguity caused by their combination.

IF exp THEN exp ELSE exp PLUS exp

So, essentially, two productions fight here over the ownership of the exp in the middle. Which one should
win?

Computers are not smart machines. Humans need to drive and direct them. So, we need to decide which
of these trees is the desired one. For this, we need to define precedence among rules. By precedence, we will
decide which rule has priority over others. This way, the “winner” rule can be decided and the ambiguity can
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be resolved. Precedence is defined between the rules; so, when a rule causes ambiguity with itself precedence
won’t help. In that case, we need to define associativity. We use associativity specification also to resolve
the ambiguity between rules of same precedence.

We give the precedence and associativity definitions in the table below. With these, no more ambiguity
exists; there is never more than one parse tree for an input. In this table, rules listed in the upper rows
have lower precedence than the rows below them. We list rules (B), (C), and (D) here just for the sake
of completeness. Because they contain tokens only, they cause no ambiguity whatsoever. In fact, you can
consider them as “atoms” of the language, they cannot be broken down into pieces.

Precedence Rule Operator Associativity

1 (lowest) I,J -
2 E,F +,- left
3 G,H *,/ left
4 (highest) B,C,D -

Implementing the Parser

Phew, we’re back! Let us implement the parser, this time taking the precedence/associativity table into
consideration. Essentially, we will implement a parse function for each level in the table. Because LetIn

(rule I) and If (rule J) have the lowest priority, if the input starts with a LET/IF, we will have a LetIn/If
node at the top. So we should check for these cases first. If we do not find a LET or IF, we try for level 2.

let rec parseExp tokens =

parseLevel1Exp tokens

and parseLevel1Exp tokens =

match tokens with

| LET::rest -> parseLetIn tokens

| IF::rest -> parseIfThenElse tokens

| _ -> parseLevel2Exp tokens

and parseLetIn tokens =

match tokens with

| LET::NAME(x)::EQUALS::rest ->

let (e1, tokens1) = parseExp rest in

let tokens2 = consume IN tokens1 in

let (e2, tokens3) = parseExp tokens2 in

(LetIn(x, e1, e2), tokens3)

| _ -> failwith "Should not be possible."

and parseIfThenElse tokens =

let rest = consume IF tokens in

let (e1, tokens1) = parseExp rest in

let tokens2 = consume THEN tokens1 in

let (e2, tokens3) = parseExp tokens2 in

let tokens4 = consume ELSE tokens3 in

let (e3, tokens5) = parseExp tokens4 in

(If(e1, e2, e3), tokens5)

What shall we do for level 2? Let us simplify the problem. Suppose there is no associativity for addition
and subtraction, so that the only possible operands of ‘+’ and ‘–’ are level 3 and level 4 expressions. Based
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on this simplification (which we will fix later), here is an implementation. First, parse a level 3 expression.
If there is a following PLUS or MINUS, we need to parse a level 3 expression again, this time as the right
operand. If no PLUS or MINUS exist, we simply return the level 3 exp that we just parsed. See the code
below.

and parseLevel2Exp tokens =

let (e1, tokens1) = parseLevel3Exp tokens in

match tokens1 with

| PLUS::rest ->

let (e2, tokens2) = parseLevel3Exp rest

in (Add(e1, e2), tokens2)

| MINUS::rest ->

let (e2, tokens2) = parseLevel3Exp rest

in (Subt(e1, e2), tokens2)

| _ -> (e1, tokens1)

We do exactly the same thing at level 3:

and parseLevel3Exp tokens =

let (e1, tokens1) = parseLevel4Exp tokens in

match tokens1 with

| STAR::rest ->

let (e2, tokens2) = parseLevel4Exp rest

in (Mult(e1, e2), tokens2)

| SLASH::rest ->

let (e2, tokens2) = parseLevel4Exp rest

in (Div(e1, e2), tokens2)

| _ -> (e1, tokens1)

The 4th and the final level is easy:

and parseLevel4Exp tokens =

match tokens with

| INT i :: rest -> (CstI i, rest)

| NAME x :: rest -> (Var x, rest)

| BOOL b :: rest -> (CstB b, rest)

| t::rest -> failwith ("Unsupported token: " ^ toString(t))

Let us test this parser:

# parse "f + g";;

- : exp = Add (Var "f", Var "g")

# parse "5 * k";;

- : exp = Mult (CstI 5, Var "k")

# parse "3 * 4 + 6";;

- : exp = Add (Mult (CstI 3, CstI 4), CstI 6)

# parse "3 + 4 * 6";;

- : exp = Add (CstI 3, Mult (CstI 4, CstI 6))

# parse "if c then 3 else x + 5";;

- : exp = If (Var "c", CstI 3, Add (Var "x", CstI 5))

# parse "let x = 7 in x + 5";;

- : exp = LetIn ("x", CstI 7, Add (Var "x", CstI 5))
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Seems good! Let’s go further:

# parse "3 * let x = 5 in 6";;

Exception: Failure "Unsupported token: LET".

Since a let-in has lower precedence than a binary expression, a let-in cannot occur as the left operand of a
binary expression because otherwise we would be violating precedence rules. However, it should be perfectly
fine to have a let-in as the right operand. This is not an ambiguous case because a let-in expression is “closed”
at its left-end with a LET token. And similarly for if-then-else. We should allow let-in and if-then-else on the
right-hand-side of binary expressions. To do this, you may be tempted to do something like this:

and parseLevel3Exp tokens =

let (e1, tokens1) = parseLevel4Exp tokens in

match tokens1 with

| STAR::rest -> (* ⇓ *)

let (e2, tokens2) = parseLevel1Exp rest

in (Mult(e1, e2), tokens2)

...

But this is incorrect! It would allow to have an addition as the right operand of multiplication, and that
would violate precedence. Instead, we should just check for a LET and IF, and parse for only let-in and
if-then-else, instead of the whole level 1.

In our implementation, we had made the assumption that binary expressions are not associative. So, we
are parsing expressions of a lower level for both operands. Let’s first check that this really does not allow
association:

# parse "3 * 4 * 5";;

Exception: Failure "I was expecting a EOF, but I found a STAR".

As an attempt to improve this, we can parse a level 3 expression on the right-hand-side, instead of a level
4 expression. This will allow having multiplications/divisions side by side. The same discussion applies to
addition and subtraction as well. Here is the next version:

and parseLevel2Exp tokens =

let (e1, tokens1) = parseLevel3Exp tokens in

match tokens1 with

| PLUS::tok::rest ->

(match tok with

| LET -> let (e2, tokens2) = parseLetIn (tok::rest)

in (Add(e1, e2), tokens2)

| IF -> let (e2, tokens2) = parseIfThenElse (tok::rest)

in (Add(e1, e2), tokens2)

| t -> let (e2, tokens2) = parseLevel2Exp (tok::rest)

in (Add(e1, e2), tokens2)

)

| MINUS::tok::rest ->

(match tok with

| LET -> let (e2, tokens2) = parseLetIn (tok::rest)
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in (Subt(e1, e2), tokens2)

| IF -> let (e2, tokens2) = parseIfThenElse (tok::rest)

in (Subt(e1, e2), tokens2)

| t -> let (e2, tokens2) = parseLevel2Exp (tok::rest)

in (Subt(e1, e2), tokens2)

)

| _ -> (e1, tokens1)

and parseLevel3Exp tokens =

let (e1, tokens1) = parseLevel4Exp tokens in

match tokens1 with

| STAR::tok::rest ->

(match tok with

| LET -> let (e2, tokens2) = parseLetIn (tok::rest)

in (Mult(e1, e2), tokens2)

| IF -> let (e2, tokens2) = parseIfThenElse (tok::rest)

in (Mult(e1, e2), tokens2)

| t -> let (e2, tokens2) = parseLevel3Exp (tok::rest)

in (Mult(e1, e2), tokens2)

)

| SLASH::tok::rest ->

(match tok with

| LET -> let (e2, tokens2) = parseLetIn (tok::rest)

in (Div(e1, e2), tokens2)

| IF -> let (e2, tokens2) = parseIfThenElse (tok::rest)

in (Div(e1, e2), tokens2)

| t -> let (e2, tokens2) = parseLevel3Exp (tok::rest)

in (Div(e1, e2), tokens2)

)

| _ -> (e1, tokens1)

Let’s test.

# parse "3 * 4 * 5";;

- : exp = Mult (CstI 3, Mult (CstI 4, CstI 5))

# parse "3 * 4 * 5 / 6 * 2";;

- : exp = Mult (CstI 3, Mult (CstI 4, Div (CstI 5, Mult (CstI 6, CstI 2))))

# parse "3 * let x = 5 in 6";;

- : exp = Mult (CstI 3, LetIn ("x", CstI 5, CstI 6))

# parse "3 * let x = 5 in 6 + 2";;

- : exp = Mult (CstI 3, LetIn ("x", CstI 5, Add (CstI 6, CstI 2)))

# parse "1 + 2 * 3 - 5";;

- : exp = Add (CstI 1, Subt (Mult (CstI 2, CstI 3), CstI 5))

Seems like there is improvement! There is one small little tiny problem remaining: Our implementation
produces right associative trees, but we want left associativity. I wish we could fix this problem simply by
implementing the functions as

and parseLevel2Exp tokens =

let (e1, tokens1) = parseLevel2Exp tokens in

... (* ⇑ *)
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and parseLevel3Exp tokens =

let (e1, tokens1) = parseLevel3Exp tokens in

... (* ⇑ *)

but this does NOT work because it leads to infinite recursion. We gotta find a solution.

Let us make an observation. Consider “3 + 4 + 5 + 6” and its desired AST:

Add

CstI 6Add

CstI 5Add

CstI 4CstI 3

The left-most node has to be a level 3 expression (in this case, it is CstI 3). Any right operand is a level 3
expression; it cannot be a level 2 expression, because otherwise associativity would be violated. Once we get
a hold on the left-most expression, we can continue in a “rolling” fashion, where we keep accumulating the
left operand as follows: as long as we see a PLUS, we should parse a level 3 (not 2!) expression following that
PLUS token (this will be a right operand). Next, we combine that level 3 expression with the accumulating
expression coming from the left to build the next accumulated expression. The general idea is similar to how
fold_left works. To implement this, we will write a helper function that not only takes a list of tokens,
but also the left-operand expression, i.e. the level 2 expression that has accumulated so far. The initial
value for that accumulator is the first level 3 expression we parse out of the given token list. The idea that
we discussed here for addition applies to the MINUS, STAR, and SLASH cases, too, of course. Here is the next
version:

and parseLevel2Exp tokens =

let rec helper tokens e1 =

match tokens with

| PLUS::tok::rest ->

(match tok with

| LET -> let (e2, tokens2) = parseLetIn (tok::rest)

in (Add(e1, e2), tokens2)

| IF -> let (e2, tokens2) = parseIfThenElse (tok::rest)

in (Add(e1, e2), tokens2)

| t -> let (e2, tokens2) = parseLevel3Exp (tok::rest)

in helper tokens2 (Add(e1, e2))

)

| MINUS::tok::rest ->

(match tok with

| LET -> let (e2, tokens2) = parseLetIn (tok::rest)

in (Subt(e1, e2), tokens2)

| IF -> let (e2, tokens2) = parseIfThenElse (tok::rest)

in (Subt(e1, e2), tokens2)
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| t -> let (e2, tokens2) = parseLevel3Exp (tok::rest)

in helper tokens2 (Subt(e1, e2))

)

| _ -> (e1, tokens)

in let (e1, tokens1) = parseLevel3Exp tokens in

helper tokens1 e1

and parseLevel3Exp tokens =

let rec helper tokens e1 =

match tokens with

| STAR::tok::rest ->

(match tok with

| LET -> let (e2, tokens2) = parseLetIn (tok::rest)

in (Mult(e1, e2), tokens2)

| IF -> let (e2, tokens2) = parseIfThenElse (tok::rest)

in (Mult(e1, e2), tokens2)

| t -> let (e2, tokens2) = parseLevel4Exp (tok::rest)

in helper tokens2 (Mult(e1, e2))

)

| SLASH::tok::rest ->

(match tok with

| LET -> let (e2, tokens2) = parseLetIn (tok::rest)

in (Div(e1, e2), tokens2)

| IF -> let (e2, tokens2) = parseIfThenElse (tok::rest)

in (Div(e1, e2), tokens2)

| t -> let (e2, tokens2) = parseLevel4Exp (tok::rest)

in helper tokens2 (Div(e1, e2))

)

| _ -> (e1, tokens)

in let (e1, tokens1) = parseLevel4Exp tokens in

helper tokens1 e1

This is probably OK, but there seems to be a lot of code duplication. Let’s clean it up a bit. For this, I’ll
write a function that tries to parse a let-in, or an if-then-else, or another expression based on a given parse
function. I’ll then use this function to improve code cleanness:

and parseLETorIForOther otherParseFun tokens =

match tokens with

| LET::rest -> let (e, tokens2) = parseLetIn tokens

in (e, tokens2)

| IF::rest -> let (e, tokens2) = parseIfThenElse tokens

in (e, tokens2)

| _ -> let (e, tokens2) = otherParseFun tokens

in (e, tokens2)

and parseLevel2Exp tokens =

let rec helper tokens e1 =

match tokens with

| PLUS::rest ->

let (e2, tokens2) = parseLETorIForOther parseLevel3Exp rest

in helper tokens2 (Add(e1, e2))

| MINUS::rest ->
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let (e2, tokens2) = parseLETorIForOther parseLevel3Exp rest

in helper tokens2 (Subt(e1, e2))

| _ -> (e1, tokens)

in let (e1, tokens1) = parseLevel3Exp tokens in

helper tokens1 e1

and parseLevel3Exp tokens =

let rec helper tokens e1 =

match tokens with

| STAR::rest ->

let (e2, tokens2) = parseLETorIForOther parseLevel4Exp rest

in helper tokens2 (Mult(e1, e2))

| SLASH::rest ->

let (e2, tokens2) = parseLETorIForOther parseLevel4Exp rest

in helper tokens2 (Div(e1, e2))

| _ -> (e1, tokens)

in let (e1, tokens1) = parseLevel4Exp tokens in

helper tokens1 e1

Looks better. Let’s test.

# parse "3 + 4 + 5 + 6";;

- : exp = Add (Add (Add (CstI 3, CstI 4), CstI 5), CstI 6)

# parse "3 - 4 - 5 - 6";;

- : exp = Subt (Subt (Subt (CstI 3, CstI 4), CstI 5), CstI 6)

# parse "3 - 4 + 5 - 6 + 7";;

- : exp = Add (Subt (Add (Subt (CstI 3, CstI 4), CstI 5), CstI 6), CstI 7)

# parse "3 - 4 * 5 - 6 * 7";;

- : exp = Subt (Subt (CstI 3, Mult (CstI 4, CstI 5)), Mult (CstI 6, CstI 7))

# parse "3 * 4 + 5 * 6 + 7";;

- : exp = Add (Add (Mult (CstI 3, CstI 4), Mult (CstI 5, CstI 6)), CstI 7)

# parse "let x = 2 in 3 + 4 + let x = 5 in 6 + 7";;

- : exp =

LetIn ("x", CstI 2,

Add (Add (CstI 3, CstI 4), LetIn ("x", CstI 5, Add (CstI 6, CstI 7))))
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