
1

Parsing

CS	321	Programming	Languages
Ozyegin University
Barış Aktemur

The	Big	Picture

“6+3*12” 42

Deve interpreter

Front-end eval

abstract	syntax	tree

+

*

94

6

2

The	Big	Picture

“6+3*12” 42

Deve interpreter

Front-end eval

abstract	syntax	tree

+

*

3

6

12

The	Front-End

• Parser:	Takes	the	token	list,	and	builds	the	AST.

“6+3*12”

Front-end

abstract	syntax	tree

+

*

3

6Lexer Parser[INT	6;	PLUS;	INT	3;	STAR;	INT	12;	EOF]

token	list 12

3

Language	Grammar
• All	languages	(natural	ones	such	as	Turkish,	
English,	Korean,	etc.	as	well	as	artificial	ones	such	
as	Java,	OCaml,	Python)	have	a	grammar	that	
describe	a	viable	structure	for	the		programs/text		
written	in	that	language.

• Grammatical	rules	are	about	what	makes	a	
syntactically	correct	program.	

• A	grammatically	correct	input	is	not	necessarily	
meaningful	(i.e.	semantically	correct).	
– In	terms	of	grammar,	the	sentence	below	is	fine.	But	
semantically	it	has	problems

– “The	weather	tomorrow	was	a	green	bazinga.”

The	Front-End

• Parser:	Takes	the	token	list,	and	builds	the	AST.
• Parsing	is	about	checking	whether	the	input	is	
a	syntactically correct	program;	it	does	not	
perform	semantic	checks.

“6+3*12”

Front-end

abstract	syntax	tree

+

*

3

6Lexer Parser[INT	6;	PLUS;	INT	3;	STAR;	INT	12;	EOF]

token	list 12

4

Context-Free	Grammars

main ::= exp EOF
exp ::= INT

| NAME
| exp PLUS exp
| exp STAR exp
| LET NAME EQ exp IN exp
| IF exp THEN exp ELSE exp

Note: This	is	not	runnable	code.	It	is	a	notation	to	express	grammars.	
This	notation	is	called	the	Backus-Naur	Form	(BNF).

Context-Free	Grammars

main ::= exp EOF
exp ::= INT

| NAME
| exp PLUS exp
| exp STAR exp
| LET NAME EQ exp IN exp
| IF exp THEN exp ELSE exp

Terminals	(tokens)

Note: This	is	not	runnable	code.	It	is	a	notation	to	express	grammars.	
This	notation	is	called	the	Backus-Naur	Form	(BNF).

5

Context-Free	Grammars

main ::= exp EOF
exp ::= INT

| NAME
| exp PLUS exp
| exp STAR exp
| LET NAME EQ exp IN exp
| IF exp THEN exp ELSE exp

Terminals	(tokens)
Non-terminals

Note: This	is	not	runnable	code.	It	is	a	notation	to	express	grammars.	
This	notation	is	called	the	Backus-Naur	Form	(BNF).

Context-Free	Grammars

main ::= exp EOF
exp ::= INT

| NAME
| exp PLUS exp
| exp STAR exp
| LET NAME EQ exp IN exp
| IF exp THEN exp ELSE exp

Terminals	(tokens)
Non-terminals
Productions

A
B
C
D
E
F
G

Note: This	is	not	runnable	code.	It	is	a	notation	to	express	grammars.	
This	notation	is	called	the	Backus-Naur	Form	(BNF).

6

Context-Free	Grammars

main ::= exp EOF
exp ::= INT

| NAME
| exp PLUS exp
| exp STAR exp
| LET NAME EQ exp IN exp
| IF exp THEN exp ELSE exp

Terminals	(tokens)
Non-terminals
Productions
Start	symbol

A
B
C
D
E
F
G

Note: This	is	not	runnable	code.	It	is	a	notation	to	express	grammars.	
This	notation	is	called	the	Backus-Naur	Form	(BNF).

Derivation

• Start	with	the	starting	symbol.
• At	each	step,	pick	a	non-terminal,	and	expand	
it	by	applying	one	of	the	productions.

• Stop	when	no	more	non-terminals	remain	(i.e.	
all	we	have	are	terminals).

• The	result	is	a	grammatically	correct	input	
according	to	the	specified	grammar.

7

A) main ::= exp EOF
B) exp ::= INT
C) | NAME
D) | exp PLUS exp
E) | exp STAR exp
F) | LET NAME EQ exp IN exp
G) | IF exp THEN exp ELSE exp

main

EOFexp

exp PLUS								exp

NAME
“x”

INT
5

• This	is	called	the	“derivation	tree”	or	“concrete	syntax	
tree”.

• So,	NAME	PLUS	INT	EOF	is	a	valid	input	in	this	
grammar.	E.g.	“x	+	5”

A) main ::= exp EOF
B) exp ::= INT
C) | NAME
D) | exp PLUS exp
E) | exp STAR exp
F) | LET NAME EQ exp IN exp
G) | IF exp THEN exp ELSE exp

main

EOFexp

exp PLUS								exp

• This	is	called	the	“derivation	tree”	or	“concrete	syntax	
tree”.

• So,	NAME	PLUS	INT	EOF	is	a	valid	input	in	this	
grammar.	E.g.	“x	+	5”

A

D

C B

NAME
“x”

INT
5

8

A) main ::= exp EOF
B) exp ::= INT
C) | NAME
D) | exp PLUS exp
E) | exp STAR exp
F) | LET NAME EQ exp IN exp
G) | IF exp THEN exp ELSE exp

main

EOFexp

LET				NAME				EQ						exp IN					exp
“x”

exp PLUS								exp

NAME
“x”

INT
5

INT
7

• LET	NAME	EQ	INT	IN	NAME	PLUS	INT	EOF	
is	a	valid	input	in	this	grammar.	
– “let	x	=	5	in	x	+	7”

Parsing

• Parsing	is	the	activity	of	finding	whether	a	
given	input	has	a	derivation	according	to	the	
grammar.	And,	if	so,	what’s	that	derivation?

• During	parsing,	we	also	perform	some	actions	
to	build	an	abstract	syntax	tree	(AST).	We	do	
not	keep	the	concrete	syntax	tree	(CST),	
because	AST	is	more	useful	for	evaluation.	CST	
contains	lots	of	unnecessary	info	that	we	can	
throw	away.

9

Concrete	vs.	Abstract	Syntax	Tree

main

EOFexp

exp PLUS								exp

NAME
“x”

INT
5

Add

Var “x”

“x	+	5”

CstI 5

Concrete	vs.	Abstract	Syntax	Tree

Add

Var “x”

“let	x	=	5	in	x	+	7”

CstI 7

main

EOFexp

LET				NAME				EQ						exp IN					exp
“x”

exp PLUS								exp

NAME
“x”

INT
5

INT
7

LetIn

“x” CstI 5

10

Ambiguity

• A	grammar	is	ambiguous	if	more	than	one	
derivation	trees	exist	for	the	same	input.

exp PLUS

exp

main

EOF

exp STAR								exp

exp

NAME

NAME NAME

exp STAR

exp

main

EOF

exp PLUS								exp

exp

NAME

NAME NAME

E.g.	“x	+	y	*	z”

Ambiguity

• A	grammar	is	ambiguous	if	more	than	one	
derivation	trees	exist	for	the	same	input.

exp PLUS

exp

main

EOF

exp PLUS exp

exp

NAME

NAME NAME

exp PLUS

exp

main

EOF

exp PLUS								exp

exp

NAME

NAME NAME

E.g.	“x	+	y	+ z”

11

Ambiguity

• Derive	two	different	parse	trees	for	each:
– “let	x	=	5	in	x	+	9”
– “if	c	then	42	else	5	+	x”
– “9	– 3	– 2”

• We	need	precedence and	associativity	of	the	
operators defined	precisely.

