
Type Checking

Barış Aktemur
CS321 Programming Languages

Ozyegin University

Many programming languages have the notion of static typing. With this feature, the input program is
passed through a type-checking phase before the code is run. The idea is to catch potential errors early,
hopefully before the program is executed and not during the runtime. This is valuable especially when the
problem resides in a hard-to-reach point in the program. You would prefer to detect and fix an error before
you deliver your software, rather than get a crash report from the client!

In this lecture, we will see how we can add a type-checking phase to Deve. We will build our code on top
of Deve 3.0, available at https://github.com/aktemur/cs321/tree/master/Deve-3.0.

Before going any further, you should read PLC sections 4.1–4.9, and 5.4. There are some syntactic
differences between the book and our notes/code, but these are small.

Type Rules

In our Deve language, an expression may have one of the following 4 types:

• An integer

• A boolean

• A pair (of two other types)

• A function (from a type to another type)

Here is the formal (mathematical) definition of types:

ρ ∈ TypeEnv = Name 7→ Type

τ ∈ Type := int | bool | (τ1 → τ2) | (τ1 × τ2)

We require the programmer to annotate functions with type information. So the syntax of functions is
extended to include the input and output types. The full syntax of the language is given in Figure 1. Logical
rules for type-checking are shown in Figure 2.

The type-checked version of the language is Deve 4.0. It is available at https://github.com/aktemur/
cs321/tree/master/Deve-4.0.

1

https://github.com/aktemur/cs321/tree/master/Deve-3.0
https://github.com/aktemur/cs321/tree/master/Deve-4.0
https://github.com/aktemur/cs321/tree/master/Deve-4.0

i ∈ Int

b ∈ Bool ::= true | false
x ∈ Name

e ∈ Exp ::= i | b | x
| e1 + e2 | e1 - e2 | e1 * e2 | e1 / e2

| e1 < e2 | e1 <= e2 | (e1,e2)
| if e1 then e2 else e3

| let x = e1 in e2

| fun (x:τ) -> e

| e1 e2
| match e1 with (x,y) -> e2

| let rec f (x:τ1) :τ2 = e1 in e2

Figure 1: The abstract syntax of the Deve language.

2

ρ ` i : int
(rule 1)

ρ ` b : bool
(rule 2)

ρ(x) = τ

ρ ` x : τ
(rule 3)

ρ ` e1 : int ρ ` e2 : int

ρ ` e1 + e2 : int
(rule 4) (and similarly for -, *, /)

ρ ` e1 : int ρ ` e2 : int

ρ ` e1 < e2 : bool
(rule 5) (and similarly for <=)

ρ ` e1 : τ1 ρ ` e2 : τ2
ρ ` (e1,e2) : (τ1 × τ2)

(rule 6)

ρ ` e1 : bool ρ ` e2 : τ ρ ` e3 : τ

ρ ` if e1 then e2 else e3 : τ
(rule 7)

ρ ` e1 : τ1 [x 7→ τ1] + ρ ` e2 : τ2
ρ ` let x = e1 in e2 : τ2

(rule 8)

[x 7→ τ1] + ρ ` e : τ2
ρ ` fun (x:τ1) -> e : (τ1 → τ2)

(rule 9)

ρ ` e1 : (τ2 → τ1) ρ ` e2 : τ2
ρ ` e1 e2 : τ1

(rule 10)

ρ ` e1 : (τ1 × τ2) [x 7→ τ1, y 7→ τ2] + ρ ` e2 : τ

ρ ` match e1 with (x,y) -> e2 : τ
(rule 11)

[f 7→ (τ1 → τ2), x 7→ τ1] + ρ ` e1 : τ2 [f 7→ (τ1 → τ2)] + ρ ` e2 : τ

ρ ` let rec f (x:τ1) :τ2 = e1 in e2 : τ
(rule 12)

Figure 2: Typing rules for the Deve language.

3

