
11 Cool Syntax

Figure 1 provides a specification of Cool syntax. The specification is not in pure Backus-Naur Form
(BNF); for convenience, we also use some regular expression notation. Specifically, A⇤ means zero or
more A’s in succession; A+ means one or more A’s. Items in square brackets [. . .] are optional. Double
brackets [[]] are not part of Cool; they are used in the grammar as a meta-symbol to show association of
grammar symbols (e.g. a[[bc]]+ means a followed by one or more bc pairs).

11.1 Precedence

The precedence of infix binary and prefix unary operations, from highest to lowest, is given by the
following table:

.
@
~
isvoid
* /
+ -
<= < =
not
<-

All binary operations are left-associative, with the exception of assignment, which is right-associative,
and the three comparison operations, which do not associate.

12 Type Rules

This section formally defines the type rules of Cool. The type rules define the type of every Cool expression
in a given context. The context is the type environment, which describes the type of every unbound
identifier appearing in an expression. The type environment is described in Section 12.1. Section 12.2
gives the type rules.

12.1 Type Environments

To a first approximation, type checking in Cool can be thought of as a bottom-up algorithm: the type of
an expression e is computed from the (previously computed) types of e’s subexpressions. For example,
an integer 1 has type Int; there are no subexpressions in this case. As another example, if en has type
X, then the expression { e1; . . . ; en; } has type X.

A complication arises in the case of an expression v, where v is an object identifier. It is not possible
to say what the type of v is in a strictly bottom-up algorithm; we need to know the type declared for v
in the larger expression. Such a declaration must exist for every object identifier in valid Cool programs.

To capture information about the types of identifiers, we use a type environment. The environment
consists of three parts: a method environment M , an object environment O, and the name of the
current class in which the expression appears. The method environment and object environment are
both functions (also called mappings). The object environment is a function of the form

O(v) = T

17

program ::= [[class;]]+

class ::= class TYPE [inherits TYPE] { [[feature;]]⇤}
feature ::= ID([formal [[, formal]]⇤]) : TYPE { expr }

| ID : TYPE [<- expr]
formal ::= ID : TYPE

expr ::= ID <- expr
| expr[@TYPE].ID([expr [[, expr]]⇤])
| ID([expr [[, expr]]⇤])
| if expr then expr else expr fi

| while expr loop expr pool

| { [[expr;]]+}
| let ID : TYPE [<- expr] [[, ID : TYPE [<- expr]]]⇤ in expr
| case expr of [[ID : TYPE => expr;]]+esac

| new TYPE
| isvoid expr
| expr + expr
| expr � expr
| expr ⇤ expr
| expr / expr
| ˜expr
| expr < expr
| expr <= expr
| expr = expr
| not expr
| (expr)
| ID
| integer
| string
| true

| false

Figure 1: Cool syntax.

16

