Data Flow Analysis

CS 544 Baris Aktemur

Dominance (from EaC2e)									
		DOM(<i>n</i>)							
	B ₀	B ₁	B ₂	B ₃	B4	B 5	B ₆	B ₇	B ₈
1 3	$\{0\}$ $\{0\}$ $\{0\}$ $\{0\}$ B_0	N {0,1} {0,1} {0,1}	N {0,1,2} {0,1,2} {0,1,2}	N {0,1,2,3} {0,1,3} {0,1,3}	N {0,1,2,3,4} {0,1,3,4} {0,1,3,4}	N {0,1,5} {0,1,5} {0,1,5}	N {0,1,5,6} {0,1,5,6} {0,1,5,6}	N {0,1,5,6,7} {0,1,5,7} {0,1,5,7}	N {0,1,5,8} {0,1,5,8} {0,1,5,8}
B_{2} B_{2} B_{6} B_{7} B_{3} B_{4}					$\begin{array}{l} changed \ \leftarrow \ true \\ while \ (changed) \\ changed \ \leftarrow \ false \\ for \ i \ \leftarrow \ 1 \ to \ n \\ temp \ \leftarrow \ \{i\} \ \cup \ (\ \bigcap_{j \in preds(i)} \ Dom(j) \) \\ if \ temp \ \neq \ Dom(i) \ then \\ Dom(i) \ \leftarrow \ temp \\ changed \ \leftarrow \ true \end{array}$				

Data Flow Abstraction

- Program State:
 - Values of all the variables
 - Value of the program counter
- Execution of a program

 Series of transformations of the program state
- Each statement transforms an input state to an output state

17

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

DFA Schema

- <u>Domain</u>: The set of possible DFA values

 Analysis-specific
- IN[s]: data-flow values before statement s
- OUT[s]: data-flow values after statement s
- The data-flow problem is to find a solution to a set of constraints on the IN[s]'s and OUT[s]'s, for all statements s.

Reaching Definitions

- A definition *d* reaches a point *p* if there is a path from the point immediately following *d* to *p*, such that *d* is not "killed" along that path.
- We *kill* a definition of a variable x if there is any other definition of x anywhere along the path.

Transfer Equations • Composition. – Suppose we have $f_1(x) = gen_1 \cup (x - kill_1) \text{ and } f_2(x) = gen_2 \cup (x - kill_2)$ then $f_2(f_1(x)) = gen_2 \cup (gen_1 \cup (x - kill_1) - kill_2)$ $= (gen_2 \cup (gen_1 - kill_2)) \cup (x - (kill_1 \cup kill_2))$

Represent sets by bit-vectors								
Block	ĸВ	$\operatorname{OUT}[B]^0$	$\operatorname{IN}[B]^1$	$\operatorname{OUT}[B]^1$	$\operatorname{IN}[B]^2$	$\operatorname{OUT}[B]^2$		
B_1	L	000 0000	000 0000	$111\ 0000$	000 0000	$111\ 0000$		
B_2	2	000 0000	$111\ 0000$	$001\ 1100$	$111 \ 0111$	$001\ 1110$		
B_3	3	000 0000	$001 \ 1100$	$000\ 1110$	$001 \ 1110$	$000\ 1110$		
B_4	1	000 0000	$001 \ 1110$	$001 \ 0111$	$001 \ 1110$	$001 \ 0111$		
EXI	Т	000 0000	$001 \ 0111$	$001 \ 0111$	$001 \ 0111$	$001 \ 0111$		
E.g: $\operatorname{Dil}(\mathcal{D}, 1) = \operatorname{Orm}(\mathcal{D}, 1) + \operatorname{Orm}(\mathcal{D}, 1)$								
1	$\mathbb{N}[D_2$	[] = 001[]	b_{1} 0 001	$[D_4]$				
	$= 111\ 0000 + 000\ 0000 = 111\ 0000$							
$OUT[B_2]^1 = gen[B_2] \cup (IN[B_2]^1 - kill[B_2])$								
$= 000\ 1100 + (111\ 0000 - 110\ 0001) = 001\ 1100$								
						37		

Live Variables Can the value of x at p be used along some path in the flow graph starting at p? If so, x is *live*, otherwise, *dead* at p. Important analysis for register allocation

- Important analysis for register allocation.
- Backward analysis.

the set of variables defined (i.e., definitely assigned values) in B *use_B*: the set of variables whose values may be used in B prior to any definition of the variable. (i.e. upwards exposed variables)

40

LV vs. RD

- Both have union as the meet operator: In each, we care only about whether <u>a</u> path with desired properties exists, rather than whether something is true along <u>all</u> paths.
- Information flow for liveness travels "backward," whereas "forward" in reachability.
- gen/kill vs use/def.

 $IN[EXIT] = \emptyset;$ for (each basic block *B* other than EXIT) $IN[B] = \emptyset;$ while (changes to any IN occur)
for (each basic block *B* other than EXIT) {
 OUT[*B*] = $\bigcup_{S \text{ a successor of } B} IN[S];$ IN[*B*] = $use_B \cup (OUT[B] - def_B);$ }

43

44

Figure 9.16: Iterative algorithm to compute live variables

OUT[ENTRY] = Ø;
for (each basic block *B* other than ENTRY) OUT[*B*] = *U*;
while (changes to any OUT occur)
for (each basic block *B* other than ENTRY) {
 IN[*B*] = ∩*P* a predecessor of *B* OUT[*P*];
OUT[*B*] = *e_gen*_B ∪ (IN[*B*] - *e_kill*_B);

Figure 9.20: Iterative algorithm to compute available expressions
Meet operation is intersection.
OUT[B] are set to U, except the entry node.
U is the universal set of expressions.

Summary						
	Reaching Definitions	Live Variables	Available Expressions			
Domain	Sets of definitions	Sets of variables	Sets of expressions			
Direction	Forwards	Backwards	Forwards			
Transfer function	$gen_B \cup (x - kill_B)$	$use_B \cup (x - def_B)$	$e_gen_B \cup (x - e_kill_B)$			
Boundary	$OUT[ENTRY] = \emptyset$	$IN[EXIT] = \emptyset$	$OUT[ENTRY] = \emptyset$			
Meet (\wedge)	U	U	Ω			
Equations	$ \begin{array}{l} \operatorname{OUT}[B] = f_B(\operatorname{IN}[B]) \\ \operatorname{IN}[B] = \\ & \bigwedge_{P, pred(B)} \operatorname{OUT}[P] \end{array} $	$IN[B] = f_B(OUT[B])$ OUT[B] = $\bigwedge_{S,succ(B)} IN[S]$	$\begin{array}{l} \operatorname{OUT}[B] = f_B(\operatorname{IN}[B]) \\ \operatorname{IN}[B] = \\ & \bigwedge_{P, pred(B)} \operatorname{OUT}[P] \end{array}$			
Initialize	$\operatorname{OUT}[B] = \emptyset$	$\operatorname{IN}[B] = \emptyset$	OUT[B] = U			
			53			

Interprocedural Summary Problems (from EaC2e)

- Function calls significantly degrade the information collected by an analysis
 - For safety, we have to assume that the callee function may modify any global or pass-by-ref variable
- Interprocedural may modify problem:
 - Determine which variables may be modified by called functions.
 - A data-flow analysis on the call graph
 - Flow insensitive

