
1

Data Flow Analysis

CS 544
Baris Aktemur

1

• Contents from
– Alfred V. Aho, Monica Lam, Ravi Sethi, and

Jeffrey D. Ullman
Compilers: Principles, Techniques, and Tools,
Second Edition
Addison-Wesley, 2007, ISBN 0-321-48681-1

• And, where noted as EaC2e, from
– Keith D. Cooper and Linda Torczon

Engineering a Compiler, Second Edition
Morgan Kaufmann, 2011

2

2

3

Data Flow Analysis (DFA)

• Find opportunities for improving the
efficiency of the code

• We must be sure that a particular
transformation is safe

• DFA: Compile-time reasoning about the
runtime flow of values

• Performed on Control Flow Graph (CFG)

4

3

Dominance (from EaC2e)

5

Initial conditions:

d dominates n (write “d dom n”) iff every path
in G from s to n contains d.

Dominance (from EaC2e)
• Forward data-flow problem:

– Compute a node’s data based on its predecessors’

6

Iterative approach to

solve the Dominance

problem

4

Dominance (from EaC2e)

• A 3-step process
– Form a CFG
– Compute initial information for each block
– Solve the equations to find final information

for each block
• Will see this process for any data-flow

problem

7

Dominance (from EaC2e)

8

5

Dominance (from EaC2e)

• Termination
• Correctness
• Efficiency

9

Termination of Dominance (from EaC2e)

• Dom sets monotonically shrink
• For the initial node, start with itself; for all

others, start with N.
• A Dom set cannot grow (check the

algorithm)
• A Dom set cannot be smaller than a

single-element set.
• Hence, the while-loop eventually

terminates
10

6

Correctness of Dominance (from EaC2e)

• There exists a unique fixed-point for the
equations we solved

• The algorithm finds that unique solution
• Details are beyond our scope. Food for

thought…

11

Efficiency of Dominance (from EaC2e)

• Unique solution => Order of computing the
sets is irrelevant.

• Pick your favorite traversal
• A reverse postorder (rpo)

traversal of the graph is
particularly effective

• Idea: visit a node before its
successors.

12

7

Efficiency of Dominance (from EaC2e)

• For a forward data-flow problem, use an
RPO computed on the CFG.

• For a backward data-flow, use an RPO
computed on the reverse CFG.

• Look up the definition of preorder,
postorder, and reverse postorder traversal
in your favorite graph theory course/book.

13

Efficiency of Dominance (from EaC2e)

14

Two passes, rather than three.

8

Efficiency of Dominance (from EaC2e)

15

More than two passes needed.

Data Flow Analysis

• Dominance is based only on the structure
of the graph.
– a form of control-flow analysis.

• Behavior of the code is ignored.
• Most data-flow problems reason about the

behavior of the code.

16

9

Data Flow Abstraction

• Program State:
– Values of all the variables
– Value of the program counter

• Execution of a program
– Series of transformations of the program state

• Each statement transforms an input state
to an output state

17

Data Flow Abstraction

• Data Flow Analysis
– Extract information for all the possible

program states
– Regarding the problem we’re trying to solve

• Must consider all the possible paths
• An abstraction of the all possible

executions
• Complex problems: Interprocedural
• This lecture: Intraprocedural

18

10

Data Flow Abstraction

• Program points: just before or after
executing a statement

• Program state/data are associated with
program points

• Within one basic block, the program point
after a statement is the same as the
program point before the next statement.

• Execution path: sequence of program
points

19

Data Flow Abstraction

• In general, there is an infinite number of
possible execution paths

• No finite upper bound on the length of an
execution path

• Program analyses summarize all the
possible program states that can occur at
a point in the program with a finite set of
facts

• Summary is analysis-dependent
20

11

Reaching Definitions

• A definition of a variable x is a statement
that assigns a value to x. (ignore aliasing
for simplicity)

• “What definitions of the variable x may be
reaching at point p?”

21

• The first time program
point (5) is executed,
the value of a is 1 due
to definition d1.

• In subsequent
iterations, d3 reaches
point (5) and the value
of a is 243.

• At point (5), the value
of a is one of {1,243}.

• It may be defined by
one of {d1,d3}.

22

12

Reaching Definitions Exercise

• What def. of i/j/a
are reaching
specified points?

• {d1,d2,d3,d5,d6,d7}
• {d3,d4,d5,d6}
• {d3,d4,d5,d6}

23

Data Flow Abstraction

• Reaching definitions: The definitions that
may reach a program point along some
path.

• Constant propagation: The unique
definition that reaches a point, AND that
has a constant value.
– Distinguish def’s as constant vs. non-constant
– Same information, different summary

24

13

DFA Schema

• Domain: The set of possible DFA values
– Analysis-specific

• IN[s]: data-flow values before statement s
• OUT[s]: data-flow values after statement s
• The data-flow problem is to find a solution

to a set of constraints on the IN[s]'s and
OUT[s]'s, for all statements s.

25

DFA Schema

• Transfer function: How a statement
changes the data-flow values
– Analysis- and statement-specific

• Forward flow:
– OUT[s] = fs(IN[s])

• Backward flow
– IN[s] = fs(OUT[s])

26

14

DFA Schema

• Data flow values within a basic block
– IN[si+1] = OUT[si]
– Note that this is an equality; no difference for

forward vs. backward
• Suppose block B consists of statements

s1,...,sn, in that order
– IN[B] = IN[s1]
– OUT[B] = OUT[sn]
– OUT[B] = fB(IN[B]) where fB = fsn o … o fs2 o fs1

27

DFA Schema

• Constraints due to control flow between
basic blocks
– E.g: Definitions that may reach a point (a

forward problem)

– E.g: Live variables (backward problem)

28

15

Reaching Definitions

• A definition d reaches a point p if there is a
path from the point immediately following d
to p, such that d is not “killed” along that
path.

• We kill a definition of a variable x if there is
any other definition of x anywhere along
the path.

29

Transfer Equations

• This statement “generates” a definition d
of variable u and "kills" all the other
definitions in the program that define
variable u, while leaving the remaining
incoming definitions unaffected.

where gend is {d} and killd is the set of all
other definitions of u.

30

16

Transfer Equations

• Composition.
– Suppose we have

then

31

Transfer Equations

• Composition.
– Transfer function of a block B with n

statements:

32

17

33

gen/kill sets of basic blocks:

34

gen/kill sets of basic blocks:

18

Control Flow Equations

• Solution to the equations above is a fixed-

point of the system. We are interested in
finding the least fixed-point.

35

(Initial condition)

• Note the three-step process
– Build a CFG (already done)
– Initialize local information
– Compute global information (i.e. propagate local info until the

fixed-point)

36

19

Represent sets by bit-vectors

37

E.g:

Reaching Definitions

• Detecting uses before definitions (i.e.
uninitialized variables)
– Introduce a dummy definition for each

variable x in the entry to the flow graph. If the
dummy definition of x reaches a point p where
x might be used, then there might be an
opportunity to use x before definition.

38

20

Live Variables

• Can the value of x at p be used along
some path in the flow graph starting at p?

• If so, x is live, otherwise, dead at p.
• Important analysis for register allocation.
• Backward analysis.

39

Transfer Functions

• defB : the set of variables defined (i.e.,
definitely assigned values) in B

• useB : the set of variables whose values
may be used in B prior to any definition of
the variable. (i.e. upwards exposed
variables)

40

21

41

use
def

From EaC2e

Live Variables

• Constraints

• Initial condition

42

22

LV vs. RD

• Both have union as the meet operator: In
each, we care only about whether a path
with desired properties exists, rather than
whether something is true along all paths.

• Information flow for liveness travels
"backward," whereas “forward” in
reachability.

• gen/kill vs use/def.

43

44

23

45

From EaC2e

RPO on CFG:

• If computed on RPO of the reverse CFG

46

From EaC2e

24

Uninitialized Variables

• How can you use Live Variable analysis to
detect if there may be uninitialized
variables? (i.e. variables that are being
used before being defined)
– Check OUT[entry]. If non-empty, there may be

a problem.

47

Uninitialized Variables

• Of course, this is a conservative analysis.
There may be false positives. Consider the
following code (Taken from EaC2e)

48

main() {
int i, n, s;
scanf(“%d”, &n);
i = 1;
while (i<=n) {
if (i==1)
s = 0;

s = s + i++;
}

}

25

Available Expressions

• Expression x+y is available at point p if
– every path from the entry node to p evaluates

x+y, and
– after the last such evaluation prior to reaching

p, there are no assignments to x or y
• Useful for common subexpression

elimination

49

50

26

Available Expressions
• A block kills expression x+y if it assigns x or y and does

not subsequently recompute x+y.
• A block generates expression x+y if it definitely

evaluates x+y and does not subsequently define x or y.

51

• Meet operation is intersection.
• OUT[B] are set to U, except the entry

node.
– U is the universal set of expressions.

52

27

Summary

53

Exercise: Compute
• def, use, IN and

OUT for LV
analysis.

• e_gen, e_kill, IN
and OUT for AE
analysis.

54

28

Interprocedural Summary
Problems (from EaC2e)

• Function calls significantly degrade the
information collected by an analysis
– For safety, we have to assume that the callee

function may modify any global or pass-by-ref
variable

• Interprocedural may modify problem:
– Determine which variables may be modified

by called functions.
– A data-flow analysis on the call graph

• Flow insensitive 55

Interprocedural Summary
Problems (from EaC2e)

• unbind function maps one set of variables
into another

• e is an edge in the call graph

56

