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Figure 9.30: Examples of (a) global common subexpression, (b) loop-invariant

code motion, (¢) partial-redundancy elimination. 8

Data Flow Analysis (DFA)

Find opportunities for improving the
efficiency of the code

We must be sure that a particular
transformation is safe

DFA: Compile-time reasoning about the
runtime flow of values

Performed on Control Flow Graph (CFG)




Dominance (from EaC2e)

B d dominates n (write “d dom n”) iff every path
0 . .
%/—\ in G from s to n contains d.
B,
B> Bs
PR DoM(n) = {n} U ﬂ Dom(m)
B (’\ /B 8 m € preds(n)
By Initial conditions:
: s DoM(ng) = {ng}, and Vn # ng, Dom(n) = N|
3
By
Bo B B> B3 Ba Bs Bg Bz Bg

pom(n) {0} {01} {012} {013} {0134} {015} {0156} {0,157} {0,158}

Dominance (from EaC2e)

« Forward data-flow problem:

— Compute a node’s data based on its predecessors’
n <« [N| -1
Dom(0) <« {0}
for i < 1 ton

Dom(i) < N .
Iterative approach to

changed <« true solve the Dominance
while (changed) problem
changed <« false

for i <« 1 ton
temp « {i} U ( ﬂjep,edx(,-) Dom(j) )

if temp # Dom(i) then
Dom(7) <« temp
changed <« true




Dominance (from EaC2e)

» A 3-step process

— Form a CFG

— Compute initial information for each block
— Solve the equations to find final information

for each block

» Will see this process for any data-flow

problem

Dominance (from EaC2e)

DoM(n)
Bo B, B, By Bs Bg By Bg
— {00 N N N N N N N
1 {0} {01} {012} {0,1,23,4} {0,,5} {01,556} {01,567} {0,158}
2 {0} {01} {01,2} {0134} (015} {0156} {0157} {0158}
3 {0} {01} {0,1,2} {0,1,3,4} {0,1,5} {0,1,5,6} {0,1,5,7} {0,1,5,8}
By
B% changed <« true
1
/ \ while (changed)
Bs changed <« false
Y\ .
Bg Bg for i < 1 to n
\B i temp < (i} U ( (jepredsqy DoM(J) )
7
< if temp # Dom(i) then
Bs Dom (1) <« temp
Bt changed <« true




Dominance (from EaC2e)

* Termination
e Correctness
« Efficiency

Termination of Dominance (from eacze)

* Dom sets monotonically shrink

For the initial node, start with itself; for all
others, start with N.

A Dom set cannot grow (check the
algorithm)

A Dom set cannot be smaller than a
single-element set.

Hence, the while-loop eventually
terminates




Correctness of Dominance (from Eacze)

» There exists a unique fixed-point for the
equations we solved

* The algorithm finds that unique solution

 Details are beyond our scope. Food for
thought...

1"

Efficiency of Dominance (from Eacze)

Unique solution => Order of computing the
sets is irrelevant.

4
Pick your favorite traversal 2/ \3
A reverse postorder (rpo) . 1 /

traversal of the graph is
particularly effective

1
|dea: visit a node before its e \2
3
SUCCEeSSOrs.
\4 Vs

Postorder

Reverse Postorder 12




Efficiency of Dominance (from Eacze)

» For a forward data-flow problem, use an
RPO computed on the CFG.

* For a backward data-flow, use an RPO
computed on the reverse CFG.

» Look up the definition of preorder,
postorder, and reverse postorder traversal
in your favorite graph theory course/book.

13

Efficiency of Dominance (from Eacze)

RPO(n) O 1 6 7 8 2 4 5 3

Bo Bi B> B3 Bs Bs Bg By Bs

Dom(n)
Bo B, By B3 By Bs Bs :7} Bg

© N N N N N N N N
(0} {01} (01,2} {013} {0134} (01,5 {0156} {0157 {0,158}
(0} {01} (01,2} {013} {0134} {015 {0156} {0157} {0,158}

Two passes, rather than three.




Efficiency of Dominance (from Eacze)

/ \ Bo B1 B B3z Bs Bs
RPO(n) O 2

3 4 5 1

l / \ DoM(n)
Bo B, B, B3 Bs

By<~——By+~——B, Bs
— {0} N N N N N
1 {0} {0,1} {0,1,2} {0,3} {0,4} {0,5}
2 {0y {01} {0,2} {0,3} {0,4} {0,5}
3 {0} {0,1} {0,2} {0,3} {0,4} {0,5}

More than two passes needed.

Data Flow Analysis

« Dominance is based only on the structure
of the graph.

— a form of control-flow analysis.
» Behavior of the code is ignored.

» Most data-flow problems reason about the
behavior of the code.




Data Flow Abstraction

* Program State:
— Values of all the variables
— Value of the program counter
» Execution of a program
— Series of transformations of the program state
» Each statement transforms an input state
to an output state

Data Flow Abstraction

Data Flow Analysis

— Extract information for all the possible
program states

— Regarding the problem we’re trying to solve
Must consider all the possible paths

An abstraction of the all possible
executions

Complex problems: Interprocedural
This lecture: Intraprocedural




Data Flow Abstraction

Program points: just before or after
executing a statement

Program state/data are associated with
program points
Within one basic block, the program point

after a statement is the same as the
program point before the next statement.

Execution path: sequence of program
points

Data Flow Abstraction

In general, there is an infinite number of
possible execution paths

No finite upper bound on the length of an
execution path

Program analyses summarize all the
possible program states that can occur at
a point in the program with a finite set of
facts

Summary is analysis-dependent

20
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Reaching Definitions

A definition of a variable x is a statement
that assigns a value to x. (ignore aliasing
for simplicity)

» “What definitions of the variable x may be
reaching at point p?”

21

NI | i« The first time program
(2) [l .
) point (5) is executed,
|i£ resa()<=0 gotoB, | > the value of ais 1 due

. to definition d1.

© 12032 % * In subsequent

goto B2 iterations, d3 reaches

o 1 ), point (5) and the value
of a is 243.

« At point (5), the value
of a is one of {1,243}.

* It may be defined by
one of {d1,d3}.

22




Reaching Definitions Exercise

T « What def. of ifj/a
252w % arereaching

b2 7% | specified points?

i %] s, ® {d1,d2,d3,d5,d6,d7}
e {d3,d4,d5,d6}

e {d3,d4,d5,d6)

23

Data Flow Abstraction

» Reaching definitions: The definitions that
may reach a program point along some
path.

» Constant propagation: The unique
definition that reaches a point, AND that
has a constant value.

— Distinguish def’s as constant vs. non-constant
— Same information, different summary

24

12



DFA Schema

Domain: The set of possible DFA values
— Analysis-specific

IN[s]: data-flow values before statement s
OUT[s]: data-flow values after statement s

The data-flow problem is to find a solution
to a set of constraints on the IN[s]'s and
OUT[s]'s, for all statements s.

25

DFA Schema

* Transfer function: How a statement
changes the data-flow values

— Analysis- and statement-specific
» Forward flow:

— OUT([s] = f,(IN[s])
» Backward flow

— IN[s] = f,(OUTIs])

26
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DFA Schema

» Data flow values within a basic block
— IN[s;,1] = OUT][s]]
— Note that this is an equality; no difference for
forward vs. backward
» Suppose block B consists of statements
S1,---,Sp, IN that order
—IN[B] = IN[s,]
— OUTI[B] = OUT[s,]
— OUTI[B] = f5(IN[B]) where fg=f,,0 ...0f,,0 fg,

27

DFA Schema

e Constraints due to control flow between
basic blocks

— E.g: Definitions that may reach a point (a
forward problem)

= IT|P
IN[B] UP a predecessor of B ov F[ ]

— E.qg: Live variables (backward problem)
IN[B] = fg(oUT[B])

ouT[B] = | J IN[S]

S a successor of B 28




Reaching Definitions

» A definition d reaches a point p if there is a
path from the point immediately following d
to p, such that d is not “killed” along that
path.

We kill a definition of a variable x if there is
any other definition of x anywhere along
the path.

29

Transfer Equations
d: u = vtw
This statement “generates” a definition d
of variable u and "kills" all the other
definitions in the program that define
variable u, while leaving the remaining
incoming definitions unaffected.

fa(z) = geng U (z — killy)
where geny is {d} and kill is the set of all
other definitions of u.

30

15



Transfer Equations

« Composition.
— Suppose we have
fi(z) = geny U (x — killy) and fo(z) = geny U (z — kills)
then
f2(fi(z)) = gena U (geny U (z — killy) — kills)
= (gens U (geny — killy)) U (z — (killy U killy))

31

Transfer Equations

» Composition.

— Transfer function of a block B with n
statements:

fe(z) = genp U (x — killg),
where
killg = killy U killo U - - - U kill,
and

geng = geny, U (genn_1 — kill,) U (genp—o — kill,—1 — kill,) U
-+ U (geny — killy — kills — - - - — killy,)

16



gen/kill sets of basic blocks:

d:i=m-1 B,
d:J=n
dy:a =ul
dyoi=i+1 B,
ds: 3 =73-1
/ /
/
‘/
f
C’ dg:a = u2 By
"\ T~
\ ‘\\
\\ Y
d,:1i=u3 B,
Figure 9.13: Flow graph for illustrating reaching definitions 33
gen/kill sets of basic blocks:
ENTRY
dl : 1 = m-1 B] genBl = (ll, dz' ds}
d:3j=n o
4 a=ul killy = (dy dy dy d)
d:i=i+l | B, geng ={dy ds}
3 =3-1 kill = (d dy d; )
/ /
‘;' . gen 8, ={d}
| |dga =2 3 killy, — ={d, }
\ 3 N
\ \~\\
—~ 3 gen 8, ={d}
d;:1i=u3 4 . _
killy = {dy d,}
Figure 9.13: Flow graph for illustrating reaching definitions 34
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Control Flow Equations
IN[B] = |

OUT[B] = genp U (IN[B] — killp)

OUT|P
P a predecessor of B [ ]

OUT[ENTRY] = () (nitial condition)

 Solution to the equations above is a fixed-
point of the system. We are interested in
finding the least fixed-point.

35

1)  OUT[ENTRY| = {);

2)  for (each basic block B other than ENTRY) OUT|B] = {);
3) while (changes to any OUT occur)

1) for (each basic block B other than ENTRY) {

5) IN[B‘ - Ul—’ a predecessor of B ()“l.“)]:

6) OUT[B| = genp U (IN|B] — killg);

Figure 9.14: Iterative algorithm to compute reaching definitions
* Note the three-step process
— Build a CFG (already done)
— Initialize local information

— Compute global information (i.e. propagate local info until the
fixed-point)

36
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Represent sets by bit-vectors

Block B | outr[B]Y | IN[B]' | outr[B]' | IN[B]* | out|[B]?
B, 000 0000 | 000 0000 | 111 0000 | 000 0000 | 111 0000
B, 000 0000 | 111 0000 | 001 1100 | 111 0111 | 001 1110
By 000 0000 | 001 1100 | 000 1110 | 001 1110 | 000 1110
By 000 0000 | 001 1110 | 001 0111 | 001 1110 | 001 O111

EXIT 000 0000 | 001 0111 | 001 0111 | 001 O111 | 001 0111

IN[Bs]* = ouT[B;]' U oUT[B4]°
= 111 0000 + 000 0000 = 111 0000
OUT([Bs]" = gen[Bs] U (IN[Ba]" — kill[Bs))
=000 1100 + (111 0000 — 110 0001) = 001 1100

37

Reaching Definitions

» Detecting uses before definitions (i.e.
uninitialized variables)

— Introduce a dummy definition for each
variable x in the entry to the flow graph. If the
dummy definition of x reaches a point p where
x might be used, then there might be an
opportunity to use x before definition.

38
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Live Variables

Can the value of x at p be used along
some path in the flow graph starting at p?

If so, x is live, otherwise, dead at p.
Important analysis for register allocation.
Backward analysis.

39

Transfer Functions

defg : the set of variables defined (i.e.,
definitely assigned values) in B

useg : the set of variables whose values
may be used in B prior to any definition of
the variable. (i.e. upwards exposed
variables)

40

20



By: i« 1 By
— B By: return W \
By : a <« Bs: a B,
C «— - IR Y\
(a < c) — By,Bs (a < d) — Bg,Bg B> Bs
By: b « . Bg: d <« --- / \
g <« — B7 B() BS
— Bs B7: b« .. \37/
By: y < a+b =~ B e
’ z <« c +d Bg: C‘;"' B;3
i« i+ 1 — b7
(i <= 100) — B;.B4 B{\—J
(a) Code for the Basic Blocks (b) Control-Flow Graph
Bo B, B> B3 Bs Bs Bs B; Bsg
use /] %) @ {a,b,c,d,i} & %) /] [ [}
" def {i} {a.c} (b.c.d} {v,z,1} #  fa,d} {d} {b} {c}
(c) Initial Information
From EaC2e
Live Variables
» Constraints
IN[B] = useg U (OUT[B] — defg)
out(B] = [/ IN[S
[ ] S a successor of B [ ]
* Initial condition
IN[EXIT] = ()
42
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LV vs. RD

« Both have union as the meet operator: In
each, we care only about whether a path
with desired properties exists, rather than
whether something is true along all paths.

* Information flow for liveness travels
"backward," whereas “forward” in
reachability.

 gen/kKill vs use/def.

43

IN[EXIT] = 0;
for (cach basic block B other than EXIT) IN[B] = {);
while (changes to any IN occur)
for (cach basic block B other than EXIT) {
Ol“l.[BJ - U.\‘ a successor of B L\'[SJ;
IN[B] = usep U (OUT[B] — defg);

Figure 9.16: Iterative algorithm to compute live variables

44
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By: i« 1
"=k B return From EaC2e
Bi: a « Bs: a <« -
C o e . d « -
(a < c) = By.Bs (a < d) — Bg,Bg
By: b« - Bg: d <« .-
Coo - B
B By: b o« -
By: y «—a+b bt C_'E'
D s oCo— o
w%<—vc+(11 - B
(i < 100) — By.By
(a) Code for the Basic Blocks (b) Control-Flow Graph
Bo By B; B3 Bs Bs Bs B; Bg
UEVAR ¢ [ 9 {a.b,c.d,i}) 0 @ g 0 9
VARKILL (i} {a.c} (b.c.d)  {y.z.i) ¢ fa.d) {d) (b} (o)
(c) Initial Information
RPO on CFG:
LIVEOUT(n)
Bo By By Bs; By Bs B By Bg
— 4 ] @ @ (4] (4] @
1 ¥ v fa.b.c.d,i} ] (4] [ @
2 4 {a.i} fa.b,c,d,i} (i} @ (4 {a.c.d.i}
3 {i} {a.i}) {a.b.c.d,i} {i} @ {a.c.d,i} {a.c.d,i)
4 {i} fa.c,i} {a.b,c.d,i} {i} @ {a.c.d,i} {a.c.d,i}
5 {i} {a.c.i} {a.b.c.d,i} {i} @ {a.c.d,i} {a.c.d,i})
From EaC2e
LIVEOUT(n)
Bo B, By B By Bs Bs By Bs
— 4 4] (4] 4] v [ [ @ ]
1 {i} fa.c,i}) fa.b,c.d,i} 4 ¥ {a.c.d,i} fa.c.d,i} fa.b.c.d,i} fa,c.d,i}
2 {i} {a,c,i} {a.b,c.d,i} {i} ] {a,c.d,i} {a.c.d,i} {a.b,c.d,i} {a.c,d,i}
3 {i} {a.c,i} fa.b,c.d,i} {i} 4 {a.c.d,i} fa.c.d,i} {fa.b,c.d,i} fa,c.d,i}

* |If computed on RPO of the reverse CFG

46
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Uninitialized Variables

* How can you use Live Variable analysis to
detect if there may be uninitialized
variables? (i.e. variables that are being
used before being defined)

— Check OUTI[entry]. If non-empty, there may be
a problem.

47

Uninitialized Variables

» Of course, this is a conservative analysis.
There may be false positives. Consider the
following code (Taken from EaC2e)

main() {
int i, n, s;
scanf (“%$d”, &n);
i=1;
while (i<=n) {
if (i==1)
s =0;
s = s + i++;

}
}

48
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Available Expressions

« Expression x+y is available at point p if
— every path from the entry node to p evaluates
x+y, and
— after the last such evaluation prior to reaching
p, there are no assignments to x or y
» Useful for common subexpression
elimination

49
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Available Expressions

* A block kills expression x+y if it assigns x or y and does
not subsequently recompute x+y.

* A block generates expression x+y if it definitely
evaluates x+y and does not subsequently define x ory.

Statement  Available Expressions

0
a=b+c
{b+c}
b=a-4d
{a - d}
c=b+c
{a-d}
d=a-d
0 51

OUT[ENTRY] = 0);
for (cach basic block B other than ENTRY) OUT[B| = U;
while (changes to any OUT occur)

for (cach basic block B other than ENTRY) {

IN{BJ :ml’ a predecessor of B Ol”l'[.P]:
OUT[B| = e_genp U (IN[B| — e_kill p);

Figure 9.20: Iterative algorithm to compute available expressions
* Meet operation is intersection.
« OUTI[B] are set to U, except the entry

node.

— U is the universal set of expressions.
52
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Summary

Reaching Definitions I

Live Variables

Available Expressions

Domain Sets of definitions Sets of variables Sets of expressions
Direction | Forwards Backwards Forwards

Transfer genp U (z — killg) usep U (z — defg) e-genp U (z — ekillp)
function

Boundary | OUT[ENTRY] = 0) IN[EXIT] = () OUT[ENTRY] = 0

Meet (A) | U _ U N

Equations | OUT[B] = fg(IN[B]) | IN[B] = fg(OUT[B]) | OUT[B] = fs(IN[B])

IN[B] =
Appreacsy OUT[P]

OUT[B] =
As,suce(s) INIS]

IN[B] =
/\P,p'red(B) OUT[P]

Initialize | OUT[B] =0

| IN[B] =0

OUT[B] =U

53

ENTRY

(1) a
2) b

N

3) ¢ = a+b
4)d=c-a
- 1 B

(5) d = btd

8) b = atb| °

6 d = ath| |®e=c-a
(7) e = e+l )

prvves B
(10) a = b* 6
(1) b = a-

EXI_'

J

Exercise: Compute

» def, use, IN and
OUT for LV
analysis.

* e _gen, e Kill, IN
and OUT for AE
analysis.

54
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Interprocedural Summary
Problems (from EaC2e)

* Function calls significantly degrade the
information collected by an analysis

— For safety, we have to assume that the callee
function may modify any global or pass-by-ref
variable

* Interprocedural may modify problem:

— Determine which variables may be modified
by called functions.

— A data-flow analysis on the call graph
* Flow insensitive 55

Interprocedural Summary
Problems (from EaC2e)

MayMob(p) = LocaLMobD(p) U ( U Lmbind(,(MAYMOD((])))
e=(p.q)

» unbind function maps one set of variables
into another

* e is an edge in the call graph

56
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