
2/10/17

1

Lexical Analysis

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies
of these materials for their personal use.
Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

Note by Baris Aktemur:
Our slides are adapted from Cooper and Torczon’s slides that they prepared for COMP 412
at Rice.

1

Traditional Three-part Compiler

2/10/17

2

2

The Front End

The purpose of the front end is to deal with the input language
• Perform a membership test: code Î source language?
• Is the program well-formed (semantically) ?
• Build an IR version of the code for the rest of the compiler

The front end deals with form (syntax) & meaning (semantics)

Errors

Source
Code

Optimizer
(Middle End)

Front
End

Machine
code

Back
End

IR IR

3

The Front End

Why separate the scanner and the parser?
• Scanner classifies words
• Parser constructs grammatical derivations
• Parsing is harder and slower

Separation simplifies the implementation
• Scanners are simple
• Scanner leads to a faster, smaller parser

token is a pair
<part of speech, lexeme >

stream of
characters Scanner

IR +
annotationsParser

Errors

stream of
tokensmicrosyntax syntax

Scanner is only pass
that touches every
character of the input.

2/10/17

3

4

Lexical analygator.
[http://www.craftinginterpreters.com/scanning.html]

Comp 412, Fall 2010 5

Recognizing the word “new”

2/10/17

4

6

Recognizing “new”, “not”, “while”

7

Finite Automata
(S, Σ, δ, s0, SA)

• S: finite set of states

• Σ: alphabet

• δ: transition function

• s0: start state

• SA: set of accepting states

2/10/17

5

Comp 412, Fall 2010 8

More complex words

9

Represent the transition function as a table

The recognizer code can be used for
other cases as well. E.g:

Just change the table.

2/10/17

6

10

The next question
Finite automata are good and useful, but not concise.

We need a concise notation that can be transformed into FA‘s.

Regular Expressions

11

These definitions should be well known

Set Operations (review)

Operation Definition
Union of L and M
written L ∪ M L ∪ M = { s | s ∈ L or s ∈ M }

Concatenation of L and M
written LM LM = { st | s ∈ L and t ∈ M }

Kleene closure of L
written L* L* = ∪0 ≤ i ≤ ∞ Li

Positive closure of L
written L+ L+ = ∪1 ≤ i ≤ ∞ Li

2/10/17

7

12

Regular Expressions
Regular Expression (over alphabet S)
• e is a RE denoting the set {e}
• If a is in S, then a is a RE denoting {a}
• If x and y are REs denoting L(x) and L(y) then

— x | y is an RE denoting L(x) È L(y)
— xy is an RE denoting L(x)L(y)
— x* is an RE denoting L(x)*

Precedence is closure,
then concatenation,
then alternation

13

Examples of Regular Expressions

Identifiers:
Letter ® (a|b|c| … |z|A|B|C| … |Z)
Digit ® (0|1|2| … |9)
Identifier ® Letter (Letter | Digit)*

Numbers:
Integer ® (+|-|e) (0| (1|2|3| … |9)(Digit *))
Decimal ® Integer . Digit *

Real ® (Integer | Decimal) E (+|-|e) Digit *

Complex ® (Real , Real)

Numbers can get much more complicated! underlining indicates
a letter in the input
stream

shorthand
for

(a|b|c| … |z|A|B|C| … |Z) ((a|b|c| … |z|A|B|C| … |Z) | (0|1|2| … |9))*

Using symbolic names
does not imply recursion

2/10/17

8

14

Regular Expressions So what’s the point?
We use regular expressions �to specify the mapping of
words to parts of speech for the lexical analyzer

Using results from automata theory and theory of algorithms,
we can automate construction of recognizers from REs

ÞWe study REs and associated theory to automate scanner
construction !

ÞFortunately, the automatic techiques lead to fast scanners
® used in text editors, URL filtering software, …

15

Consider the problem of recognizing ILOC register names
Register ® r (0|1|2| … | 9) (0|1|2| … | 9)*

• Allows registers of arbitrary number
• Requires at least one digit

RE corresponds to a recognizer (or DFA)

Transitions on other inputs go to an error state, se

Example

S0 S2 S1

r

(0|1|2| … 9)

accepting state

(0|1|2| … 9)

Recognizer for Register

2/10/17

9

16

RE for C/Java-style single-line comments
Example

More states implies a larger table. The larger table might have mattered
when computers had 128 KB or 640 KB of RAM. Today, when a cell phone has
megabytes and a laptop has gigabytes, the concern seems outdated.

RE for C/Java-style multi-line comments

//(^\n)*\n

/★(^★)*★/

/★ (^★|★+^/)*★/ (better)

17

Examples
• All strings of 1s and 0s ending in a 1

• All strings over lowercase letters where the vowels (a,e,i,o,
& u) occur exactly once, in ascending order

• All strings of 1s and 0s that do not contain three 0s in a row:

(1* (e |01 | 001) 1*)* (e | 0 | 00)

(0 | 1)* 1

Let Cons be (b|c|d|f|g|h|j|k|l|m|n|p|q|r|s|t|v|w|x|y|z)

Cons* a Cons* e Cons* i Cons* o Cons* u Cons*

2/10/17

10

18

Next Step
RE ® NFA (Thompson’s construction)
• Build an NFA for each term
• Combine them with e-moves

NFA ® DFA (Subset construction)
• Build the simulation

DFA ® Minimal DFA
• Hopcroft’s algorithm

DFA ® RE
• All pairs, all paths problem
• Union together paths from s0 to a final state

minimal
DFA

RE NFA DFA

The Cycle of Constructions

In another course…

19

What About Hand-Coded Scanners?
Many (most?) modern compilers use hand-coded scanners
• Starting from a DFA simplifies design & understanding
• Avoiding straight-jacket of a tool allows flexibility

— Computing the value of an integer
® In LEX or FLEX, many folks use sscanf() & touch chars many times
® Can use old assembly trick and compute value as it appears

— Combine similar states
• Handling keywords

— Instead of having explicit RE for each keyword, first recognize
them as ordinary identifiers, then look up in a hash table.

— A good example of perfect hashing, because of fixed set of
keys.

We preferred this approach in our Cool scanner.

Clang and GCC’s front ends are also hand-written.

