
IMPROVING EFFICIENCY AND SAFETY OF PROGRAM GENERATION

BY

TANKUT BARIS AKTEMUR

B.S., Bilkent University, 2003
M.S., University of Illinois at Urbana-Champaign, 2005

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2009

Urbana, Illinois

Doctoral Committee:

Associate Professor Samuel Kamin, Chair
Associate Professor Vikram Adve
Assistant Professor Darko Marinov
Associate Professor Grigore Roşu
Professor Peter Sestoft (IT University of Copenhagen, Denmark)

Abstract

Program Generation (PG) is about writing programs that write programs. A program
generator composes various pieces of code to construct a new program. When employed
at runtime, PG can produce an efficient version of a program by specializing it according to
inputs that become available at runtime. PG has been used in a wide range of applications
to improve program efficiency and modularity as well as programmer productivity.

There are two major problems associated with PG: (1) Program generation has its own
cost, which may cause a performance loss even though PG is intended for performance
gain. This is especially important for runtime program generation. (2) Compilability guar-
antees about the generated program are poor; the generator may produce a type-incorrect
program. In this dissertation we focus on these two problems. We provide three tech-
niques that address the first problem. First, we show that just-in-time generation can suc-
cessfully reduce the cost of generation by avoiding unnecessary program generation. We
do this by means of an experiment in the context of marshalling in Java, where we gener-
ate specialized object marshallers based on object types. Just-in-time generation improved
the speedup from 1.22 to 3.16. Second, we apply source-level transformations to optimize
the execution of program generators. Up to 15% speedup has been achieved in runtime
generation time for Jumbo, a PG system for Java. Third, we provide a technique to stage
analysis of generated programs to perform a portion of the analysis at compile time rather
than completing the entire analysis at runtime. We also give experimental evidence via
several examples that this technique reduces runtime generation cost. To address the sec-
ond problem of PG, we first show that operational semantics of record calculus and pro-
gram generation are equivalent, and that a record type system can be used to type-check
program generators. We also show that this is true in the presence of expressions with
side-effects. We then make use of an already-existing record calculus feature, subtyping,
to extend the program generation type system with subtyping constraints. As a result,
we obtain a very expressive type system to statically guarantee that a generator will pro-
duce type-safe code. We state and prove the theorems based on an ML-like language with
program generation constructs.

ii

Beauty will save the world.
—Dostoevsky

iii

Acknowledgments

Acknowledging all the people who touch the making of a dissertation requires a long list;
mine is no exception.

I am indebted to my advisor Prof. Sam Kamin. He has always been there to help
me out and show me the direction to take whenever I felt stuck. He has not only been
a mentor and teacher, but also provided my financial support for several semesters, and
made it possible for me to attend conferences. I also learned a lot from him about teaching
during the time I was appointed as his teaching assistant.

My committee members, Prof. Vikram Adve, Prof. Darko Marinov, Prof. Grigore Roşu,
and Prof. Peter Sestoft provided very valuable feedback on my thesis. What I learned in
the courses they taught, namely the compiler courses by Prof. Adve, program testing and
analysis course by Prof. Marinov, and programming language courses by Prof. Roşu, has
been very useful in this dissertation. Prof. Sestoft introduced me to the problem of library
specialization that motivated the work presented in Chapter 5.

Prof. Elsa Gunter has been very kind to generously offer her time to help me with
the mathematics in my dissertation. I was fortunate enough to also be her teaching assis-
tant for several semesters. She taught me priceless skills in teaching and in dealing with
difficult situations with students.

I learned very useful teaching techniques from Professors Lawrence Angrave and Craig
Zilles during the time I realized that dealing with the freshmen is not easy at all.

Prof. Chung-chieh Shan pointed out that pluggable declarations in Chapter 5 can be
treated as syntactic sugar.

Paul Adamczyk provided comments not only on this dissertation, but also on politics,
history, geography and philosophy in general. I thank him for turning the Friday fish into
a tradition, for inviting me to Argentina (with special thanks to Federico Balaguer and
his family), for being a guide in the Kickapoo state park, for coming up with the idea of
going to the Appalachian mountains, for bringing bottles of Żubrówka, and for providing
sarcasm as a free service.

I had several discussions with Philip Morton and Michael Katelman — my office mates,
collaborators, and fellow students — that shaped an important part of work documented
here. I thank Mike for also meeting me for lunch and making me socialize by introducing

iv

me to other fellow students.
I would like to thank several people for doing class projects, having lunch with me, be-

ing wonderful fellow TAs, having great conversation, etc: Rob Bocchino, Nicholas Chen,
Tanya Crenshaw, Danny Dig, Chucky Ellison, Brian Foote, Munawar Hafiz, Mark Hills,
Dongyun Jin, William Mansky, Chris Osborn, Jeff Overbey, Andrei Popescu, Maurice
Rabb, Traian Serbanuta, Anna Yershova.

I am sincerely thankful to my Turkish friends Emre Akbaş, İnci and Burak Güneralp,
Norma Linton, Lale Özkahya, Özgül and Onur Pekcan, Nejan and Süleyman Sarıhan,
Sonat Süer, Çiğdem Şengül, Derviş Can Vural, and Serdar Yüksel for being a family to
me in Urbana-Champaign.

I appreciate the great atmosphere of the Grainger Engineering Library, Krannert Center
for the Performing Arts, Champaign Public Library, Cafe Kopi, Esquire, Legends, and
Blind Pig.

I cannot truly express how grateful I am to my family, especially to my parents Melahat
and Emin Aktemur. Feeling their support was the most important thing during my years
in Illinois. This dissertation is dedicated to them.

Last, but not the least, I thank my beautiful fiancée Sevil Şenol, for her love, support
and patience.

A part of the work presented in this dissertation was partially funded by NSF under
the grant CCR-0306221.

v

Table of Contents

List of Tables . ix

List of Figures . x

Chapter 1 Introduction . 1
1.1 Problem Context . 1

1.1.1 Generality of Program Generation . 3
1.1.2 PG by Partial Evaluation vs. PG by Program Construction 4

1.2 Problem Statement . 4
1.3 Contributions . 6
1.4 Terminology and Notation . 7
1.5 Brief History of Program Generation . 9
1.6 Outline of the Dissertation . 12

Chapter 2 Just-in-time Program Generation . 13
2.1 Marshalling in Java . 14
2.2 Jumbo Code for Marshalling . 17
2.3 Performance . 20

2.3.1 Homogeneous and Near-homogeneous Data 21
2.3.2 Non-homogeneous Data . 23

2.4 Just-in-time Program Generation . 23
2.5 Sun’s ObjectOutputStream . 26
2.6 Related Work . 27
2.7 Conclusions . 27

Chapter 3 Source-level Rewriting of Staged Programs 29
3.1 Compositional Compilation . 30
3.2 Structure of Jumbo . 31
3.3 Source-level Optimization of Java . 35

3.3.1 Normalization . 36
3.3.2 Transformations . 36

3.4 Examples . 38
3.4.1 Simple Class . 39
3.4.2 Exponent . 39
3.4.3 FSM . 40

3.5 Lessons Learned . 42
3.6 Related Work . 44
3.7 Conclusions . 44

vi

Chapter 4 Staging Static Analysis of Generated Programs 46
4.1 Framework for Forward Analysis . 47

4.1.1 Simple Control Structures . 50
4.1.2 Break Statements . 54
4.1.3 The Framework . 57

4.2 Adequate Representations . 60
4.2.1 Reaching Definitions I (RD) . 60
4.2.2 Available Expressions (AE) . 61
4.2.3 Reaching Definitions II (RD2) . 63
4.2.4 Constant Propagation (CP) . 64
4.2.5 Loop Invariants (LI) . 66
4.2.6 Type Checking (TC) . 68

4.3 Framework for Backward Analysis . 68
4.3.1 Live Variables (LV) . 72
4.3.2 Very Busy Expressions (VBE) . 72

4.4 Performance . 73
4.5 Related Work . 74
4.6 Conclusions . 75

Chapter 5 Record Calculus as a Staged Type System 76
5.1 Using Records for Staged Computing . 77
5.2 Type-Checking Program Generators . 80
5.3 Staged Language . 85

5.3.1 Auxiliary Definitions . 85
5.3.2 Operational Semantics . 88
5.3.3 Type System . 88

5.4 Record Language . 90
5.4.1 Auxiliary Definitions . 91
5.4.2 Operational Semantics . 91
5.4.3 Type System . 91

5.5 Transformation . 93
5.5.1 Type Transformation . 96

5.6 Relation Between Staged Programming and Record Calculus 96
5.7 Extending λgenpoly with Subtyping . 97

5.7.1 Power of Subtyping . 98
5.7.2 Subtyped Record Calculus . 99
5.7.3 Implementation . 101
5.7.4 Staged Semantics and Subtyped Record Calculus 101

5.8 Extending λgenpoly with Pluggable Declarations 103
5.8.1 Soundness of the λdeclpoly Type System 105
5.8.2 Pluggable Declarations are Syntactic Sugar 105
5.8.3 Translation into Record Calculus . 106

5.9 Extending λgenpoly with References . 108
5.9.1 Adding References to the Staged and Record Calculi 111
5.9.2 Accounting for References in the Translation 112
5.9.3 Relating the Staged and Record Calculi 116
5.9.4 Handling Pluggable Declarations in the Presence of References . . . 117

vii

5.10 Related Work . 118
5.11 Conclusions . 120

Chapter 6 Conclusions and Future Work . 121

Appendix A Proofs . 124
A.1 Proofs of Theorems in Chapter 4 . 124
A.2 Proofs of Theorems in Chapter 5 . 143

A.2.1 Record Language . 143
A.2.2 Transformation . 144
A.2.3 Relation Between Staged Programming and Record Calculus 145
A.2.4 Extension with Pluggable Declarations 152
A.2.5 Extension with References . 158

Bibliography . 166

Author’s Biography . 174

viii

List of Tables

1.1 Distinguishing between closed, open, and freely-open code. 9

2.1 Performance table for marshalling the Dummy class. 21
2.2 Performance table for linked-lists of Dummy objects. 22
2.3 Performance table for Dummy objects, allowing the fields to be either Simple

or SimpleChild. 22
2.4 Performance table for heterogeneous data. 23
2.5 Performance comparison when threshold value is used. 24
2.6 Marshalling 13210 objects, with different threshold values. 25
2.7 Performance when marshalling Dummy objects with threshold value of 100. 25
2.8 Performance of Jumbo OOS vs. Sun OOS. 26

3.1 Run-time generation performance for the simple example. 39
3.2 Run-time generation performance for the exponentiation example. 40
3.3 Run-time generation performance for the FSM example. 42

4.1 Benchmarking results for staged analyses. 73

ix

List of Figures

1.1 Jumbo code that generates a function to take the fifth power of its argument. 2
1.2 Lowering down the break-even point. 5
1.3 PG terms shown on the exponentiation example. 7
1.4 High-level illustration of static and dynamic generation. 9

2.1 The pseudo code that outlines Kaffe OOS’s writeObject() method. 15
2.2 The pseudo code that outlines Jumbo OOS’s writeObject() method. 16

3.1 The makeMethod and makeField methods of the compiler. 33
3.2 The makeClass method of the compiler. 34
3.3 The generator that produces a specialized exponentiation function. 40
3.4 The finite-state-machine example. 41

4.1 Illustration of staging a data flow analysis. 48
4.2 The language treated in Chapter 4. 49
4.3 First framework for data-flow analysis. 50
4.4 Representation function for the first framework. 51
4.5 FR for the first framework. 53
4.6 Framework with break statements. 54
4.7 Representation for framework of Figure 4.6. 55
4.8 FR with break statements. 56
4.9 Forward analysis framework. 58
4.10 Representation for framework of Figure 4.9. 59
4.11 The example program with numbered nodes. 60
4.12 The flow of data for the labelled statement L : P in the forward and back-

ward direction. 69
4.13 Intermediate framework for backward analysis. 70
4.14 Representation for framework of Figure 4.13. 70
4.15 Full framework for backward analysis. 71
4.16 Representation for framework of Figure 4.15. 71

5.1 A first attempt on a transformation from staged expressions to record calcu-
lus expressions. 78

5.2 Writing a customizable library using program generation. 82
5.3 Syntax of λgenpoly. 85
5.4 Finding the stage-0 free variables of λgenpoly expression. 85
5.5 Staged substitution. 86

x

5.6 The definition of values in λgenpoly. 87
5.7 The small-step semantics of λgenpoly. 87
5.8 The definition of types in λgenpoly. 89
5.9 The λopenpoly type system rules adapted for λgenpoly. 89
5.10 Record calculus syntax. 90
5.11 The definition of types in the record calculus. 92
5.12 The type system of the record calculus. 92
5.13 Transformation from λgenpoly expressions to λrecpoly. 95
5.14 Translating λgenpoly types to record calculus types. 95
5.15 Screenshot of the implementation of the type system with subtyping con-

straints. 102
5.16 Extending λgenpoly with pluggable declarations. 104
5.17 The operational semantics of λopenpoly with references. 109
5.18 The λopenpoly typing rules to handle references. 109
5.19 The operational semantics of record calculus with references. 110
5.20 The new typing rules to handle references in the record calculus. 110
5.21 Transformation modified to handle expressions with side-effects. 113

xi

Chapter 1

Introduction

Program Generation (PG) is about writing programs that write programs. If a program’s
structure is so routine that it can be built by an algorithm, it is natural to use PG to man-
ufacture the program because this improves program reusability and performance as well
as programmer productivity, while decreasing human error [CE00]. PG has been used
in (or proposed for) a wide range of applications including implementation of a staged
interpreter [Tah03], increasing efficiency in web servers providing dynamic web content
[Lea06], literate programming, faster huffman encoding, and generation of proxy classes
[Kam04], fine-controlled loop unrolling, finite state machine generation, and encoder/de-
coder generation [Kam03], convolution matrices and product line architectures [Cla04],
object serialization [AJKC05, NR04], domain-specific language development [COST04],
and implementation of customizable libraries [AK09, HZS05] among others. These ap-
plications show how broadly PG can be used.

In this dissertation we address two important challenges of PG: the efficiency of pro-
gram generation, and type-safety of the generated program. This chapter first gives a defi-
nition of our problem context in Section 1.1, followed by the problem statement in Section
1.2, and our contributions in Section 1.3. The terminology we use throughout the disser-
tation is introduced in Section 1.4. We then give a brief history of program generation in
Section 1.5. We conclude this chapter with the outline of the dissertation.

1.1 Problem Context

Generation of a program in a PG system is done by combining program fragments. A frag-
ment is an arbitrarily sized but parseable piece of code, denoted by the quotation syntax
〈·〉. Composition of fragments is performed by filling in the holes defined in fragments
with other fragments. Holes are defined using the antiquotation syntax 8(·). All PG sys-
tems share this idea of using a quotation/antiquotation syntax to denote and compose the
fragments, inspired from quasiquotations in Lisp [Baw99].

Fragments are first-class values that can be passed around and assigned to variables.
Holes get filled in by evaluating an antiquoted expression to a fragment, and splicing
that fragment in the place of the hole. What fragments fill in which holes and when this

1

// The generic exponentiation method that computes xn

i n t power (i n t n , i n t x) {
i n t c = 1 ;
for (i n t i =0 ; i<n ; i ++) {

c = c ∗ x ;
}
return c ;

}

// The generator that produces the code for computing xn for a given n
Code genBody (i n t n) {

Code c = 〈 1 〉 ;
for (i n t i =0 ; i<n ; i ++) {

c = 〈 8 (c) ∗ x 〉 ;
}
return c ;

}

// The generator that produces the code of a method to compute x5

Code genPower5 () {
return 〈 i n t power5 (i n t x) {

return 8 (genBody (5)) ; // will be equivalent to 1∗x∗x∗x∗x∗x
} 〉 ;

}

Figure 1.1: Jumbo code that generates a function to take the fifth power of its argument.

happens is determined by the generator, a program that contains quoted fragments. This
is the mechanism of combining fragments to obtain the eventual generated program.

A sample program generator is given in Figure 1.1, where we show the classical ex-
ponentiation example written in Jumbo [KCJ03], an extension of Java with program gen-
eration facilities. In this example, a version of the generic exponentiation method that is
specialized for a fixed exponent value of 5 is generated. Note that, because in the process
of generating the code, the for-loop is eliminated, this code would execute faster than the
generic method. (Note that for large values of the exponent n, we may end up with very
large code that may in fact be less efficient due to cache misses.) Fragments in Jumbo have
the type Code.

Most program generation systems provide an eval or run construct that compiles and
immediately executes a program at runtime without terminating the session in execution.
This makes it possible to specialize a program according to inputs that become available
only at runtime. For this reason, the major motivation behind using program generation
is to obtain better efficiency. The exponentiation example above is such a case. However,
as listed at the beginning of this chapter, there exist several other usage areas as well.

2

1.1.1 Generality of Program Generation

In this dissertation, we are interested in PG systems that provide a high degree of “gener-
ality”. There are two dimensions of generality.

• Generality inside quotations: Can arbitrary fragments be quoted? Does the system al-
low defining expressions as fragments? How about statements and/or declarations?
Can a fragment have free variables? Can there be quoted code values inside quoted
code values? Can you fill in a hole inside a loop with a break statement?

• Generality outside quotations: Can the fragments be passed around as first class values?
Is there a construct that allows building fragments using loops?

In principle, we are interested in PG systems that give the answer “yes” to all the
questions above — systems that allow the users to “generate anything, in any way they
want.” This is not always possible. Strong type-safety requirements almost always put
limitations on what can be generated. In this dissertation, we use a program generation
system that, unless otherwise noted, does not compromise the following properties, giving
it a high-degree of generality.

• Free variables are allowed inside quotations. These variables may get captured when
the fragment fills in a hole.

• Quotations can be multi-leveled; having quoted codes inside a quoted code is allowed.
This makes it possible to generate generators.

• Both expressions and statements (including declarations) can be quoted.

• The meta-language that is used outside the quotations to manipulate code pieces is
a Turing-complete programming language.

• Fragments are first-class citizens; they can be passed around, returned from func-
tions, assigned into variables.

Not every PG system provides generality at this degree, either because of implemen-
tation issues or more fundamental reasons such as generating more efficient code or pro-
viding stronger formal properties. Where appropriate, we comment on other systems’
restrictions on generality in the upcoming chapters when evaluating the related work.

In this dissertation, we use Jumbo [KCJ03] as the PG system. Because Jumbo is a com-
plex system providing all the features of a real-world language –Java– we assume a sim-
plified version of it whenever this simplification does not cause a loss of generality. In
Chapter 5, we use an ML-like functional language that has program generation facilities
giving the generality properties listed above.

3

1.1.2 PG by Partial Evaluation vs. PG by Program Construction

Program generation can be classified into two categories: PG by partial evaluation [ACK03,
CX03, Dav96, DP96, KKcS08, MTBS99, TN03, YI06] and PG by program construction [Baw99,
HZS05, HZS07b, KCJ03, KYC06, OMY01, PHEK99, Rhi05, ZHS04]. These two approaches
to program generation require different mindsets when programming.

PG by partial evaluation is based on the ideas of partial evaluation. This PG style is
about delaying the execution of some part of a code while regularly evaluating the other
parts. The programmer may explicitly annotate the program to indicate which part to
delay or not to delay, as opposed to partial evaluation’s implicit binding-time analysis
[JGS93, NN92]. This kind of PG enjoys the “erasure property” [DP96]: a valid program
can be obtained if all the annotations are erased. This means that there can be no unbound
variable in a program, even in the delayed fragments (i.e. inside quotations).

PG by program construction is about building new programs by composing program frag-
ments. Programmers again explicitly define fragments and how they are combined. There
is no erasure property; removing annotations may leave a meaningless, or even unparsable
program. Jumbo falls into this category.

An important difference between PG by partial evaluation and PG by program con-
struction is variable hygiene. In PG by program construction, free variables in a fragment
may get “captured” and bound when the fragment is spliced into a context. Composition
of code values is intentionally unhygienic. This is a property common to all PG by program
construction systems. In PG by partial evaluation, however, variable capturing is forbid-
den. The binding of a variable is statically known, and variables are alpha-converted to
avoid capturing; composition of code values is intentionally hygienic. For example, the
program let f = λc.〈λx.x + 8(c)〉 in 〈λx. 8(f〈x〉)〉, written in ML-like syntax, yields a value
that is alpha-equivalent to 〈λy.λz.z + y〉 if evaluated in MetaOCaml [TCLP] — a PG-by-
partial-evaluation system. On the other hand, the output is 〈λx.λx.x + x〉, if evaluated in
λopenpoly [KYC06] — a PG-by-program-construction system.

1.2 Problem Statement

Program generation systems typically facilitate generation and immediate use of code at
runtime. This allows for taking runtime inputs into consideration to generate a more ef-
ficient version of a program. However, runtime generation has its own cost. Runtime
generation should be employed only if the efficiency gain from the specialized program
exceeds the generation cost. Consider the exponentiation example given in Figure 1.1. If
we want to take the fifth power of a single number, it would be pointless to generate a
function specialized for that purpose; the generation cost would be much bigger than the
cost of the computation using a generic exponentiation function. However, if we will take

4

ge
n.

 c
os

t

generative program

Work Done

Cost Cost

Work Done

ge
n.

 c
os

t

break−even break−even

non−generative program

Before After

Figure 1.2: One of our goals is to decrease the code generation cost so that the break-even
point will be lower.

the fifth power of thousands of numbers, we may want to generate the specialized func-
tion, because it runs faster than the generic power function and at some point it is going to
compensate for its generation cost. The moment when the generated program starts to pay
off is called the break-even point (or crossover point). The cost of runtime generation needs
to be decreased as much as possible so that the break-even point will be lower (see Figure
1.2). A low break-even point increases the confidence that PG will be profitable rather than
costly. This is the first challenge of program generation.

Problem 1: Program generation has a cost. Because of this cost, although intended to speed up
programs, PG may in fact cause slow-down in some circumstances.

In PG, it is not easy to reason about the properties of the generated code by looking
at the generator, because in the generator we only have partial information. On the other
hand, users would like to have some assurance of safety properties about the product. If
the generator produces a program that does not even compile, it would frustrate the user,
and embarrass the programmer of the generator. Therefore it is desirable to guarantee
that a generator will produce type-safe code. This is the second challenge of program
generation.

Problem 2: PG does not provide guarantees about the product. A generator may produce ill-formed
code that does not even compile.

Note that the notion of correctness can be expanded beyond type-safety to include
behavioral correctness. That is, how do we make sure that the generated code runs as ex-
pected? However, due to its meta-nature, this problem seems tough; the state of the art in

5

program generation is still investigating ways for obtaining better type correctness prop-
erties. Therefore, we focus on type checking in this dissertation, and put more advanced
behavioral correctness properties out of our scope.

1.3 Contributions

In this dissertation we study the two problems outlined in the previous section. We de-
velop techniques to

• make PG more profitable by reducing the cost of generation, and

• make PG safer by guaranteeing type-safety of the generated code.

In particular, our contributions are summarized as follows:

• We provide empirical results showing that just-in-time program generation can be
effective in avoiding unnecessary runtime generation cost, and thus lowering the
break-even point. For our experiment we study marshalling in Java, where we gen-
erate marshallers specialized to certain object types. We show that just-in-time pro-
gram generation can improve the speedup obtained by PG from 1.22 to 3.16.

• We show that source-level rewriting techniques can be applied to partially evalu-
ate generators at compile-time for faster generation at runtime. We obtain up to
15% speedup in runtime generation time in Jumbo. In a prototype system, we had
achieved up to 60% speedup. We provide a discussion of what prevents us from
getting higher speedup in Jumbo.

• We develop a technique to stage static analyses to partially analyze generated code at
compile-time and thus reduce runtime generation cost. We provide analysis frame-
works for both forward and backward analysis, and define several instantiations of
these frameworks to concrete analyses. Depending on the characteristics of the appli-
cation, we obtain various speedup results that are as high as an order of magnitude.

• To address the safety problem of PG, we first define a translation that converts pro-
gram generators to programs in the record calculus. We then prove a theorem stating
that the operational semantics of the record calculus is equivalent to the operational
semantics of program generation. This leads to the fact that a record calculus type
system can serve as a sound program generation type system. We prove that such
a type system is equal to an existing PG type system, λopenpoly [KYC06]. We show that
the results hold even in the presence of side-effectful expressions. By using existing
knowledge about subtyping in the record calculus, we are able to have subtyping
for program generation as well. All these properties yield a very powerful PG type
system.

6

product
generates the

Code genBody(int n) {

 c = < ‘(c) * x > ;
 }
 return c;
}

Code genPower5() {
 return < int power5(int x) {
 return ‘(genBody(5));

}
 } >;

 Code c = < 1 > ;

target−language

ge
ne

ra
to

r

container

hole
meta−language

int power5(int x) {
 return 1*x*x*x*x*x;
}

plug
 for(int i=0; i<n; i++){

Figure 1.3: PG terms shown on the exponentiation example.

Program generation has a third challenge, namely the size of the generated code (or the
generator-size problem in partial evaluation [JGS93, GJ95]). Because specialization usually
includes inlining of functions or unrolling of loops, the size of the specialized code may get
undesirably large, which may negatively affect the behavior of the hardware instruction
cache and register allocation. This problem of program generation is out of the scope of
our thesis.

1.4 Terminology and Notation

In this section we introduce the terminology and notation we use in this dissertation.
We use the quotation syntax 〈·〉 to denote a program fragment, and the antiquotation

syntax 8(·) to denote a hole inside a fragment. The synonyms for program fragment are
quoted fragment, quoted code, code value, program piece, or code piece. Quotations/antiquota-
tions in a program are also called annotations. A fragment that fills in a hole is called a
plug. A fragment containing holes to be filled in with plugs is called a container fragment.
Note that once its holes are filled, a container fragment may itself become a plug. The lan-
guage used inside the fragments is called the target or object language. The language that is
used for managing the composition of fragments is the meta or host language. For example
in Jumbo [KCJ03], the target and the meta language are the same: Java. In MetaAspectJ
[ZHS04], the meta language is Java whereas the target language is AspectJ.

A quoted fragment is said to be in the next stage or level. The first stage (i.e. the stage
of the meta-language) is stage 0. A program that contains quoted fragments is called a
generator or a (multi-)staged program, and the program that will be generated is called the
product or the generated program.

Some of the terms are illustrated in Figure 1.3.

7

In this dissertation we often write Jumbo code. However, to reduce notational clutter,
we use a simpler syntax than Jumbo’s. In particular, we have the following differences:

• We use the quotation syntax 〈...〉 instead of Jumbo’s $<...>$.

• Jumbo uses labeled antiquotations to denote the syntactic category a hole represents,
such as 8Expr(...) and 8Stmt(...). Jumbo requires this information for its parser to work1.
We simply use the plain antiquotation 8(...).

• Jumbo provides antiquotation syntax to “lift” primitive values and strings to the next
level: 8Int(...), 8Char(...), etc. These are similar to the cross-stage-persistence operator
(%) in MetaML [TS00, TN03], and analogous to the lift(...) operator in λopenpoly [KYC06],
which raises a value to the next level by quoting it. We use lift(...). In this notation,
Jumbo’s 8Int(...) becomes equivalent to 8(lift(...)).

Based on when the product is run, there are two kinds of program generation: static (or
compile-time) and dynamic (or runtime). In static generation, the generator yields the prod-
uct, and then the product is executed in a totally new runtime environment as a separate
process. It may be shipped to a remote client to be executed there. In dynamic generation
the product is directly brought into the executing process of the generator. The generator
can then directly refer to the result of executing the product; this way, runtime inputs of
the program can be taken into consideration for optimization. An illustration of the two
kinds of program generation is given in Figure 1.4.

Program generation systems that facilitate dynamic generation typically provide a con-
struct or an operator to run a code value at runtime. We will use run(·), unless otherwise
noted.

There are several terms used for “program generation”. We will interchangeably use
these terms to avoid repetition. These terms include multi-stage programming, multi-level
programming, meta-programming, code generation, and runtime program generation2 if dynamic
generation is to be emphasized.

An important distinction is made in program generation between fragments that con-
tain free variables and fragments that do not. The former is referred as open code; the latter
is closed code. There is, an important difference in the notion of “open code” in the context
of PG by partial evaluation and PG by program construction. Even though many PG by
partial evaluation systems allow fragments to have free variables, these variables have to
be bound by an outer binding — otherwise the “erasure property” cannot be satisfied. Sys-
tems following the PG by program construction philosophy do not have this requirement;

1MetaAspectJ [ZHS04] uses a more complicated parser with inference to automatically infer these cate-
gories when possible.

2A common term for this is “runtime code generation” (RTCG). We prefer to use “runtime program gener-
ation” (RTPG) instead to emphasize that the generation process is controlled by the programmer by defining
pieces of source program, as opposed to the more low-level and machine-directed feeling implied by the term
“code generation” [Kam04, footnote 2].

8

ProductGenerator

Compilation Environment

ship
Product Some result

Runtime Environment

generate produce

Generator Product
generate

Some result

use produce

Runtime Environment

Dynamic Generation:

Static Generation:

Figure 1.4: High-level illustration of static and dynamic generation.

Acceptable in
Example program Classification PG by partial PG by program

evaluation construction
〈λx.x+ 1〉 closed Yes Yes
〈λx. 8(〈x+ 1〉)〉 open Yes Yes
(λc.〈λx. 8(c)〉)〈x+ 1〉 freely-open No Yes

Table 1.1: Distinguishing between closed, open, and freely-open code.

a fragment that contains free variables that are not in the scope of any binding is accept-
able to these PG systems. Free variables get bound when the fragment is plugged inside
a fragment that provides the bindings for those variables. To distinguish between these
two interpretations of “open”, we use the term open code to refer to the meaning in the
context of PG by partial evaluation: free variables inside fragments are allowed but they
have to be inside the scope of an outer binding; and the term freely-open code to refer to the
meaning in the context of PG by program construction: free variables inside fragments are
allowed even if they are not in the scope of a binding. A summary of this distinction with
examples is given in Table 1.1.

1.5 Brief History of Program Generation

PG by partial evaluation

The roots of “PG by partial evaluation” go back to Futamura’s work from 1971 where he
proposes partially evaluating an interpreter to obtain a compiler [Fut99]. Even though the
idea has been known, it took almost fifteen years to put it into practice [JSS85]. Early lan-

9

guages that were used for partial evaluation had two levels. Theoretical aspects of these
languages, including their denotational semantics and analysis using abstract interpreta-
tion are studied in detail by Nielson and Nielson [NN92]. Glück and Jørgensen generalized
the two-level approach to multi-levels and showed that significant efficiency gains can be
obtained [GJ95, GJ97]. Their technique addresses the problems of partial evaluation re-
lated to code-size expansion and the cost of generation. Besides practical aspects of partial
evaluation, checking type-safety of partial evaluators has been a problem long-studied by
researchers. Davies and Pfenning addressed this problem and generalized Nielson and
Nielson’s two-level typing to multi-levels. They define two languages, λ� [DP96] and λ©

[Dav96], where binding times (i.e. when an expression should be evaluated) are explicitly
specified by means of annotations as opposed to the previous papers’ implicit annotations.
λ� only allows declaration of closed code via annotations, and provides a run() operator —
which did not exist in Nielson and Nielson’s or Glück and Jørgensen’s languages — to
evaluate code fragments. λ© allows definition of open code —code with free variables—
but does not include the construct of run() in order to preserve soundness.

Working with closed code only is not practical and run() is a very valuable feature.
Hence, there has been a significant amount of work in the literature to combine run() with
open code. Taha and Sheard’s MetaML [TS00, TS97] is such a language with a sophisti-
cated type system that refines the notion of open code. However, MetaML has the scope
extrusion problem, where the type system fails to detect evaluation of open code fragments.
A typical example is 〈λx. 8(run〈x〉)〉. An Idealized ML (AIM) [MTBS99] addresses this prob-
lem by splitting the types for codes into two —open and closed— and only allows running
code with closed type. This approach is further extended in Mini-MLBN

ref [CMT00] to handle
references as well. To avoid scope extrusion, both AIM and Mini-MLBN

ref make conservative
assumptions and may reject code that would otherwise be safe to execute3.

Nanevski [Nan02], as opposed to MetaML’s approach of refining the notion of open
code, relaxed the definition of closed code to allow free variable inside quotations while
still providing run(). In his system, free variables of a fragment are represented with a new
semantic category, names. His type system allows fragments with free variables to be used
only for filling in holes — they cannot be run.

Taha and Nielsen defined environment classifiers to overcome the restrictions of AIM
about having closed code [TN03]. In their language, called λα, code types are annotated
with labels that specify the environment they belong to. These decorations keep track of
free variables that occur in code fragments. Calcagno, Moggi and Taha further developed
a type inference algorithm for a slightly limited but still expressive version of λα [CMT04]
to eliminate the need to enter type annotations manually.

Yuse and Igarashi developed λ©� [YI06] as a language that combines features from
λ� and λ©. Using this language they showed the close relation of program generation

3See [CX03, §6] for an example.

10

constructs and linear-temporal logic.
Kameyama, Kiselyov and Shan proposed a transformation from the two-stage version

version of λα to System F with tuples [KKcS08]. This allows for type-checking a staged
expression using System F. A similar idea was employed by Chen and Xi [CX03], where
they translate quoted code values to first-order abstract syntax.

Attardi, Cisternino and Kennedy [ACK03] took a detour from the languages of the
formal world, and added partial evaluation facilities to C#.

PG by program construction

“PG by program construction” has had more diversity than PG by partial evaluation in the
styles and contexts of the PG systems designed. The oldest program construction facility is
the quasiquotations in LISP. According to Bawden [Baw99], the history of quasiquotations
goes as far back as 1940s, and integration and popular use of program generation via a
quotation/antiquotation mechanism in LISP started in the 1970s.

Jumbo [KCJ03, Cla04] is an extension of Java with program generation facilities. It can
compile Java 1.4. Jumbo provides a very high degree of generality. Almost any parseable
fragment can be quoted/antiquoted.

MetaAspectJ [ZHS04] is another system where the meta-language is Java. It outputs
AspectJ [Asp] source code. MetaAspectJ is similar to Jumbo in the sense that it supports
high generality. It has a sophisticated parser that can infer syntactic categories when pos-
sible to eliminate the need to enter these categories manually.

The type-checking problem in the context of “PG by program construction” has gained
attention more recently than PG by partial evaluation. DynJava [OMY01] is a program
generation system for Java, where code values have to be explicitly decorated with type
information. Cyclone [SGM+03] employs a template-based approach, where programs
are constructed by combining pre-compiled fragments. Code fragments are not first-class
citizens; all the code generation occurs local to a generator function. This reduces flexibility
and generality, but also helps to make better approximations about the generated program
by taking the control flow of the generator into account. Tempo [CLM04] and 8C [EHK96,
PHEK99] are other examples to template-based program generation.

Rhiger defined a sound type system where a code value is given a type that contains
an environment to carry the types of the free variables occurring in the code [Rhi05].
Kim, Yi and Calcagno improved this type system by extending it with references, let-
polymorphism, and hygienic variables [KYC06]. They also gave a principal type inference
algorithm. In Chapter 5, we use their type system as a starting point.

There are other program generation systems that are motivated by various needs and
ideas. Huang, Zook and Smaragdakis’s SafeGen [HZS05] has a type system that is de-
signed to detect whether a variable declared in a code fragment is available for use in

11

another fragment. With this motivation, it allows the programmer to define first-order
logic formulas using built-in predicates and functions. A logical property based on these
formulas is then fed into a theorem prover. If the property is satisfiable, SafeGen concludes
that the generated program will be type safe. In SafeGen, code fragments are not first-class
citizens. Developed by the same authors, MJ [HZS07b] and cJ [HZS07a] are two languages
where code fragments are included or excluded from the produced code according to pred-
icates specified based on reflective properties. Roughly, MJ provides a “for” construct to
iterate over the members of a class, and cJ provides an “if” construct to emit code condi-
tionally. They are designed for Java-like languages. Code fragments are class-members
— either fields or methods. CTR [FCL06] is another system that uses reflection to collect
properties of existing classes, and uses these properties to generate code.

Kästner, Apel and Kuhlemann [KAK08] approached program generation from a dif-
ferent perspective. Instead of composing fragments, they take out fragments from existing
code. They developed a system, CIDE, in which fragments can be marked with color
codes. Color annotations are used as a mask to retain or exclude code fragments.

1.6 Outline of the Dissertation

Chapters 2 through 4 discuss techniques addressing the first problem of PG: the cost of
generation. In Chapter 2, we present an empirical study showing that the idea of just-in-
time generation effectively avoids unnecessary program generation. We do this experi-
ment in the context of marshalling. In Chapter 3 we apply source-level transformations on
program generators to reduce runtime generation cost. In Chapter 4 we present a frame-
work that naturally leads to staging of dataflow analyses. We show how this technique
reduces the runtime cost by performing a portion of the generated program’s analysis at
compile time.

We focus on the second problem of program generation, namely the type-safety of the
generated program, in Chapter 5. This chapter shows that the problem can be effectively
addressed using record calculus.

We give our conclusions and discuss future research ideas in Chapter 6. The proofs of
key lemmas and theorems are given in the Appendix.

12

Chapter 2

Just-in-time Program Generation

Runtime program generation (RTPG) allows for producing at runtime an efficient version
of a program that is specialized according to runtime parameters. It is typically the case
that the generated program has to be executed often to compensate its generation cost. If
this cannot be satisfied, the break-even point cannot be reached, which means that RTPG
actually slows down the application instead of speeding it up. This is the first problem of
program generation we listed in Chapter 1. There are two main approaches one can take
to address this problem:

• The specialized program should not be generated if it cannot pay-off its generation
cost.

• The cost of runtime generation should be reduced so that a specialized program
reaches its break-even point after fewer executions.

In this chapter we empirically investigate the first approach. In particular, we apply the
speculative idea of just-in-time compilation: if a case has been seen several times, it is
likely that the same case will appear several more times in the future. Using this heuristic,
we avoid specialization for a particular case unless it is likely that we will face the same
case many times in the future. We perform our experiment in the context of marshalling.

Marshalling is the term used for saving the internal data of an application in an exter-
nal form. Once marshalled, objects can be passed to other applications. Java RMI (remote
method invocation) and CORBA are examples of systems which marshal data for trans-
mission to remote machines. Another term for marshalling is serialization. The reverse
process is called unmarshalling. Serialization generally involves writing large amounts of
data, and so is often a performance bottleneck. (According to [NPH99], Java serializa-
tion accounts for 25–65% of a remote method invocation.) It can be heavily optimized for
any particular type of data. However, optimizing a general-purpose marshaller is difficult
because the format of the data to be marshalled is not known at compile-time. Such mar-
shallers are guided by a description of the data that becomes available only at run-time; it
is provided either by the client of the marshalling code, or, as in Java, by the language’s re-
flection mechanism. These reasons make marshalling a natural fit as an RTPG application.

13

In this chapter, we apply RTPG to the problem of optimizing marshalling in Java
[MvNV+01, VP03, vNMW+05] using Jumbo [KCJ03, Cla04, Kam03]. We base our im-
plementation on the serializer found in Kaffe [Kaf]. We first investigate marshalling both
homogeneous and heterogenous data using specialized serializers but without any just-in-
time generation. We then experiment with just-in-time generation using different thresh-
old values. Our empirical findings in this chapter give the following results:

• RTPG is an effective way to achieve significant speedup in marshalling.

• Just-in-time program generation successfully reduces the cost of runtime generation
by avoiding unneeded generation.

• The overhead of using just-in-time generation is negligible.

This chapter is organized as follows: In Section 2.1, we discuss marshalling in Java in
more detail and give some ideas about where RTPG might help. Section 2.2 shows how
Jumbo can be used to implement the suggestions made in Section 2.1. Section 2.3 gives per-
formance comparisons between serialization with and without RTPG. We marshal large,
homogeneous and near-homogeneous collections, and heterogeneous collections. In Sec-
tion 2.4, we discuss usage of just-in-time program generation to reduce the cost of run-time
compilation for heterogeneous data as well as its effects on homogeneous data serializa-
tion. In Section 2.5, we discuss how our technique applies to Sun’s implementation of
serialization. Finally, Section 2.6 reviews related work and Section 2.7 concludes this chap-
ter.

The work presented in this chapter has been published in GPCE ’05 [AJKC05].

2.1 Marshalling in Java

Java provides a simple API for serialization. A Java programmer doesn’t need to write any
serialization code, but must simply declare her classes to implement the marker interface
java.io.Serializable. If a class implements this interface, an instance can be marshalled by
passing it to java.io.ObjectOutputStream’s (OOS) writeObject() method.

Sun provides a specification of serialization [Javc], and an implementation. However,
that implementation uses native methods, written in C/C++, to gain efficiency. Therefore,
it is not appropriate for our experiment. An implementation in pure Java1 is provided by
Kaffe[Kaf]; we start our study there.

Throughout this chapter we refer to Sun’s and Kaffe’s implementation as Sun OOS and
Kaffe OOS, respectively. The implementation for marshalling which uses RTPG is referred

1Actually there is one call to a native method, to test whether a class has a static initializer. This test is not
available in the reflection API [Kaf].

14

wri teObjec t (ob j) { // method in Kaffe OOS
i f obj = null {

writeNull ;
} e lse i f obj was already written { // look up the object in the hashtable

write object handle
} e lse i f obj is an instance of Class or String {

write obj according to the specification for that particular case
} e lse i f obj is an Array {

foreach element i in obj
wr i teObjec t (i) ; // a recursive call

} e lse i f obj is an instance of ClassDescriptor {
w r i t e C l a s s D e s c r i p t o r (ob j) ;

} e lse {
// recursive call to serialize class descriptor
wri teObjec t (c l a s s D e s c r i p t o r of ob j) ;

// then write contents of the object
i f obj is Serializable {

foreach c l a s s D e s c r i p t o r in the class hierarchy of obj
foreach f i e l d in c l a s s D e s c r i p t o r

i f f i e l d is primitive
w r i t e P r i m i t i v e (f i e l d) ;

e lse
wri teObjec t (f i e l d) ; // recursive call

} e lse { throw Exception (“obj is not serializable”) ; }
}

}

Figure 2.1: The pseudo code that outlines Kaffe OOS’s writeObject() method.

as Jumbo OOS. (In fact there are two versions of Jumbo OOS, one based on Kaffe’s im-
plementation and the other based on Sun’s implementation, but it will be clear from the
context to which one we are referring.) When it doesn’t matter which OOS we are referring
to, we just say OOS.

We now explain Java serialization in detail, to highlight the places that can be op-
timized by RTPG. The serialization format is roughly as follows: For each object, first
write a descriptor for its class and then write the object’s fields; primitive fields are writ-
ten directly, and object fields are written recursively using the same format. To prevent
outputting multiple copies of class descriptors or objects – and to avoid infinite loops –
each class and object is assigned an id number, or handle; every class and object written is
stored in a hashtable the first time it is seen, and only its handle is output on subsequent
sightings. The pseudo code in Figure 2.1 outlines Kaffe OOS’s writeObject() method.

To summarize, each object is passed through a set of checks: Is the object null? Was it
already written to the stream? Is it an array? Was its class descriptor already written? Is
it Serializable? Finally, for each class descriptor in the inheritance hierarchy of the object,
we find the fields of that class. For each field, if it is primitive, we write the actual value

15

1 wri teObjec t (ob j) { // method in Jumbo OOS
2 i f obj = null {
3 writeNull ;
4 } e lse i f obj was already written { // look up the object in the hashtable
5 write object handle
6 } e lse {
7 // look for specialized marshaller in the hashtable
8 marshal ler = getMarshal lerFor (c l a s s of ob j) ;
9 i f marshal ler != null { // marshaller is found

10 marshal ler . wri te (ob j) ;
11 } e lse i f obj is an instance of Class or String {
12 // ... as in Figure 2.1
13
14 i f obj is Serializable {
15 // generate specialized marshaller and put it into hashtable
16 marshal ler = ProgGen . generateMarshal lerFor (ob j) ;
17 s t o r e M a r s h a l l e r (marshal ler) ;
18
19 // ... as in Figure 2.1
20 }
21 }
22 }
23 }

Figure 2.2: The pseudo code that outlines Jumbo OOS’s writeObject() method which uses
code generation to produce specialized marshallers.

in object directly to the stream. Otherwise, we marshal it by making a recursive call. Note
the use of reflection in the above, using class descriptors to discover the fields of the class.

We can optimize the serialization of objects of any class by generating a marshaller
specific to it when we first see an instance of that class. After the specialized marshaller is
generated, it can be used to serialize subsequent instances. With this alteration, the general
marshalling procedure becomes as in Figure 2.2. The difference of this method from that
given in Figure 2.1 is that it contains code for generating a specialized marshaller (lines
15-17), and also looking for and using generated marshallers (lines 7-10). As a technical
point, the reader will note that a specialized marshaller is not used for marshalling right
after it is generated. This is because the first time an object of some type is serialized, the
class descriptor of the object has to be fully written. In the subsequent marshallings of
objects of the same type, only the handle of the class descriptor is written. The generated
code writes only the handle of the class; by not using it the first time an object of some
type is written, we delegate the task of fully serializing the class descriptor to the generic
marshaller. This frees the generated marshaller from the burden of checking if the class
descriptor has been marshalled before.

16

2.2 Jumbo Code for Marshalling

In section 2.1, we showed how to make use of program generation in Jumbo OOS. In this
section we discuss how to write the specialized marshaller generator using Jumbo. We
have implemented a class, called ProgGen, which produces the marshallers. Before we
explain ProgGen, let’s look at the specialized marshaller that would be produced for the
following class, representing a linked-list node:

public c l a s s Node implements S e r i a l i z a b l e {
i n t data ;
Node next ;

}

Its generated marshaller would be:

public c l a s s NodeMarshaller implements Marshal ler {
JumboObjectOutputStream oos ;
F i e l d [] [] f i e l d s ;
i n t handle ;

public void i n i t (JumboObjectOutputStream oos ,
Class clazz , i n t handle) {

t h i s . oos = oos ;
t h i s . handle = handle ;
. . . // initialize f i e l d s [] [] here - omitted

}

public void write (DataOutput stream , Object ob j) {
// Write the OBJECT tag and class handle to the stream
// These magic numbers are defined in Sun’s specification
stream . wri teByte (1 1 5) ;
stream . wri teByte (1 1 3) ;
stream . w r i t e I n t (handle) ;
// write the data field
stream . w r i t e I n t (f i e l d s [0] [0] . g e t I n t (ob j)) ;
// send the next field to Jumbo OOS to have it serialized
oos . wr i teObjec t (f i e l d s [0] [1] . get (ob j)) ;

}
}

In the code above, fields[][] holds the field specifiers. The first index corresponds to the
position of the class descriptor in the hierarchy, and the second index corresponds to the
position of the field in that class descriptor.

Note that Jumbo generates byte code – not source code. We have given source code for
readability: the byte code generated is just what would be produced by a Java compiler if

17

presented with this source code.
When compared with the original OOS, the specialized marshaller is much simpler.

The next field of Node will also be serialized via the specialized marshaller (provided that
its run-time type is Node). The marshalling process will end when next is a null pointer or
an already serialized object.

ProgGen is obtained by a fairly straightforward massaging of the Kaffe OOS. Basically,
ProgGen and Kaffe OOS have code in one-to-one correspondence. However, ProgGen does
not write data into a stream like Kaffe OOS does. Instead, it builds the program fragment
which does that job. To illustrate, let’s examine the writeFields() method of Kaffe OOS. This
is the method that actually writes the fields of an object.

private void w r i t e F i e l d s (Object obj , ObjectStreamClass osc){
ObjectStreamFie ld [] f i e l d s = osc . f i e l d s ;
S t r i n g fieldName ;
Class type ;
for (i n t i = 0 ; i < f i e l d s . length ; i ++){

fieldName = f i e l d s [i] . getName () ;
type = f i e l d s [i] . getType () ;
i f (type == Boolean . TYPE)

realOutput . writeBoolean (
getBooleanFie ld (obj , osc . f o r C l a s s () , fieldName)) ;

e lse i f . . . // check for other primitive types
e lse // non-primitive

wri teObjec t (g e t O b j e c t F i e l d (obj , osc . f o r C l a s s () ,
fieldName , f i e l d s [i] . getTypeStr ing ())) ;

}
}

This method first gets all the fields in the class descriptor osc. Then, by using each
field’s descriptor, it fetches the value of the field from the object. This is done in getXField()

of OOS, where “X” is one of Boolean, Byte, Char, Double, Float, Int, Long, Short, and Object.
We show getIntField() below. The methods for other field types are very similar.

private i n t g e t I n t F i e l d (Object obj , Class klass , S t r i n g fname) {
F i e l d f = g e t F i e l d (klass , fname) ;
return f . g e t I n t (ob j) ;

}

The getField() method that is used above is implemented as follows (exception-handling
is omitted for clarity).

18

F i e l d g e t F i e l d (Class klass , S t r i n g name) {
f i n a l F i e l d f = k l a s s . ge tDec laredFie ld (name) ;
AccessContro l ler . doPrivi leged (new Pr iv i legedAct ion () {

public Object run () {
f . s e t A c c e s s i b l e (t rue) ;
return null ;

} }) ;
return f ;

}

This work is done for each object field, even if another object of that class was already
written. We should not have to find the field specifiers and field types each time, or set the
accessibility of the fields to true again and again. Instead we can find the field descriptors
once, set their accessibility, and generate code with these descriptors built-in:

private Code w r i t e F i e l d s (ObjectStreamClass desc , i n t h i e r) {
ObjectStreamFie ld [] f i e l d D e c l s = desc . f i e l d s ;
Code c = 〈 ; 〉 ;
for (i n t i = 0 ; i < f i e l d D e c l s . length ; i ++){

Class type = f i e l d D e c l s [i] . getType () ;
i f (type == Boolean . TYPE)

c = 〈 8 (c)
stream . writeBoolean (
f i e l d s [8 l i f t (h i e r)] [8 l i f t (i)] . getBoolean (ob j)) ;

〉 ;
e lse i f . . . // other p r i m i t i v e types
e lse // non−p r i m i t i v e type . wri te the f i e l d via Jumbo OOS

c = 〈 8 (c)
oos . wr i teObjec t (
f i e l d s [8 l i f t (h i e r)] [8 l i f t (i)] . get (ob j)) ;

〉 ;
}
return c ;

}

Note that the method above requires hier as an argument. It doesn’t need the Object

obj parameter anymore, in contrast to the implementation of writeFields in Kaffe OOS. The
code shows that if the field is non-primitive, it is passed to the Jumbo OOS to be written.
In fact, we keep a one-element cache in the specialized marshaller associated with each
non-primitive field; if the run-time type of the field is the same as the one in cache, we call
the associated specialized marshaller without passing the object to Jumbo OOS. This saves
us from the hashtable lookup that would occur in Jumbo OOS. If there is a cache miss, we
pass the object to Jumbo OOS, it performs a hashtable lookup, writes the object and then
we update the cache. We do not give this code for the sake of brevity. Our tests showed

19

that keeping this cache in practice brings neither a noticeable overhead nor a speedup.
Nevertheless, we opt to keep it in the code. We omit related benchmarking numbers.

After we have the methods that return code pieces to serialize an object, we need to
generate the init method2, which will set up the data in the generated marshaller. This
method is where the class handle is assigned to a data member of the serializer and where
the fields[][] matrix is set. Note that this happens only once per generated serializer. This
initializer method is constructed using code pieces from Kaffe OOS. Therefore writing this
method is again straightforward.

The generated marshallers implement an interface called Marshaller, which defines the
methods init and write. Interfaces, or abstract classes, are normally required in Java when
ordinary code is to call generated code [Cla04, Kam03, KCJ03].

2.3 Performance

When using RTPG, the cost of run-time program generation must be taken into account.
For this cost to pay off, we need to use the generated program a lot; that is, we need
to marshal a large data set. Still, the running time of the generated code — excluding
compile time — is a useful quantity to know, because it gives the upper limit of speed-up
(to which the actual speed-up will converge, if the generated program is used over and
over, as the cost of generation will become less and less significant). In this section, we
give the performance of specialized marshallers, both including and excluding the cost of
run-time compilation.

The performance of marshalling code is highly dependent upon the properties of the
data being marshalled. Furthermore, it is not clear what should count as a “realistic” work-
load for marshalling. Large data sets — which are the ones we most care about, since these
will be the most time-consuming to marshal — are likely to consist of large numbers of a
few kinds of objects; this would be characteristic of video or audio streams, for example.
On the other hand, most data in Java consists of objects of many different types. From
the point of view of run-time program generation, these two scenarios have very different
performance characteristics. Accordingly, we show benchmarks of both kinds. Specif-
ically, we start by marshalling large, homogeneous collections of a class called Dummy,
which has several fields. Then we test a linked-list class, and a class similar to Dummy, but
with fields which can contain either of two types of objects (one a subclass of the other).
After showing benchmarks for these homogeneous and near-homogeneous collections, we
discuss a non-homogeneous data set, containing objects of 66 different classes.

These benchmarks are run as follows: All the tests are executed on a Linux Debian,
2Java doesn’t provide the ability to pass arguments to the constructors of dynamically loaded classes, so

the class can only have a zero-argument constructor [Cla04, Java]. Thus we define a normal method, init, and
call it right after the object is created via the zero-argument constructor.

20

Object Bytes Jumbo Jumbo + Kaffe Kaffe Kaffe
Count written OOS compilation OOS Jumbo Jumbo+comp.

1000 30000 6.6 26.9 152.9 23.10 5.68
2000 60000 20.2 46.5 310.6 15.31 6.68
5000 150000 59.8 90.3 788.1 13.17 8.73

10000 300000 121.1 140.6 1545.0 12.75 10.99
15000 450000 179.4 199.0 2349.1 13.08 11.80
20000 600000 257.8 277.0 3121.4 12.10 11.27

Table 2.1: Performance table for marshalling the Dummy class. Crossover point is 250
objects. Timings are in milliseconds.

AMD Athlon XP 1700+ machine with 900MB memory. The timings are in milliseconds.
We use HotSpot (in the default client setting) as the Java Virtual Machine, which is the
most popular JVM. When running a test, we first marshal a substantial number of objects
to give the virtual machine time to warm up. During this time, the JVM loads classes and
performs just-in-time optimization. Our experience has shown that this approach gives
more consistent results. After warming up the JVM, we begin the test. We create a certain
number of serializable objects, then pass the objects to the OOS’s and measure the time
spent. We call this a benchmark. After a benchmark is done, we discard the objects and
OOS’s —together with the hashtables they contain— and run another benchmark with a
different number of objects. Thus, each benchmark begins with the Jumbo API and OOS’s
loaded and optimized, the specialized marshallers not generated. In the tables below,
each row represents a benchmark. During our tests, we never write objects to files, they
are always written to in-memory streams.

2.3.1 Homogeneous and Near-homogeneous Data

Table 2.1 gives the results for marshalling objects of the Dummy class:

public c l a s s Dummy implements S e r i a l i z a b l e {
Simple simple1 ;
Simple simple2 ;
i n t id ;

}

public c l a s s Simple implements S e r i a l i z a b l e {
i n t id ;

}

The “Jumbo OOS” column does not include the run-time compilation cost, but “Jumbo
+ compilation” does. We have shown timings for marshalling 1000 to 20000 objects. The
“Bytes written” column gives the size of the data written to the output stream. Jumbo
OOS is at least 12 times faster than Kaffe OOS, when run-time generation cost is not in-

21

Number Bytes Jumbo Jumbo + Kaffe Kaffe Kaffe
of lists written OOS compilation OOS Jumbo Jumbo+comp.

10 19363 6.7 48.9 145.0 21.42 2.96
50 84479 45.1 71.9 723.9 16.04 10.06

100 186877 107.7 131.3 1496.6 13.88 11.39
150 246075 115.8 135.4 2145.9 18.52 15.84
200 352161 144.6 174.4 2896.0 20.02 16.60

Table 2.2: Performance table for linked-lists of Dummy objects. Each list has fifty nodes.
Timings are in milliseconds.

Number Bytes Jumbo Jumbo + Kaffe Kaffe Kaffe
of objects written OOS compilation OOS Jumbo Jumbo+comp.

1000 30136 9.9 55.3 154.7 15.55 2.80
2000 73048 26.0 64.2 343.7 13.18 5.35
5000 174812 76.0 103.5 852.2 11.19 8.23

10000 334320 136.3 167.2 1637.0 12.00 9.79
15000 494312 196.9 217.0 2463.6 12.51 11.35

Table 2.3: Performance table for Dummy objects, allowing the fields to be either Simple or
SimpleChild. Crossover point is 280 objects. Timings are in milliseconds.

cluded.The crossover points we give were determined by direct observation, not by inter-
polation from the presented data. We have omitted the timings for small data sets.

In our next test, we marshal linked-lists of Dummy nodes (same as Node class, but with
data of type Dummy). Each linked list has 50 nodes. Jumbo OOS is up to 20 times faster
than Kaffe OOS in this test. (See Table 2.2.)

Inheritance affects the cost of marshalling because it requires that we test the type of
each field and not simply call the marshaller for the declared type of the field3. In the
previous benchmarks, we did not marshal any objects whose classes had subclasses; thus,
the runtime type of every marshalled object was the same as its compile-time type, and,
in particular, the one-element cache always held the right class. For the next benchmark
(Table 2.3), we marshal Dummy objects, but allow the fields of type Simple to contain either a
Simple or a SimpleChild object, determined randomly. The SimpleChild class is shown below.

public c l a s s SimpleChild extends Simple{
i n t otherId ;

}

3Remember that to eliminate some hashtable lookups, we associate a one-element cache with each field.
See Section 2.2.

22

Number Bytes Jumbo Jumbo + Kaffe Kaffe Kaffe
of objects written OOS compilation OOS Jumbo Jumbo+comp.

13210 128140 76.5 1504.1 1830.0 23.92 1.22
39630 372578 239.5 1690.9 5486.0 22.90 3.24
66050 617016 368.2 1837.9 9248.0 25.11 5.03
92470 861454 524.3 1899.5 12789.2 24.39 6.73

118890 1105892 657.4 2065.5 16499.7 25.09 7.99

Table 2.4: Performance table for heterogeneous data. The objects come from a total of 66
classes. Timings are in milliseconds.

2.3.2 Non-homogeneous Data

Data commonly consist of many objects of a variety of classes. This has a significant effect
on the performance of our code because it implies a lot more classes being generated and
therefore a lot more program generation time. In this section we examine the behaviour of
Jumbo OOS on such data.

For this purpose, we serialize Code objects. Code is a Jumbo class that represents the
partially compiled version of a program fragment. When it receives information about
the usage context of the fragment it represents, it outputs the virtual machine code corre-
sponding to the fragment. A Code object has a tree-like structure where the subtrees are
the Code objects that represent subfragments. In total, the Code objects indirectly touch
13210 objects, from 66 classes; 127 kilobytes were written to the stream. The timings are
given in Table 2.4. We start by marshalling just one Code object, and increment by two on
each row (i.e. marshal the object two more times than on the previous row). In this test,
Jumbo OOS is faster than Kaffe OOS by approximately 25 times, when the cost of program
generation is not counted. However, when code generation time is counted, the improve-
ment relative to the Kaffe OOS goes down to about 1.22 in the worst case. The speed-up
will approach 25 as the size of the data set increases, but it only achieves an eight-fold
increase on the largest data set we tried.

The generated code shows much less speed-up than for the homogeneous case. Recall
that the crossover point when marshalling Dummy objects was about 250 objects; now it
is about 10500 objects. The problem, of course, is that we are generating code for many
classes that have a small number of instances. We discuss this issue in the next section.

2.4 Just-in-time Program Generation

When marshalling heterogeneous data like Code, many classes are represented by only a
few objects, and the cost of generating the marshalling code for those classes is not repaid.
Our analysis of the test with heterogeneous data showed that only 14 out of the 66 classes
allocated more than 250 objects. (Recall that, for Dummy objects, the crossover point was

23

Threshold Number Jumbo + Kaffe Kaffe
of objects compilation OOS Jumbo+comp.

20 13210 659.5 1861.2 2.82
40 13210 576.1 1854.4 3.21
60 13210 527.6 1871.3 3.54
80 13210 521.1 1871.8 3.59

100 13210 482.9 1872.0 3.87
120 13210 525.1 1869.8 3.56
140 13210 515.6 1869.9 3.62
160 13210 541.7 1905.7 3.51
180 13210 551.7 1855.4 3.36
200 13210 550.8 1869.8 3.39
240 13210 562.3 1869.5 3.32
300 13210 592.8 1871.0 3.15
400 13210 706.5 1868.1 2.64

Table 2.5: Performance comparison when threshold value is used. Marshallers are gener-
ated only for classes known beforehand to have more than the previously given threshold
number of instances. Timings are in milliseconds.

250 objects.) Clearly, the remaining 52 classes will create a significant drag on the overall
marshalling process.

To test the hypothesis that avoiding code generation for classes with few objects will
yield better results, we ran a set of tests using varying threshold values: For each threshold
value, we generated code only for those classes which produce at least that many objects
in the benchmark. This depends upon our having counted the number of objects for each
class beforehand, so this does not represent a viable implementation strategy; we are only
attempting to prove our hypothesis. We see in Table 2.5 that at a threshold value of 100, the
generated code produces nearly a four times speedup over Kaffe OOS (compared to 1.22
fold speedup when all marshallers are generated). Note that, even at the optimal threshold
value of 100, the speedup we can obtain in this situation is much less than we did with the
homogeneous collections, because (1) the cost of run-time compilation is great due to the
large number of classes and (2) many objects are marshalled by non-generated code.

In this experiment, the number of instances of each class was known prior to mar-
shalling. What shall we do when we do not know that? The situation is similar to JIT
compilation [Adv]. HotSpot keeps track of method calls and when a method is called a
certain number of times, it is optimized.

Following this idea, our second version of the marshaller counts the number of objects
marshalled. Once it has reached the threshold value, it generates specialized code and
uses that for subsequent objects of the class. Note that this version will be slower than
the previous one, because all objects marshalled prior to reaching the threshold value are
marshalled by non-generated code. The results are shown in Table 2.6. Here, we do not

24

Threshold Number Jumbo + Kaffe Kaffe
of objects compilation OOS Jumbo+comp.

20 13210 920.3 1851.6 2.01
40 13210 781.3 1834.6 2.34
60 13210 669.5 1851.0 2.76
80 13210 634.5 1848.5 2.91

100 13210 585.6 1854.4 3.16
120 13210 615.3 1851.0 3.00
140 13210 594.8 1847.9 3.10
160 13210 604.9 1907.9 3.15
180 13210 606.9 1832.7 3.01
200 13210 610.7 1845.6 3.02
240 13210 611.4 1847.3 3.02
300 13210 629.8 1851.0 2.93
400 13210 732.5 1852.9 2.52

Table 2.6: Marshalling 13210 objects, with different threshold values. Number of instances
of classes is not known beforehand. Timings are in milliseconds.

Number Bytes Jumbo + Kaffe Kaffe
of objects written compilation OOS Jumbo+comp.

1000 30000 37.0 151.7 4.09
2000 60000 51.9 316.1 6.08
5000 150000 90.2 802.6 8.89

10000 300000 149.9 1592.3 10.61
15000 450000 212.0 2395.2 11.29

Table 2.7: Performance when marshalling Dummy objects with threshold value of 100. Tim-
ings are in milliseconds.

reach the previous speedup factor, but instead reach 3.16 (again with 100 as the threshold).
Our final version of the marshaller uses the just-in-time idea with a threshold value of

100. We ask our last question: Does this version extract a significant penalty when mar-
shalling homogeneous data? Table 2.7 shows the timings for this version of the marshaller,
when marshalling collections of Dummy objects. This table is comparable to Table 2.1, and
it shows that the JIT approach has almost no effect on performance for large homogeneous
data sets.

It should be noted that if we have the opportunity to do off-line program generation,
using specialized marshallers is the obvious decision, because we wouldn’t have the run-
time compilation cost. In this case, we would generate the specialized marshallers once
before run-time and then at run-time we’d get the benefit of using them. Unfortunately
off-line compilation is not always possible.

25

Number Bytes Jumbo + Sun Jumbo+comp.
of objects written compilation OOS Sun

1000 30000 45.1 11.1 4.06
2000 60000 55.9 15.8 3.51
5000 150000 79.1 42.3 1.86

10000 300000 123.3 85.1 1.44
15000 450000 156.2 131.8 1.18
20000 600000 201.5 187.5 1.07

Table 2.8: Performance of Jumbo OOS vs. Sun OOS. Marshalling Dummy objects, program
generation cost included, threshold value 100, incorporating lightweight hashtable. Tim-
ings are in milliseconds.

2.5 Sun’s ObjectOutputStream

The aim of this chapter is to show that RTPG using Jumbo is an easy and effective way to
achieve higher performance. In this, we have reached the end of our exposition. However,
there are some loose ends to tie up. In particular, the reader may wonder how our code
stacks up against the marshalling code that is delivered with HotSpot, which, as we have
mentioned, uses unsafe, native code. (To be more specific, it uses the sun.misc.Unsafe class
to access arbitrary memory addresses.) Another natural question is whether the kind of
program generation we have done can be applied to the HotSpot code.

In Table 2.8, we show the result of a test marshalling Dummy objects again, comparing
Jumbo OOS (with threshold value of 100) to Sun OOS. To be fair to Jumbo OOS, we note
that, in addition to using native methods, Sun OOS uses a custom, lightweight hashtable
implementation, which is considerably more efficient than the standard implementation
in this context. We incorporated this hashtable implementation into our code, too. In this
test, Jumbo OOS is about 4 times slower than the Sun OOS on the small data set with 1000
objects, and only 7% slower than Sun OOS on the largest data set with 20,000 objects.

So, to summarize, while remaining entirely in the realm of verifiable Java code, we
have obtained an implementation that can marshal large data sets nearly as fast as Sun’s
implementation.

Finally, we have experimented with applying RTPG to Sun OOS. We implemented
Jumbo OOS and ProgGen using the same principles we discussed in Section 2.1 and 2.2,
but based on Sun OOS instead of Kaffe OOS. (Although Sun OOS achieves its speed from
using native methods in critical places, much of it is written in Java.) Comparing this
version of Jumbo OOS to Sun OOS, we achieve speedups as high as 30% when run-time
compilation cost is excluded. However, the crossover point is around 12,000 objects for
homogeneous data sets. In conclusion, with program generation, we are able to perform
very close to the code with native methods while staying in the realm of managed code.
We are also able to improve the performance of code that contains native methods.

26

2.6 Related Work

Most work on optimizing marshalling is not directly comparable to ours in that the goal
is not to optimize the existing, generic marshaller, but to create more efficient marshallers
for special cases. For example, Nester et al. [NPH99] require that classes that are to be
marshalled must provide their own writeObject method, and also depart from the Sun seri-
alization format in other ways which are valid in their environment, but not in general.

Manta [MvNV+01] and Ibis [vNMW+05] both use run-time code generation to pro-
duce specialized marshallers at run time. Their methods are different from ours: In Manta,
a compiler is invoked at run time (again requiring that all computers have a specified set-
up in order to use their system); in Ibis, a specially built program generator producing
JVM code has been written just to generate serializers.

Serialization is used as an example in two papers on RTPG systems that we know of.
Neverov and Roe give the definition of a multi-stage language called Metaphor [NR04],
in which, in principle, serialization code can be generated in a type-safe manner. However,
they do not tackle the entire Java serialization specification, and it is not clear whether
their techniques could scale to this case. Consel et al. [CLM04] discuss marshalling for C,
using the C-based Tempo system.

2.7 Conclusions

In this chapter we have applied runtime program generation (RTPG) to marshalling. We
have shown how to generate marshallers specialized for specific types of objects. We have
performed experiments with marshalling homogeneous, near-homogeneous and hetero-
geneous data. Serialization of heterogeneous data illustrated a problem of RTPG. Namely,
some generated programs cannot compensate for their generation costs. We have shown
that just-in-time generation can successfully help avoid generation of programs that are
not likely to pay-off. Our empirical results also suggest that just-in-time generation does
not pose a significant overhead on serialization of homogeneous data. Hence, we conclude
that just-in-time generation can be considered as an effective method to reduce the cost of
runtime generation.

We have based our implementation on the serialization class provided by the Kaffe
JVM. We have obtained significant speedup when compared to this code. For some data
sets we nearly reached the speed of Sun’s object serializer, which extensively uses unsafe
native code, while staying entirely in the realm of verifiable byte code.

In all of our experiments, we serialized objects into in-memory streams. However, it is
common in applications that do marshalling to have I/O operations which may dominate
the time spent. It would therefore be interesting to experiment with the ideas we discussed
here in the context of CPU-bound applications. Computations where availability of some

27

runtime information allows getting rid of condition checks, jumps, and memory accesses,
similar to the case with marshalling, can potentially greatly benefit from PG. We plan to
look for such applications in the domains such as scientific computing and graphics.

28

Chapter 3

Source-level Rewriting of Staged
Programs

In this chapter we again focus on the first challenge of program generation: the cost of
generation. Chapter 2 took the approach of avoiding unnecessary runtime compilation for
this problem. We now investigate how we can reduce the cost of generation.

We start by making an observation. In program generation, fragments are composed
at runtime to form the final program, which is then compiled for execution. Even though
we cannot know the generated program at compile-time, we do have access to individual
fragments. This brings the question: Can we take advantage of these fragments to opti-
mize the compilation process of the generated program? Consider the case of a quoted
class definition with a hole where a method should go. We can possibly compile the ex-
isting methods of the class at compile time, and then combine the result at runtime with
the missing method to get the entire class compiled. In its essence this is a partial eval-
uation problem. The compiler has two inputs — the quoted class and the method — of
which only the class is known at compile time. It is quite plausible that we might apply
the compiler to the class and obtain a “residual compiler” that will receive the method
and complete the compilation at run time. We can take a symmetric look at the problem
as well: apply the compiler to the method to obtain a residual compiler, which will later
receive the surrounding context of the method to finish up the compilation. However, par-
tially evaluating an ordinary compiler is problematic because (1) it expects a compilation
unit (e.g. a class or an interface in Java); anything smaller would be meaningless to the
compiler; (2) even when the compiler is fed with a compilation unit (with holes), it would
be practically very difficult, if not impossible, to partially evaluate it. Recall that we are
advocating generality of program generation. Putting restrictions may provide opportu-
nities for optimization, however our goal is to preserve generality of program generation.
To overcome these problems, we take advantage of Jumbo’s compositional structure. Com-
positionality means that even the smallest piece of syntax is meaningful. We take these
“meanings” and apply source-level transformations to optimize them.

Our contributions in this chapter are two-fold:

• We show that source-level transformations applied at compile-time help to optimize
runtime compilation.

• We show why restructuring the compiler into a more functional (i.e. side-effect free)

29

style makes it more susceptible to transformations.

The chapter is organized as follows: Section 3.1 explains in more detail what compo-
sitional compilation means. This is followed in Section 3.2 by the use of compositionality
in Jumbo. Section 3.3 describes the analyses and transformations we have implemented
and Section 3.4 gives examples and timing results. In Section 3.5, we discuss some of the
difficulties presented by Java which have limited our success in optimization. Section 3.6
briefly discusses related work. We finally give our conclusions in Section 3.7.

A version of the work presented in this chapter has been published in GPCE ’05 [KAM05].

3.1 Compositional Compilation

Restricting generality of program generation may help a PG system to promote safety and
efficiency at the expense of constraining programmer’s ability to structure the program-
generating process. We advocate generality. Consider the following cases. Is it legal to fill
the hole in 〈int m () {8(hole) return x;}〉 with the declaration 〈int x=10;〉? How about filling
〈if (y==x) 8(hole) else ... 〉 with 〈break L;〉? Is the position of the hole in this fragment legal:
〈try { ... } catch 8(hole) { ... }〉? Can the hole in 〈8(hole) class C { ... }〉 be filled with 〈import

java.util.*;〉? We would like to have a system that gives the answer “yes” to all of these
questions. Jumbo is a program generation system that can do this.

This high degree of generality is achieved by using a compositional compiler that gives
a “meaning” to any node in the abstract syntax tree (AST) of a program. This provides the
ability to divide up the program into almost arbitrary fragments. It also makes it possible
to use the same compiler both for compile-time and runtime compilation; the back-end of
the compositional compiler serves as the code-generating engine for program generation.

In compositional compilation, the “meaning” given to a fragment is an intermediate
representation called Code [KCC00b]. The Code value of a compound fragment is a function
solely of the Code values of its subfragments. Filling in a hole is performed by placing the
Code value of a fragment inside another Code value. The compiler contains functions to
translate an AST to its Code value. Three examples are given below (the parameter flags

encodes the modifiers such as public, static, etc.):

Code makeIfThen (Code cond , Code truebranch)
Code makeVariable (i n t f l a g s , Type type , S t r i n g name)
Code makeClass (i n t f l a g s , S t r i n g name , S t r i n g supername ,

S t r i n g L i s t implementees , CodeList members)

This is the difference between a compositional and a conventional compilation struc-
ture: Instead of creating an AST and then generating machine code while traversing it,
the abstract syntax operators themselves are converted to code to compile that syntactic
construct. A question that may arise with this definition is how to analyze programs. Con-

30

verting a syntactic construct to not only a function that is going to produce the machine-
level code, but also to a function (or a collection of functions) that is going to produce the
analysis result overcomes this problem.

A preprocessing step translates quoted fragments to abstract syntax operators. For
example,

Code s a f e P o i n t e r (Code ptr , Code computation) {
return 〈 i f (8 (p t r) == null)

throw e r r o r () ;
e lse 8 (computation) 〉 ;

}

becomes (0 is the code for binary operator “==”)

Code s a f e P o i n t e r (Code ptr , Code computation) {
return makeStatements (

makeIfThenElse (
makeBinOp (0 , ptr , makeNullConstant ()) ,
makeThrow (makeSelf Invocat ion (“error” , new L i s t ())) ,
computation)) ;

}

This program is now statically compiled — that is, as an ordinary program. The calls
to the abstract syntax operations are part of the program and will be elaborated at run
time, after the holes have been filled in. Note that holes are handled with no special effort
— they are just expressions within a larger expression which do not happen to be explicit
calls to abstract syntax operations. In particular, at run time, Code values will be provided
for the arguments to safePointer, and a Code value that represents the if-statement with the
holes filled in will be returned. Eventually, this Code value will be placed inside the Code
value for a compilation unit, and be ready for the final step of compilation — generating
machine code (e.g. Java .class files containing JVM code). In Jumbo, the method void

generate(), provided as part of the Code value, performs this final step. Alternatively, Object

create(String classname) calls generate, and then loads the class file and returns an object of
the class. generate is for off-line program generation, and create is for run-time program
generation.

3.2 Structure of Jumbo

There are many choices for the Code type [KCC00a, KCC00b]. A naive version would use
AST’s as Code and generate would do all the work. Jumbo aims to leave as little work to
generate as possible. This is done by making each Code value a function taking the compi-
lation context (or “environment”) to JVM code. This is how compositionality is achieved
in defining abstract meanings of programs in denotational semantics [Sto77]. In Java, the

31

situation is a bit more complicated, but the idea follows in general. Code values are repre-
sented by objects having a single method, plus some additional information:

Code = ExportedDefinitions × (Environment→ ClosedCode)

ExportedDefinitions = (ClassInfo + MethodInfo + FieldInfo)

Environment = stack of (ClassInfo + MethodInfo + LocalInfo)

ClosedCode = JVM code × integer × integer × VarDecls × Value

The first component of Code is the declarations exported from the code fragment. The
second is the function we have been referring to above, which we call eval; it does the actual
translation to JVM code. ExportedDefinitions are the declarations that are in scope outside of
this fragment. Based on the exported declarations of a class’s members, the class can create
a fairly complete record of its contents, and that record (a ClassInfo) will be its exported
declaration. The eval method is given an environment containing all enclosing classes,
methods, and variables, and then generates code. The two integers in ClosedCode give the
next available location for local variables and the gensym seed, needed to assign unique
names to anonymous classes. The VarDecls value carries the local variable declarations of
that code fragment. The Value field gives the constant value of an expression, if it has one;
the Java language definition [GJS96, §15.27] requires this.

We believe this definition of Code is as compact as possible. We now explain briefly why
this definition works. In Java, names fall under two scope rules: names defined within
a method — local variables and inner classes — are in scope in statements that follow
the declaration (“left-to-right” scope), while names defined in a class — fields and inner
classes — are in scope everywhere within the class (with the exception that fields again
have a “left-to-right” scope among themselves and are not visible in their own initializers).
The exported definitions in Code are used to create the latter part of the environment; the
environment passed into the eval function of the methods of a class contains all the fields
and inner classes of that class. Names with left-to-right scope are passed along in the
environment from one statement to the next, using the VarDecls in ClosedCode. Thus, the
eval function for each statement gets an environment containing all the names in scope at
that statement. (As a technical point, this definition is actually a little bit too parsimonious,
in that it does not allow a proper treatment of free variables in inner classes. The rule
about inner classes is that each variable captured by an inner class becomes a read-only
field of the inner class, and the constructors of the inner class must assign the variable to its
corresponding field. The question is, how do we know which variables are actually used
in an inner class? This information does not come from the exported definitions of the
inner class, since references are not definitions, nor is it passed “left-to-right.” We finesse
this problem by assuming that all variables in scope in an inner class are referenced in that
class. This gives a correct, but obviously non-optimal, implementation of inner classes.)

32

Code makeMethod (Type type , S t r i n g name , L i s t args , Code body) {
return new Code () {

D e c l a r a t i o n L i s t getDecls () {
return new D e c l a r a t i o n L i s t (decl of the method) ;

}
ClosedCode eval (Environment env) {

env = env . add (args) ;
ClosedCode cc = body . eval (env) ;
. . .

}
} ;

}

Code makeField (Type type , S t r i n g name , Code i n i t) {
return new Code () {

D e c l a r a t i o n L i s t getDecls () {
return new D e c l a r a t i o n L i s t (decl of the field) ;

}
ClosedCode eval (Environment env) {

ClosedCode cc = i n i t . eval (env) ;
. . .

}
} ;

}

Figure 3.1: The makeMethod and makeField methods of the compiler that construct Code
objects for a method and a field definition, respectively. The code here is simplified to
eliminate parts that are irrelevant to our presentation in this chapter.

In the implementation, Code is represented with an abstract class named Code that has
two methods: DeclarationList getDecls(), and ClosedCode eval(Environment). Each method
corresponds to an element in the definition of Code. Let us now look at an example to see
more details of the implementation. Suppose we have the following quoted fragment that
contains a field declaration and a method that refers to the field.

〈 i n t getX () {
return x ;

}
i n t x = 0 ;

〉

This fragment would be preprocessed to a list that contains two Code objects as created by
the following calls (visibility tags of the method and the field are ignored):

makeMethod (Type . INT , “getX” , new L i s t () ,
makeReturnStmt (makeVarAccess (“x”)))

makeField (Type . INT , “x” , makeIntL i te ra l (0))

33

Code makeClass (i n t f l a g s , S t r i n g name , S t r i n g supername ,
S t r i n g L i s t implementees , CodeList members) {

return new Code () {
D e c l a r a t i o n L i s t getDecls () {

return new D e c l a r a t i o n L i s t (decl of the class) ;
}
ClosedCode eval (Environment env) {

// first pass: collect declarations
foreach member in members

env = env . add (member . getDecls ()) ;

// second pass: emit JVM code
foreach member in members

. . .
ClosedCode cc = member . eval (env) ;
. . .

}
} ;

}

Figure 3.2: The makeClass method of the compiler that construct Code object for a class
definition. The code here is simplified to eliminate irrelevant parts.

The methods makeMethod and makeField are implemented as in Figure 3.1 (greatly sim-
plified to eliminate irrelevant parts). The implementation makes use of anonymous classes
that extend the abstract Code class. The compositional structure can be seen inside an eval

method where the eval of the subcomponent is invoked. To improve the efficiency of the
execution of an eval, we inline the calls to eval methods of the subcomponents and per-
form traditional optimizations on the code. Inlining the invocation body.eval(env) inside
makeMethod will reveal the call to eval of the return statement, which contains a reference
to the field x. However, because we cannot know the contents of the environment that
comes as an argument to eval of the method, there is no way to know that the referred
variable is in fact the field x. On the other hand, if we had the information that the dec-
laration defined by the field exists in the environment that will be passed to the eval of
the method, we could utilize more optimizations. We would have this information if the
method and the field definition were given inside a class, because a compilation unit first
adds declarations into an environment before calling eval of its subcomponents. The imple-
mentation of makeClass, shown in Figure 3.2, illustrates this. However, compilation units
are not often available. This prevents us from making the connection between getDecls and
eval. Therefore, putting as much information into a single pass and reducing the number
of passes is important to reveal opportunities for optimization as much as possible. The
definition of Code aims at this.

Achieving the final definition of Code required several revisions from its previous def-
inition, originally implemented by Lars Clausen [Cla04]. When compiling a program,

34

Jumbo performs “passes” on the code. Jumbo originally had four passes. The gener-

ate method contained the following piece of code where the four passes of the compiler
(defineClasses, defineSupers, defineMembers, and eval) can be seen:

ClassEnvironment e = d e f i n e C l a s s e s (new ClassEnvironment ()) ;
eval (defineMembers (def ineSupers (new Environment (e)))) ;

The methods defineClasses, defineSupers, defineMembers, and eval were defined in the
Code class. Every pass collects important information that is used in the subsequent
passes. Not having access to the call to generate makes us lose the connection between
different passes and results in poor optimization as discussed above. With the new defi-
nition, we decrease the number of passes to two: the first one, getDecls, collects exported
definitions, and the second one, eval, emits JVM code using the information collected in
the first pass.

This new definition of Code required non-trivial refactoring of the Jumbo compiler.
During this restructuring, we also used a “functional style” implementation. We used,
for instance, final fields (i.e. fields that cannot be reassigned once initialized) whenever
possible and preferred immutable linked lists over arrays. This is important to obtain bet-
ter optimizations, because hard-to-prove properties such as escaping and aliasing prevent
progress in the presence of side-effects.

To summarize, our task comes down to this: In a Jumbo program, sections of quoted
code become expressions of type Code. At run time, these expressions will be evaluated,
producing a Code object whose getDecls and eval functions will then be invoked. We wish
to optimize this entire process, but mainly the eval function of each Code value, since this is
where most of the compilation occurs. Optimization is done by applying transformations
on the source code.

3.3 Source-level Optimization of Java

In this section, we describe the optimizations we apply. These take the form of source-level
transformations, including method inlining, constant propagation, and various simplifica-
tions.

In this experiment, these optimizations were not all applied automatically. A number
of transformations are “contractive” — simply put, they never make things worse — and
they are applied repeatedly in a “clean up” process. Others — such as inlining — are
potentially dangerous, in that they can lead to code expansion, and the system must be
manually told to perform them. (A user interface highlights all inlinable methods and
constructors, and the user clicks on the method name to inline it.)

The transformations are mainly standard and will be described only briefly. We em-
phasize that all are valid transformations in Java. The idea is not to build an optimizer
specific to our compiler, but to pick the analyses and transformations with the knowledge

35

of their intended use. It would also be interesting to see if all the transformations, includ-
ing function inlining and loop unrolling, could be automated using heuristics based on the
knowledge about the internals of the compiler. This was done in a prototype compiler as
part of the author’s MS thesis [AK05, Akt05]. Several of the analyses and transformation
described here were originally implemented by Lars Clausen [Cla04].

3.3.1 Normalization

To reduce the number of cases that need to be handled by the analyses and transforma-
tions, the code is first normalized. There are three main parts of the normalization step:

FQCN: Converts every name to its fully qualified version. For instance, a field access x

becomes this.x, and a field declaration Code c; becomes uiuc.Jumbo.Compiler.Code c;.

For-While: Converts for-loops and do-loops to while-loops.

Flattening: Breaks complex expressions into simpler expressions. For instance, after this
step, all the arguments going into a method call will be simple variables.

3.3.2 Transformations

The following rewrites are applied after the normalization step. All must be applied “man-
ually” — that is, by explicitly requesting the rewriting engine to apply them. However,
Cleanup incorporates many of them in a fixpoint iteration; those are not normally invoked
manually.

Inlining: Inlines a method invocation. Replaces return-statements of the inlined method
with break-statements.

WhileUnroll: Unrolls the first iteration of a specified while loop.

AnonClassConvert: Converts anonymous classes to non-anonymous inner classes.

Unflatten: Transforms the flattened program to a form that is more readable.

ConstructorInlining: Most of our transformations and analyses are strictly intra-procedural.
This makes inlining very important for exposing opportunities for optimization.
During our experiments, we noticed that some object creations prevented several
optimizations from taking place because object references were escaping into con-
structors. To propagate information better, we decided to inline constructors as well.
However, constructors cannot be inlined like methods, because there is no notation
to create an uninitialized object in Java; this is an implicit effect of each constructor.
(If we were optimizing JVM code instead of source, this would not be a problem.) We
might try to use the zero-argument constructor for this purpose, but it might have an

36

explicit definition that conflicts with the definition of the constructor we are attempt-
ing to inline. We solve this problem by adding annotations, containing the statements
of the constructor, to object creation sites. Other rewriters then see the constructor
code as though it was just an inlined method. The constructor itself, which resides
in a separate class, cannot be optimized, but values propagated out of it can be used
in the calling program. The annotations must be removed before the optimized pro-
gram is written; for this reason, the annotations must have the property that they can
be removed at any time and leave a program with the same meaning as when they
were there. Philip Morton gives more details about constructor inlining in his MS
thesis [Mor05].

Cleanup: Runs the following rewrites in a fixpoint iteration. Each can be invoked manu-
ally, but there is little reason to do so.

Untupling: Extracts a field from a newly created object.

UnusedDecl: Removes declarations that are never used.

UnusedScope: Removes scopes that have no semantic significance.

UnusedDef: Removes variable definitions that are not used.

UnusedReturn: Eliminates assignment of a method call when the assigned variable
is not used. The method call must still be executed for its side effects.

IfReduction: Simplifies if-statements whose condition is a constant boolean.

Arithmetic: Simplifies constant-valued arithmetic and logic expressions.

UnusedBreak: Removes break statements that make no difference to the flow.

ConstantPropagation: Moves constant values through local variables.

CollapseSystemCalls: Collapses intern and equals calls made on Strings.

ArrayLength: Replaces array.length expressions with the length, if available.

Switch: Reduces constant switch statements to the match.

CopyAssignment: Propagates redundant assignments of variables and literals.

UnusedObject: Removes object creation statements if they are never used and side-
effect-free.

FieldValue: Propagates values through object fields assigned directly.

TightenType: Makes types more specific, if possible.

UnusedFieldAssign: Removes unused assignments to fields.

UnreachableCode: Removes code which is indicated to be unreachable by the flow
analysis.

37

ObjectEquality: Replaces (obj1 == obj2) with true, and (obj1 != obj2) with false, if it can
determine whether the two objects point to the same location; and vice versa.

PointlessCast: Removes cast expressions where the target of the cast is already of
the right type.

WhileReduction: Removes while statements which only have a break as the body
and/or false as the condition.

InstanceOf: Attempts to resolve instanceOf expressions.

NullCheck: If it can prove that an object o is not null, then replaces o != null with true

and o == null with false; and vice versa.

These rewriters use the information obtained from program analyses. The analyses
are Dominator, Flow, Use-Def and Alias. The first three are standard. Alias analysis is
described in Philip Morton’s MS thesis [Mor05].

3.4 Examples

We demonstrate the effect of our optimizations via three examples. The first is a complete
(but small) class, without holes. The other two are the classic (in the field of program gen-
eration) exponentiation function, and a program to generate finite-state machines, taken
from [Kam03].

For each example, we show the original program, with quoted fragments. The latter
will be preprocessed away and transformed to calls to abstract syntax operators, as de-
scribed in Section 3.1. The resulting program is an ordinary Java program that will be
compiled into JVM code and executed. At run time, the various Code values produced by
these expressions will be brought together to form a Code value representing a class. A
call to generate or create will turn this Code value into a Java .class file. In our examples,
we are not executing the generated programs, since we are interested only in code genera-
tion time — the code that would be generated in each version is exactly the same. In each
test, we let the virtual machine “warm up” — load the Jumbo API, java.lang, and other
classes — before executing the programs, then run each test 500 times. Our measurements
exclude I/O time for outputting the .class file.

To obtain the optimized versions of the programs, each quoted fragment is optimized,
in isolation, after it is preprocessed, using the rewritings described in the Section 3.3.

For each run — original or optimized — we measure the overall time, and we also mea-
sure the time spent in the method Class.forName. This method does the run-time look-up
for names used but not defined in the program (for example, classes defined in imported
packages). It consumes such a large portion of run-time compilation time — more than
50% in most cases — that its effect on speed-up is often substantial. Furthermore, these

38

HotSpot Kaffe IBM
w w/o w w/o w w/o

Original 0.46 0.44 0.79 0.76 0.42 0.41
Rewritten 0.40 0.38 0.66 0.64 0.47 0.46
Speed-up 13.0% 13.6% 15.2% 15.8% -11.9% -12.2%

Table 3.1: Run-time generation performance for the simple example of Section 3.4.1. The
“w” column includes the cost of Class.forName calls; “w/o” column does not. All timings
are in seconds.

calls are impossible to eliminate by any compile-time optimization, since the imports must
be elaborated on the target machine (i.e. at run time). Since this cost is specific to Java, it is
interesting to see what speed-up we would be getting if this cost could be ignored.

The tables in this section have two columns for each of three different Java virtual ma-
chines: Sun’s HotSpot [Javb], Kaffe [Kaf] (an open source VM), and IBM’s production VM
[IBM]. For each VM, we give the overall execution time and the execution time excluding
forName calls; these are the “w” and “w/o” columns, respectively. The tables have three
rows: unoptimized time (labeled “original”), optimized time (labeled “rewritten”), and
speed-up ((unoptimized time - optimized time) / unoptimized time).

The timings are in seconds. Tests were run on an AMD Duron 1GHz processor, with
790 MB of memory, running Debian Linux.

3.4.1 Simple Class

To get a feeling of the baseline, we show the results of optimizing a complete, but simple,
class. The tests just invoke generate on this code:

〈 public c l a s s Temp {
i n t x ;
i n t id () {

return 1 2 ;
}

} 〉

When presented with a complete class without holes, the rewriters ought to be able
to reduce it to a very efficient form. However, the speedups are not as great as we would
hope. (In the case of the IBM JVM, the rewriting actually produced a slow-down.) Reasons
for this are discussed in Section 3.5.

3.4.2 Exponent

The exponentiation example, given in Figure 3.3, generates a function that computes xn for
given value of n. Table 3.2 gives the performance of the original and rewritten programs.

39

i n t e r f a c e ExpClass
{ public i n t exponent (i n t x) ; }

public c l a s s Power {
public s t a t i c ExpClass getExp (i n t n) {

Code r = 〈 1 〉 ;
for (i n t i = 0 ; i < n ; i ++){

r = 〈 8 (r) ∗ x 〉 ;
}
S t r i n g cname = “Power”+n ;
Code expcl = 〈

public c l a s s 8 (l i f t (cname)) implements ExpClass {
public i n t exponent (i n t x) {

return 8 (r) ;
}

}
〉 ;
return (ExpClass) expcl . c r e a t e (cname) ;

}
}

Figure 3.3: The generator that produces a specialized exponentiation function.

HotSpot Kaffe IBM
w w/o w w/o w w/o

Original 2.79 0.98 2.45 1.29 4.55 2.98
Rewritten 2.70 0.89 2.36 1.09 4.19 2.63
Speed-up 3.2% 9.2% 3.7% 15.5% 7.9% 11.7%

Table 3.2: Run-time generation performance for the exponentiation example in Figure 3.3.
Timings are in seconds.

3.4.3 FSM

Another application of RTPG is generation of finite state machines (FSM). The example is
discussed in [Kam03] and we give the code of the FSM class in Figure 3.4. ArrayMonoList

is just a type of list; here it is used to collect all the cases in the switch statement that is
the heart of the FSM implementation. Antiquoting an ArrayMonoList splices its contents
into the hole. The source code of the other classes (Predicate, Action, Transition, State) can be
found at http://loome.cs.uiuc.edu/Jumbo/examples/FSM.

The constructor of the FSM class takes a finite-state machine description in the form of
an array of states; the client sends the genFSMCode message to that object and then invokes
generate on the result. The created class contains a main method that reads a string from
the console and runs the client’s FSM on it. An FSM is a set of states, and each state is a set
of transitions.

40

public c l a s s FSM {
S t r i n g FSMclassname ;
S t a t e [] theFSM ;

FSM (S t r i n g c , S t a t e [] M) { FSMclassname = c ; theFSM = M; }

Code genFSMCode () {
ArrayMonoList body = new ArrayMonoList () ;
// Each state corresponds to a case in the switch statement
for (i n t i =0 ; i<theFSM . length ; i = i +1){

body . addAll (〈 case 8 (l i f t (i)) :
8 (theFSM [i] . genStateCode (〈 ch 〉))

break ; 〉) ;
}
Code r e s u l t =〈

import j ava . u t i l . ∗ ;

public c l a s s 8 (l i f t (FSMclassname)) {
s t a t i c void runFSM (Str ingTokenizer in) {

i n t t h e S t a t e = 0 ;
while (t rue) {

char ch ;
i f (! in . hasMoreTokens ()) return ;
ch = in . nextToken () . charAt (0) ;
switch (t h e S t a t e) {

8 (body)
default : return ;

}
}
return ;

}
s t a t i c void addToBuffer (char ch){ . . . }
s t a t i c void emitbuf fer () { . . . }
public s t a t i c void main (S t r i n g [] args) {

S t r i n g input = . . . ; // obtain input from console
runFSM (new Str ingTokenizer (input)) ;

}
} 〉 ;

return r e s u l t ;
}

}

Figure 3.4: The finite-state-machine example [Kam03] used in the experiments.

41

HotSpot Kaffe IBM
w w/o w w/o w w/o

Original 13.10 4.93 14.01 8.82 8.92 3.89
Rewritten 12.25 4.76 13.48 7.78 8.37 3.70
Speed-up 6.5% 2.9% 3.9% 11.8% 6.2% 4.9%

Table 3.3: Run-time generation performance for the FSM example.

The definition of a single transition is

new T r a n s i t i o n (new Predica te1 () , 1 , new Action2 ())

where

c l a s s Predica te1 implements P r e d i c a t e {
public Code pred (Code ch) {

return 〈 (’ a ’ <= 8 (ch) && ’ z ’ >= 8 (ch))
| | (’A ’ <= 8 (ch) && ’Z ’ >= 8 (ch)) 〉 ;

}
}

c l a s s Action2 implements Action {
public Code a c t i o n (i n t s , Code ch) {

return 〈 addToBuffer (8 (ch)) ; 〉 ;
}

}

This transition, upon seeing a letter, goes from its current state to state 1 and puts the letter
into the buffer.

Table 3.3 gives the program generation timings for the FSM example. It is notoriously
difficult to understand the performance of Java virtual machines, and Table 3.3 is an exam-
ple. The calls to forName are a large percentage of the execution time on all VMs. Further-
more, these calls are identical in optimized and unoptimized code (recall that we exclude
the actual writing of the .class file and its loading into the virtual machine). Yet speed-ups
in two cases (i.e. HotSpot and IBM) actually decline when forName is discounted. This is be-
cause, even though optimizations do not touch this method, it runs faster in the optimized
than in the original code. We have, at present, no explanation for this behavior.

3.5 Lessons Learned

Compositional compilation can be applied to any language, yielding a compiler that sup-
ports run-time program generation (once the quotation/anti-quotation syntax is added).
Each language will present different issues, both in construction of the compiler and in
optimizing run-time program generation. Java is in some ways highly suitable for this

42

treatment. Because it has no preprocessor and no optimization pass to speak of, most of
the compiler consists of a translator from AST’s to low-level code — the process to which
compositionality applies most naturally. But in another sense, Java is too dynamic; some
compilation steps must be performed dynamically that, in other languages, can be per-
formed statically. Obviously, anything that must be done at run time cannot be optimized
away. In this section we discuss why we have not gotten better speed-ups.

The major issue blocking rewriting is resolution of class names. The Java definition
requires that these names be resolved on the target machine. Thus, for example, the test to
determine if a method override is legal — which must be done for every method — cannot
be eliminated, because the superclass is available statically only in the rare case when it is
defined in the quoted fragment itself.

Similarly, the normalization of class names (conversion of a short class name to a fully
qualified class name) for variable, field, and method declarations must be done dynami-
cally. This necessitates that the fields keeping track of type information be mutable: The
objects containing those fields are the class and method objects created by getDecls, but
normalized class names cannot be filled in until eval is called. Moreover, these objects are
returned from getDecls to generate, so unless the fragment being optimized is in a place
where the generate call can be inlined — which it usually is not — the class and method
information have to be considered to have “escaped.” Propagating information through
mutable fields of objects that escape is very difficult.

One result is that the optimized code generator still contains type checks which we
would initially have expected could be eliminated, such as a check for the validity of the
return statement in 〈int foo() { return 5; }〉.

Even if the fragment being optimized consists of a complete class, it is possible that the
consumer of the fragment will compile it in a larger context: adding import statements,
adding sibling classes, or making it an inner class. Not knowing this context causes more
class name resolution problems. For example, if an enclosing class contains a field named
“java”, then “java.lang.Object” represents a series of field lookups, not a fully qualified class
name. Having an explicit create or generate call available in the code being optimized
resolves this difficulty, because it tells us that the fragment we see will not be placed in
any larger context.

We have continually refined our compiler in two ways. One is reducing the number of
“passes” — that is, the number of functions in Code. The idea is that putting more work in
a single pass makes more information available locally; with multiple passes, each called
from generate, the connection from one pass to another cannot be inferred except in those
cases where we can see the generate call and inline it. As mentioned in Section 3.2, the
current structure is as compact as we think is possible.

The other refinement is making the fields in the compiler’s classes final. There is a bit
more that can be done along these lines.

43

More broadly, however, Java fundamentally limits optimizations because of the re-
quirement to locate classes dynamically. This entails run-time calls to forName; in one case
— the exponentiation example in HotSpot — forName consumes 65% of run-time compi-
lation time. We have also noted above how dynamic class locating has a cascading effect:
it requires that certain fields be mutable, which in turn diminishes our ability to statically
determine their values.

3.6 Related Work

A compromise of high degree of generality is efficiency of code generation. In particu-
lar, being able to fill in a hole with a fragment that can modify the environment (e.g. by
declaring a new variable, or defining a class) prevents us from reducing a fragment all
the way down to machine code at compile-time. Some systems inherently eliminate this
problem by putting restrictions on what can be quoted and/or how the fragments can be
combined. Template-based program generation approaches, such as Tempo [CLM04], Cy-
clone [SGM+03], DynJava [OMY01] and 8C [EHK96] construct programs at run-time by
combining pre-compiled fragments. They are therefore limited to fragments that generate
machine code; declarations cannot be used to fill-in holes because declarations produce no
machine code. In general, all the type information in a fragment has to be available to be
able to generate a machine-level template for that fragment at compile-time. For instance,
in DynJava, the type of every free variable in a fragment has to be given by the program-
mer. DynJava uses this information to surround a fragment with mock methods and then
use the javac compiler to generate bytecode for the fragment. In the presence of high de-
gree of generality as in Jumbo, it is not possible to know all the types; Lars Clausen gives
a discussion and an example that covers different possibilities [Cla04, §3.4.1]. We could
utilize more optimizations if there were a way to know that a hole does not introduce any
new bindings. This would make sure that an environment that enters a hole is exactly the
same as the one that come out, making it possible to do lookups safely in that outgoing
environment.

In PG by partial evaluation systems [TS00, TCLP, MTBS99, CX03, GMP+00] every vari-
able in a fragment has a binding. (These systems in fact possess the “erasure property” —
erasing quotation marks leaves a valid program which is equivalent to the original but is
not staged.) Thus, they follow ordinary scoping rules for declarations, and the generation
process cannot introduce new declarations.

3.7 Conclusions

We have shown how source-level optimizations can improve the performance of a pro-
gram generation system based on the principle of compositional compilation.

44

The Jumbo compiler was first publicly released in 2003. We began the current study
from (the newest version of) that compiler, but found that compositionality alone was not
enough to permit optimization. We rewrote the compiler to be (a) more compositional —
where the first definition of Code contained four functions, the current one has two — and
(b) more functional in style, making greater use of final fields. It seems reasonable that,
since RTPG can offer very significant performance advantages, the compilers to support
it might be written so as to allow for more efficient code generation. We believe that the
points we explained in the “Lessons Learned” section will be useful to researchers in writ-
ing new RTPG compilers or in revising existing ones. It would be interesting to see the
optimizations we cover here be applied on a language less dynamic than Java, such as C.

45

Chapter 4

Staging Static Analysis of Generated
Programs

In this chapter we again address the first problem of program generation: the cost of run-
time generation. Generation of a program requires running several analyses to check that
the program is compilable or to optimize it. The question we ask is this: Can we reduce
the time we spend for these analyses for more efficient runtime generation? At compile
time, we have access to individual program fragments, however, we cannot know how
these fragments will be put together to form the final program (on which analyses will
be run). Therefore, in general, it is not possible to compute the result of an analysis com-
pletely at compile-time. Nevertheless, we may be able to perform a portion of the analysis
at compile-time by analyzing the individual fragments. In particular we are given a pro-
gram P [•, . . . , •] with holes, and a collection of plugs Q1, . . . , Qn. We want to find the
result of some static analysis when applied to P [Q1, . . . , Qn]. We can preprocess P and the
Qi, and then combine the results at run time to produce the same analysis result. This is
the topic of this chapter.

We present a technique that addresses this problem by splitting the analysis of runtime-
generated programs into two stages: compile-time and runtime. This is done by means of
a compositional framework for defining program analyses. The framework leads directly
to a method of starting the analysis of incomplete programs at compile time; the residual
work to be done at runtime may be much less costly than the full analysis. The ability
to stage analyses depends upon finding an accurate representation for the dataflow func-
tions; we present such representations for several analyses. Our framework is defined
on abstract syntax trees (AST), because program fragments appear as AST’s. There is no
fundamental reason why we could not have used control flow graphs (CFG) with holes in-
stead of AST’s; CFG’s and AST’s are just representations of programs. Michael Katelman
[Kat06] gives formal proofs showing that our AST-based dataflow framework is correct
with respect to the traditional CFG-based approach.

The following are the contributions of this chapter.

• Definition of frameworks for forward and backward analysis of abstract syntax trees
(AST), including break statements. We show how analyses instantiated from these
frameworks can be staged to reduce the time spent for analyzing a generated pro-
gram at runtime. Staging requires that dataflow functions be represented “ade-

46

quately.” We provide formal proofs stating that staging gives the same result as
the original (unstaged) analysis.

• Definition of representations for several dataflow problems.

• Experimental results showing the performance benefits obtained from staging.

The chapter is outlined as follows: In Section 4.1 we present the framework for forward
analysis, using uninitialized variables as a simple analysis example. We also discuss how the
framework allows for efficient staging of analyses. In Section 4.2 we present definitions
of several analyses that use the framework. Section 4.3 presents the backward analysis
framework. Section 4.4 gives performance results for various analyses and benchmark
programs. The proofs of the main theorems stated in this chapter are available in the
Appendix.

The contents of this chapter have been published at GPCE 2006 [KAK06].

4.1 Framework for Forward Analysis

Our framework differs from the standard one [ASU86] in that it analyzes abstract syntax
trees, not control-flow graphs (CFGs). Since program fragments appear as ASTs, this is the
natural unit of analysis for our purposes. Note that we are considering only intraprocedu-
ral analysis in this work.

In AST-based static analysis, as in standard control flow graph-based analysis, each
node is, in the end, assigned a value from a lattice Data of dataflow values. However, in
the AST case, the assignment is performed by a traversal of the tree (rather than by a work-
list algorithm), possibly including multiple traversals of some subtrees. Thus, each node
has input data (received from its neighbor to the left or right, depending upon whether
we are considering a forward or backward analysis) and output data. A key difference is
that the AST contains nodes that represent entire subtrees, so that the calculation of output
data from input data may be the composition of many smaller calculations. Whereas in
a CFG, the function from input data to output data given by any one node is relatively
small, in an AST it can be very large. (AST’s do, of course, contain those ”small nodes” as
well; they just have more nodes overall.)

Given a (hole-free) subtree, taken out of context, we cannot say what its value is be-
cause we do not know its input data. We do know the function from Data to Data that it
represents. Now suppose we have representations for functions that arise in a particular
analysis. Then we can handle staging of the analysis like this: For all AST’s, calculate this
function for every maximal hole-free subtree. This leaves a prefix of the original AST, with
some subtrees pruned and replaced by function representations. (For hole-free plugs, the
entire tree is replaced by its function representation.) At run time, the code-generating

47

Non-Staged:
(1)Wait for holes to be filled in (2)Traverse the tree (full)

•
aaa

!!!
•
QQ��

•
SS��

• •

•
SS��

• •

•
ll,,

◦ •
SS��

• •

(1)−→

•
PPPP

����
•
QQ��

•
SS��

• •

•
SS��

• •

•
QQ��

•
SS��

• •

•
SS��

• •

(2)−→ Analysis
Result

compile-time runtime

Staged:
(1)Compute representations (2)Fill in the holes (3)Traverse the tree (shallow)

•
aaa

!!!
•
QQ��

•
SS��

• •

•
SS��

• •

•
ll,,

◦ •
SS��

• •

(1)−→

•
ll,,

� •
SS��

◦ �

(2)−→

•
ll,,

� •
\\��

� �

(3)−→ Analysis
Result

compile-time runtime

Figure 4.1: Staging a data flow analysis. • is a regular AST node, ◦ is a hole, and � is a
representation.

code associated with each fragment [KCJ03] is accompanied by the fragment’s representa-
tion tree. When the fragments are combined to form the entire program, the static analysis
can be performed on the combined tree. Time is saved because there is no need to traverse
the program’s entire AST, and also because there may be optimizations applicable to the
function representations.

The staging process is illustrated in Figure 4.1. For this process to work, we need the
dataflow framework to have a key property: compositionality. Being compositional means
that even the smallest piece of AST has a meaning from the point of view of dataflow anal-
ysis. This is where our framework is distinguished from existing AST-based dataflow
analyses. These frameworks either take AST’s as a synonym of CFG’s and use a worklist
algorithm to compute the dataflow information (e.g. [Muc97, §8.4]) — which is not com-
positional, or they assume a simply-structured language with no control-flow-changing
statements, such as break (e.g. [Muc97, §8.7]). Our framework is able to give meanings to
ASTs with non-local control flow; e.g. break L.

The “meaning” given to an AST by the framework is nothing but the dataflow function
defined by that AST. A question that naturally arises at this point is how to summarize

48

e ∈ Exp
x ∈ Var
` ∈ Label
P ∈ Pgm ::= x = e | skip | if(e) P1 else P2 | P1;P2

| while(e) do P | ` : P | break `

Figure 4.2: The language treated in this chapter.

these functions efficiently and precisely (i.e. without loss of information), so that these
summaries can be used as representations for AST’s. Note that a naı̈ve approach would be
to use the AST itself as the summary of its dataflow function. This approach obviously
cannot yield any efficiency gains. In this chapter, we define representations for many
dataflow problems that summarize dataflow functions compactly.

In this section, we present our dataflow framework in three steps. The first framework
covers the language without break statements; the second adds break statements; and the
third — the full framework — adds the feature of assigning a dataflow value to each node
rather than just to the root. For each of these three frameworks, the plan is the same:

1. Present an analysis frameworkF for calculating dataflow values for AST’s in a lattice
Data.

2. Present a framework R for calculating representations of dataflow functions, given
an “adequate” representation R.

3. Give a theorem relating representations produced by R to dataflow functions given
by F .

4. Give an alternative method of calculating representations, called FR, more efficient
than R, which uses the definition of F but applies it to representations rather than
dataflow values.

As a running example in these sections, we use uninitialized variables, an analysis that cal-
culates a list of variables that may have been used without being initialized.

The first framework contains only simple control structures; the theorems are trivial in
this case, but we introduce notation and explain how staging works. The second frame-
work handles break statements. These two frameworks calculate dataflow values only for
the root of an AST; the final framework calculates values at each node within an AST.

Figure 4.2 shows the abstract syntax of the language we treat in this chapter. We use
a Java-like language for concrete syntax. Keep in mind that this is the language inside
quotations. We do not include holes because these are not proper elements of the language.
To avoid notational complexities, we allow holes only in statement position; allowing holes
in expression position poses no fundamental problems.

49

FJskipK = id

FJx = eK = asgn(x, e)

FJP1;P2K = FJP1K;FJP2K

FJif(e) P1 else P2K = exp(e); (FJP1K ∧ FJP2K)

Figure 4.3: First framework for data-flow analysis.

Dataflow values are assumed to come from a lattice, called Data. Define DFFun to be
the function space Data→ Data (confined to functions that preserve >Data).

4.1.1 Simple Control Structures

Our first framework (Figure 4.3) treats a subset of the full language, programs with only
sequencing and conditionals. F assigns an element of DFFun to every program. We use
semi-colon (;) for function composition in diagrammatic order. The meet (∧) operation on
functions is defined pointwise, and id is the identity function in DFFun. Only the functions
asgn and exp are specific to a particular analysis. The types of all the names appearing in
this definition are:

id : DFFun
asgn : Var× Exp→ DFFun
exp : Exp→ DFFun
; : DFFun×DFFun→ DFFun
∧ : DFFun×DFFun→ DFFun

We earlier stated that we allow only >-preserving functions in DFFun. The identity func-
tion has this property, and function composition and meet preserve it, so we need only to
confirm it for asgn and exp for each analysis.

To get the result of the static analysis of P , apply FJP K to an appropriate initial value.
As an example, we define an analysis for variable initialization. Here,Data = P(V ar)2,

with ordering
(D,U) v (D′, U ′) if D ⊆ D′ and U ⊇ U ′

The datum (D,U) at a node means that D is the set of variables that definitely have defi-
nitions at this point, and U is the set that may have been used without definition.

asgn(x, e) = λ(D,U).(D ∪ {x}, (vars(e) \D) ∪ U)
exp(e) = λ(D,U).(D, (vars(e) \D) ∪ U)

vars(e) is the set of variables occurring in e. It is easy to see that asgn(x, e) and exp(e)
preserve >Data (the pair (V ar,∅)).

50

RJskipK = idR

RJx = eK = asgnR(x, e)

RJP1;P2K = RJP1K ;R RJP2K

RJif(e) P1 else P2K = expR(e) ;R (RJP1K ∧R RJP2K)

Figure 4.4: Representation function for the first framework.

Returning to the general case, our task is to find representations of elements of DFFun
for each analysis.

Definition 4.1.1. Suppose R is a set with the following values and functions (>R is not
used until the next subsection):

>R : R expR: Exp→ R

idR : R ;R : R×R→ R

asgnR: Var× Exp→ R ∧R : R×R→ R

R is an adequate representation of a dataflow problem if there is a homomorphism

abs : R→ DFFun

from (R,>R, idR, asgnR, expR, ;R ,∧R) to (DFFun,>DFFun, id, asgn, exp, ; ,∧). Specifically,
this requires

abs(>R) = >DFFun = λd.>Data
abs(idR) = id
abs(asgnR(x, e)) = asgn(x, e)
abs(expR(e)) = exp(e)
abs(r ;Rr′) = abs(r); abs(r′)
abs(r ∧R r′) = abs(r) ∧ abs(r′)

Now, defineR : Pgm→ R to be the function in Figure 4.4. Then we have the following
theorem.

Theorem 4.1.2. If R is an adequate representation, then for all P , abs(RJP K) = FJP K.

Proof. A trivial structural induction.

For uninitialized variables, a natural representation, which is also adequate, is almost
the same as Data:

R = P(V ar)2 ∪ {>R}

For any fragment P , RJP K is the pair containing the set of variables definitely defined in
P and the set possibly used without definition in P . The operations on this representation

51

are as below.

idR = (∅,∅)
asgnR(x, e) = ({x}, vars(e))
expR(e) = (∅, vars(e))
(D,U) ;R (D′, U ′) = (D ∪D′, U ∪ (U ′ \D))
(D,U) ∧R (D′, U ′) = (D ∩D′, U ∪ U ′)

Throughout the chapter, to avoid clutter, we ignore > when defining functions; in ev-
ery case, the definitions of asgn(x, e), exp(e) should check for >Data, and ;R and ∧R should
check for >R.

The abs function is defined as

abs(D,U) = λ(D′, U ′).(D′ ∪D,U ′ ∪ (U \D′))

We note that abs(>R) necessarily equals λd.>Data, as required by the definition of ade-
quacy.

To illustrate the analysis, we show a program annotated with the value of RJP K for
each subtree P :

// ({x , y} ,{x , z }) (entire fragment)
y = x ; // ({y} ,{x })
i f (z>10) // ({ x } ,{x , y , z }) (‘if’ statement)
{ // ({x ,w} ,{x , y}) (‘true’ branch)

w = 1 5 ; // ({w} ,∅)
x = x + y + w; // ({ x } ,{x , y ,w})

} e lse
x = 0 ; // ({ x } ,∅)

In Figure 4.2, we included while statements in our language. They can be defined using
a maximal fixpoint in the usual way:

FJwhile(e) do P K = mfxp(λp.exp(e); (FJP K; p ∧ id))

If we were to includeRJwhile(e) do P K in Figure 4.4, we would define it aswhileR(RJeK,
RJP K), where whileR is a function specific to each analysis. We will not mention this fur-
ther, however, because in each of our examples, the functionwhileR is not very interesting:
whileR(r1, r2) is either r1;R r2;R r1 or r1;R r2;R r1;R r2;R r1. That is, only a fixed number of
iterations of the loop body is required.

In principle, we could now move on to staging, usingR to calculate the representation
of fragments. In practice, we calculate them by using the definition of F . This method
will turn out, when applied to the full framework, to be more efficient; see page 58. The
difference is thatR is a purely bottom-up algorithm (producing and composing functions),

52

FRJskipK = idR

FRJx = eK = asgnR(x, e)

FRJP1;P2K = FRJP1K ; FRJP2K

FRJif(e) P1 else P2K = expR(e) ; (FRJP1K ∧R FRJP2K)

Figure 4.5: FR for the first framework.

while F is more top-down (threading an analysis result through transfer functions). The
situation is similar to the use of an accumulator parameter in functional programs, which
can turn a quadratic algorithm into a linear one [IB99].

Define FR : Pgm → R → R to be the function in Figure 4.5, with the relevant opera-
tions defined as follows:

idR = id
asgnR(x, e) = λr.r ;R asgnR(x, e)
expR(e) = λr.r ;R expR(x, e)
f ∧R g = λr.fr ∧R gr

Definition 4.1.3. Two representation values, r and r′, are equivalent, denoted r ≡ r′, if
abs(r) = abs(r′).

Theorem 4.1.4. If R is adequate, then for all P and r, FRJP Kr ≡ r ;RRJP K.

Proof. By induction on the structure of P .

Corollary 4.1.5. FRJP KidR ≡ RJP K.

Proof.

abs(FRJP KidR) = abs(idR;RRJP K)

= abs(idR); abs(RJP K)

= id; abs(RJP K)

= abs(RJP K)

If abs is injective — in which case we call R an exact representation — then we can
replace ≡ by = in the above theorems. All the analyses we define in this chapter are exact.

We are now ready to stage static analyses, as depicted in Figure 4.1. The first stage
calculates values of R, using FR, and the second, run-time, stage uses F to complete the
analysis.

53

FJskipK = id

FJx = eK = λ(η, d).(η, asgn(x, e)(d))

FJbreak `K = λ(η, d).(η[` 7→ d ∧ η(`)],>Data)

FJ` : P K = λ(η, d). let (η1, d1)← FJP K(η, d)
in (η1[` 7→ >Data], d1 ∧ η1(`))

FJP1;P2K = FJP1K;FJP2K

FJif(e) P1 else P2K = λ(η, d). let (η1, d1)← FJP1K(η, exp(e)(d))
(η2, d2)← FJP2K(η, exp(e)(d))

in (η1, d1) ∧ (η2, d2)

Figure 4.6: Framework with break statements.

4.1.2 Break Statements

We expand our analysis now to labelled statements and break-to-label statements. We will
see that an adequate representation in the sense of the previous section can be extended
uniformly to a representation for this case.

Throughout the chapter, we assume all programs are legal in the sense that they do not
contain nested labelled statements with the same label.

An environment η is a function in Env = Label→ Data. Now the incoming and outgo-
ing values are pairs:

FJP K : Env ×Data→ Env ×Data

The extended analysis is shown in Figure 4.6. asgn and exp have the same types as in the
previous section; semi-colon is again function composition (in the expanded space), and id
is the identity function. We extend meet to environments element-wise and then to pairs
component-wise.

To explain Figure 4.6: Suppose a statement P is contained within a labelled statement
with label `, and we are evaluatingFJP K(η, d). The argument d contains information about
the control flow paths that reach P . The environment η contains information about all the
control flow paths that were terminated with a break ` statement prior to reaching P ; since
there may be more than one, η(`) gives a conservative approximation by taking the meet of
all those paths. Thus, if P is break `, then d is incorporated into the outgoing environment
by taking d∧η(`). Furthermore, the “normal exit” from P is>Data, which ensures that any
statement directly following P will be ignored (since, for any statementQ, FJQK preserves
>Data in its second argument). Now consider labelled statements. FJ` : P K(η, d) first
calculates FJP K(η, d). A normal exit from ` : P can be a normal exit from P or a break to `,
so we take the meet of these two values. Furthermore, the binding of ` in the environment
is reset to >Data, since a subsequent statement could be labelled `.

54

RJskipK = (>EnvR
, idR)

RJx = eK = (>EnvR
, asgnR(x, e))

RJbreak `K = (>EnvR
[` 7→ idR],>R)

RJ` : P K =let (η, r)← RJP K
in (η[` 7→ >R], r ∧R η(`))

RJP1;P2K =let (η1, r1)← RJP1K, (η2, r2)← RJP2K
in (η1 ∧R (r1;R η2), r1;R r2)

RJif(e) P1 else P2K = let (η1, r1)← RJP1K, (η2, r2)← RJP2K
in expR(e);R ((η1, r1) ∧R (η2, r2))

Figure 4.7: Representation for framework of Figure 4.6.

Representations of these functions are derived from representations of functions in
DFFun. Assume R is an adequate representation of DFFun. It can be extended to a rep-
resentation ER of functions in the space Env × Data → Env × Data. Define EnvR =
Label→ R. Then

ER = EnvR ×R

Figure 4.7 gives a function to calculate representations. Although very similar to F ,
R has one crucial difference: For statement P1;P2, where F simply uses function com-
position, R calculates an explicit value. Of particular interest is the way environments
are affected. The environment given by RJP2K incorporates all the control flow up to any
break statements in P2. The new environment augments each value in that environment
by adding r1, which is the dataflow information for a normal exit from P1. That is, an ab-
normal (to an enclosing label) exit is either an abnormal exit from P1 or a normal exit from
P1 followed by an abnormal exit from P2. Furthermore, if there is a break to the same label
from both P1 and P2, the total effect is that two separate paths meet after the statement
with that label, so the functions in the two environments are joined.

Defining the abstraction function:

absE : ER → (Env ×Data→ Env ×Data)
absE(ηR, r) = λ(η, d).(λ`.η(`) ∧ abs(ηR(`))d, abs(r)d)

we have the following theorem.

Theorem 4.1.6. If R is adequate, then for any legal program P , absE(RJP K) = FJP K.

Proof. By induction on the structure of P .

Again, we can (and do) calculate R by reinterpreting F using the operators of R. The
function

FR : Pgm→ ER → ER

55

FRJskipK = idR

FRJx = eK = λ(η, r).(η, asgnR(x, e)r)

FRJbreak `K = λ(η, r).(η[` 7→ r ∧R η(`)],>R)

FRJ` : P K = λ(η, r). let (η1, r1)← FRJP K(η, r)
in (η1[` 7→ >R], r1 ∧R η1(`))

FRJP1;P2K = FRJP1K;FRJP2K

FRJif(e) P1 else P2K = λ(η, r). let (η1, r1)← FRJP1K(η, expR(e)r)
(η2, r2)← FRJP2K(η, expR(e)r)

in (η1, r1) ∧R (η2, r2)

Figure 4.8: FR with break statements.

is defined as given in Figure 4.8 where asgnR and expR are exactly the same as in the
previous section; idR has the same definition but different type.

Theorem 4.1.7. Let P be a legal program, and (η, r) = RJP K. Then, for all η′ and r′, as long as
η′(L) = >R for any label L that occurs in P , we have

FRJP K(η′, r′) ≡ (λ`′.η′(`′) ∧R (r′ ;R η(`′)), r′ ;R r).

Proof. By induction on the structure of P .

Corollary 4.1.8. FRJP K(>EnvR
, idR) ≡ RJP K.

Proof. LetRJP K = (η, r). Then, by the theorem above,

FRJP K(>EnvR
, idR) ≡ (λ`′.>EnvR

(`′) ∧R (idR ;R η(`′)), idR ;R r)

= (λ`′.>R ∧R (idR ;R η(`′)), idR ;R r)

which means

absE(FRJP K(>EnvR
, idR)) = absE((λ`′.>R ∧R (idR ;R η(`′)), idR ;R r))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(>R ∧R (idR ;R η(`′)))d′′, abs(idR ;R r)d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(>R)d′′ ∧ (abs(idR); abs(η(`′)))d′′, (abs(idR); abs(r))d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η(`′))d′′, abs(r)d′′)

= absE((η, r))

= absE(RJP K)

Again, ≡ can be replaced by = for all the analyses we present in this chapter.

56

Adding a break statement to our previous example on page 52, we show the values of
FRJP K(>EnvR

, (∅,∅)) for each node P .

// ({L7→ ({x , y} ,{x , z })} , ({ x ,w, y} ,{x , z }))
y = x ; // (∅ , ({y} ,{x }))
i f (z>10) // ({L7→ ({ x } ,{ z })} , ({x ,w} ,{x , y , z }))
{ // (∅ , ({x ,w} ,{x , y }))

w = 1 5 ; // (∅ , ({w} ,∅))
x = x + y + w; // (∅ , ({ x } ,{x , y ,w}))

} e lse
{ // ({L7→ ({ x } ,∅)} ,>)

x = 0 ; // (∅ , ({ x } ,∅))
break L ; // ({L7→ (∅,∅)} ,>)

}

Note that in the topmost node, w is in the defined set for normal exit even though it is not
defined in both branches of the if-statement. This is because the flow reaches the end of
the if-statement only if the then-branch where w is defined is taken.

The approach to staging is unchanged.

4.1.3 The Framework

The frameworks described so far lack one important ingredient: they do not give us infor-
mation about each node in the AST, but only about the root node of the AST. Most static
analyses are used to obtain information at each node: What definitions reach this partic-
ular node? What variables have constant values at this particular point in the program?
Etc.

The complete analysis returns a map giving data at each node. Assuming each node
in a Pgm is uniquely identified by an element of Node, we define NodeMap = Node ⇀

Data (partial functions from Node to Data). Now,

FJP K : NodeMap× Env ×Data→ NodeMap× Env ×Data

We also change the type of asgn:

asgn : Node×Var× Exp→ DFFun

for cases (such as reaching definitions) where Node is contained within Data. In cases
such as uninitialized variables, the first argument is ignored. The full forward analysis is
shown in Figure 4.9.

57

FJn : skipK = λ(ϕ, η, d).(ϕ[n 7→ d], η, d)

FJn : x = eK = λ(ϕ, η, d).let d′ ← asgn(n, x, e)(d)
in (ϕ[n 7→ d′], η, d′)

FJn : break `K = λ(ϕ, η, d).(ϕ[n 7→ >Data], η[` 7→ d ∧ η(`)],>Data)

FJn : (` : (n1 : P))K = λ(ϕ, η, d). let (ϕ1, η1, d1)← FJn1 : P K(ϕ, η, d)
in (ϕ1[n 7→ d1 ∧ η1(`)], η1[` 7→ >Data], d1 ∧ η1(`))

FJn : (n1 : P1; n2 : P2)K = λ(ϕ, η, d). let (ϕ1, η1, d1)← FJn2 : P2K(FJn1 : P1K(ϕ, η, d))
in (ϕ1[n 7→ d1], η1, d1)

FJn : if(e) n1 : P1 else n2 : P2K = λ(ϕ, η, d). let (ϕ1, η1, d1)← FJn1 : P1K(ϕ, η, exp(e)(d))
(ϕ2, η2, d2)← FJn2 : P2K(ϕ, η, exp(e)(d))

in ((ϕ1 ∪ ϕ2)[n 7→ d1 ∧ d2], η1 ∧ η2, d1 ∧ d2)

Figure 4.9: Forward analysis framework.

As in the previous section, we can start with an adequate representation and create a
representation for this analysis. Specifically, define

FR = (Node ⇀ R)× EnvR ×R

The abstraction function becomes:

absF : FR → (NodeMap× Env ×Data→ NodeMap× Env ×Data)
absF (ϕR, ηR, r) = λ(ϕ′, η′, d′).(ϕ′ ∪ (λn.abs(ϕR(n))d′), λ`.η′(`) ∧ abs(ηR(`))d′, abs(r)d′)

Representations are calculated by functionR as given in Figure 4.10.

Theorem 4.1.9. If R is adequate, then for any legal program P , absF (RJP K) = FJP K.

Proof. Similar to the proof for the intermediate framework (Theorem 4.1.6).

We can define FR as in previous sections, and obtain

Theorem 4.1.10. Let P be a legal program and (ϕ, η, r) = RJP K. Then for all ϕ′, η′ and r′, as
long as η′(L) = >R for any label L that occurs in P , we have

FRJP K(ϕ′, η′, r′) ≡ (ϕ′ ∪ λn.r′ ;R ϕ(n), λl.η(l) ∧R (r′ ;R η(l)), r′ ;R r)

Proof. Similar to the proof for the intermediate framework (Theorem 4.1.7).

The importance of FR can now be explained. R calculates the node map ϕ bottom-up.
Suppose RJP K = (ϕ, η, r), and consider ϕ(n), where n is a node in P . ϕ(n) says how to
calculate a data value at n given input data at P ; that is, it represents the computation
from the start of P to n. In calculating RJP1;P2K, the subcomputation RJP2K returns a

58

RJn : skipK = ({n 7→ idR},>EnvR
, idR)

RJn : x = eK = ({n 7→ asgnR(n, x, e)},>EnvR
, asgnR(n, x, e))

RJn : break `K = ({n 7→ >R},>EnvR
[` 7→ idR],>R)

RJn : (` : (n1 : P))K = let (ϕ, η, r)← RJn1 : P K
in (ϕ[n 7→ r ∧R η(`)], η[` 7→ >R], r ∧R η(`))

RJn : (n1 : P1; n2 : P2)K = let (ϕ1, η1, r1)← RJn1 : P1K, (ϕ2, η2, r2)← RJn2 : P2K
in (λn′. if ϕ1(n′) defined then ϕ1(n′)

if ϕ2(n′) defined then r1;R ϕ2(n′)
if n′ = n then r1;R r2 ,

η1 ∧R (r1;R η2),
r1;R r2)

RJn : if(e) n1 : P1 else n2 : P2K = let (ϕ1, η1, r1)← RJn1 : P1K, (ϕ2, η2, r2)← RJn2 : P2K
in (expR(e);R ((ϕ1 ∪ ϕ2)[n 7→ (r1 ∧R r2)]),

expR(e);R (η1 ∧R η2),
expR(e);R (r1 ∧R r2))

Figure 4.10: Representation for framework of Figure 4.9.

node map ϕ2 representing computations within P2. The result for P1;P2 has to give values
for nodes in P2 that represent the computation starting at P1. Thus, it not only produces
values for each node in P1, but also calculates new values for every node in P2. Extending
this reasoning to a list of statements P1; . . . ;Pn, we see that values for all the nodes in Pn
will be calculated n times, for all the nodes in Pn−1 n−1 times, etc. Thus, the complexity of
RJP K is quadratic in the size of the P . F uses, in effect, an accumulator, passing ϕ through
the entire tree, and thus calculates a value for each node just once.

Our previous example (on page 57) with numbered nodes is in Figure 4.11. We show
the value of RJP K only at the top node. The environment and data values are just as in
Section 4.1.2: {L7→({x,y},{x,z})} and ({x,w,y},{x,z}), respectively. The node map is:

{ n1 7→ ({x ,w, y} ,{x , z }) ,
n2 7→ ({y} ,{x }) ,
n3 7→ ({x ,w, y} ,{x , z }) ,
n4 7→ ({x ,w, y} ,{x , z }) ,
n5 7→ >R ,
n6 7→ ({w, y} ,{x , z }) ,
n7 7→ ({x ,w, y} ,{x , z }) ,
n8 7→ ({x , y} ,{x , z }) ,
n9 7→ >R

}

Note that the values associated with the nodes are different from those in the previous
analyses. This node map incorporates what is known about each node at the top node (as

59

n1 : // entire fragment
n2 : y = x ;
n3 : i f (z>10)
n4 : {
n6 : w = 1 5 ;
n7 : x = x + y + w;

} e lse
n5 : {
n8 : x = 0 ;
n9 : break L ;

}

Figure 4.11: The example program with numbered nodes.

in [SP81]). For example, when we get through node n6, we will have defined w and y, and
will have used x and z possibly without definition. Thus, suppose we put this fragment
into a hole at a position where x has been defined. We can look at, for example, node
n6 and immediately find that only z may have been used without definition. In general,
we have the chance to query the data of selected nodes without analyzing the entire tree,
which can have a salutary effect on the run-time performance of the analysis. Note also
that the fragment as a whole definitely defines w, even though it is only defined in one
branch of the conditional; since the else-branch ends in a break, control can only reach the
end of this statement by taking the then-branch.

Again, staging is not fundamentally different in this more complicated framework.
One new wrinkle is that a single plug cannot be used to fill in two holes because its node
names would then not be unique in the larger AST; thus, nodes in plugs need to be uni-
formly renamed before insertion in a larger tree, a process that is easily done.

4.2 Adequate Representations

We now present several analyses. Like variable initialization, all the representations we
present here are exact.

4.2.1 Reaching Definitions I (RD)

The reaching definitions (RD) at a point in a program include any assignment statement
which may have been the most recent assignment to a variable prior to this point. Repre-
sentations for this analysis have been given in [MR90, RHS95, RKM06].

D ∈ Data = P(Node) ∪ {>}

60

Sets in Data are ordered by reverse inclusion, with ∅ being the element just below >. The
operations are

asgn(n, x, e) = λD.(D \Dx) ∪ {n}
exp(e) = λD.D

where Dx are the nodes that define x. The representation is:

R = (P(Var)× P(Node)) ∪ {>R}

Suppose K ∈ P(Var) and G ∈ P(Node). If RJP K = (K,G), the set K contains all the
variables definitely defined in P , and G are the assignment statements that define those
variables and may reach the end of P .

idR = (∅,∅)
asgnR(n, x, e) = ({x}, {n})
expR(e) = (∅,∅)
(K1, G1);R (K2, G2) = (K1 ∪K2, G2 ∪ (G1 \K2))
(K1, G1) ∧R (K2, G2) = (K1 ∩K2, G1 ∪G2)

abs(K,G) = λD.G ∪ (D \K)

where G \K = {n ∈ G |n is not the definition of some x ∈ K}.

Theorem 4.2.1. R for RD is an exact representation.

Proof. Given in the appendix.

4.2.2 Available Expressions (AE)

Available expressions (AE) are those expressions that have been previously computed,
such that no intervening assignment has made their value obsolete. A given statement
makes some expressions available, kills some expressions (by assigning to the variables
they contain), and lets others pass through unmolested.

E ∈ Data = P(Exp) ∪ {>}

Sets in Data are ordered by set inclusion.

asgn(n, x, e) = λE.(E ∪ sub(e)) \ Ex
exp(e) = λE.E ∪ sub(e)

where Ex is the set of expressions in E that contain x, and sub(e) is the set of all subexpres-
sions of e.

61

The following seems an obvious representation.

R = (P(Var)× P(Exp)) ∪ {>R}

The R value (K,G) represents that G is the set of expressions made available by a state-
ment, and K is the set of variables defined by that statement (so that the statement kills
any expressions containing those variables).

idR = (∅,∅)
asgnR(n, x, e) = ({x}, {e′ | e′ ∈ sub(e), x 6∈ vars(e′)}
expR(e) = (∅, {e′ | e′ ∈ sub(e)})
(K1, G1);R (K2, G2) = (K1 ∪K2, G2 ∪ (G1 \K2))
(K1, G1) ∧R (K2, G2) = (K1 ∪K2, G1 ∩G2)

abs(K,G) = λE.G ∪ (E \K)

where G \K = {e ∈ G |none of the variables in e occur in K}.
However, this is not an adequate representation for the analysis. Consider the state-

ment: if (cond) {a = . . .; . . . = a + b} else {}. Suppose that a + b is available before this
statement. It will also be available afterwards. However, since there is an assignment to a
in one branch, the statement kills any expression containing a. Furthermore, a + b is not
generated in the other branch. Thus, the representation of this if-statement is ({a},∅). But
this will kill the incoming definition of a+ b.

To obtain an adequate representation, we need to record that some expressions are
guaranteed to survive a statement, even if they contain variables that are in its kill set,
while others will be killed, as usual. We do this by putting annotations on expressions in
the available set:

Definition 4.2.2. For set S, SAnnot = {smust | s ∈ S} ∪ {ssur | s ∈ S}. Also define the
operation “·” on annotations: must ·must=must and otherwise α ·α′ = sur, where α, α′

are annotations.

Our analysis uses the set ExpAnnot. The annotation sur stands for the case when there is
some path in the fragment that lets the incoming expression survive. The annotationmust
stands for the case when there is no such path, so that the statement itself must define
the expression if it is to be available. The dot operation encapsulates the notion that an
expression can survive a conditional statement as long as it can survive at least one of the
branches. Then, this analysis is defined as follows:

62

R = P(Var)× P(ExpAnnot) ∪ {>R}

idR = (∅,∅)
asgnR(n, x, e) = ({x}, {e′must | e′ ∈ sub(e), x 6∈ vars(e′)}
expR(e) = (∅, {e′must | e′ ∈ sub(e)})

(K1, G1);R (K2, G2) = (K1 ∪K2,

{emust | emust ∈ G2}∪
{eα | esur ∈ G2, eα ∈ G1}∪
{esur | esur ∈ G2, eα 6∈ G1, vars(e) ∩K1 = ∅}∪
{eα | eα ∈ G1, e

′
α 6∈ G2, vars(e) ∩K2 = ∅})

(K1, G1) ∧R (K2, G2) = (K1 ∪K2,

{eα·α′ | eα ∈ G1, e
′
α ∈ G2}∪

{esur | eα ∈ G1, e
′
α 6∈ G2, vars(e) ∩K2 = ∅}∪

{esur | eα ∈ G2, e
′
α 6∈ G1, vars(e) ∩K1 = ∅})

abs(K,G) = λE.{e | emust ∈ G}∪
{e | esur ∈ G, e ∈ E}∪
{e | e ∈ E, eα 6∈ G, vars(e) ∩K = ∅}

The most interesting case is in the definition of semicolon, when esur ∈ G2 and e ∈ G1

(with either annotation). In that case, e is included in the available set, even if it is killed by
K2. Looking again at the if statement we discussed above, the true branch gives ({a}, {(a+
b)must}), and the false branch gives (∅,∅). The meet of these values is ({a}, {(a+ b)sur}).
This value summarizes the effect of the if statement correctly: if (a+ b) is in the incoming
available set, then it will be in the resulting available set.

Theorem 4.2.3. R for AE is an exact representation.

Proof. Similar to the proof for RD in Section 4.2.1.

4.2.3 Reaching Definitions II (RD2)

Using annotations, we give an alternative representation for reaching definitions. We will
call this analysis RD2. Here we annotate sets of definitions of a variable; a must subscript
indicates that the set includes all possible definitions of the variable, while a sur subscript
indicates that there is some path in this statement through which a previous definition of
the variable might survive.

63

Let N ∈ P(Node) in the following definitions.

S ∈ R = (Var→ P(Node)Annot) ∪ {>R}

idR = λv.∅sur

asgn(n, x, e) = (λv.∅sur)[x 7→ {n}must]
exp(e) = λv.∅sur

S1;R S2 = λx. let Nα ← S1(x), N ′α′ ← S2(x)
in if α′ = must then N ′α′ else (N ∪N ′)α

S1 ∧R S2 = λx.let Nα ← S1(x), N ′α′ ← S2(x)
in (N ∪N ′)α·α′

We assume that S(x) defaults to ∅sur. Finally, the abstraction function is

abs(S) = λD. {n ∈ D |n : x = e and S(x) = Nsur} ∪
{n ∈ N |n : x = e and S(x) = Nα}

where D ∈ Data = P(Node) ∪ {>} as before.

Theorem 4.2.4. R for RD2 is an exact representation.

Proof. Similar to the proof for RD in Section 4.2.1.

4.2.4 Constant Propagation (CP)

The framework can be instantiated for constant propagation (CP) with the following def-
initions. For simplicity we consider only integers as constant values, and assume that the
expressions in the language are arithmetic operations. A graph-based representation for
this analysis can be found in [RHS95, SRH96]. That representation requires that the set
of program variables be available to construct the representation graphs. By the nature of
our context, we cannot, and do not, make such an assumption.

M ∈ Data = (Var→ Z>⊥) ∪ {>R}

Function values in Data are ordered under the usual pointwise ordering.

asgn(n, x, e) = λM. if isConstant(e,M) then M [x 7→ consVal(e,M)]
else M [x 7→ ⊥]

exp(e) = λM.M

where isConstant(e,M) returns true if the expression e can be shown to have a constant
value based on the values kept in the constant map M , and consVal(e,M) returns that

64

constant value1.
For the representation, R is a function giving values for variables. However, these val-

ues are actually sets of variables, integer literals, and binary expressions, meaning “the set
will be reduced to a constant c, if every element it contains eventually reduces to the con-
stant c”. Using this set, we effectively delay the meet operation, and gradually complete it
as information becomes available.

R = V ar → CSAnnot

CS = P (Exp ∪ {⊥})

Implicitly, a C ∈ CS is normalized to {⊥} if it contains ⊥ or two distinct integers.
As in the previous cases, the annotations are used to preserve information in condi-

tionals. A must annotation on a set of expressions indicates that the variable they define
is definitely assigned one of those expressions; a sur annotation indicates that some other
definition may apply to that variable (but may, of course, assign the same value to it that
these expressions do).

idR = λv.∅sur

asgnR(n, x, e) = (λv.∅sur)[x 7→ {e}must]
expR(e) = λv.∅sur

M1 ∧RM2 = λx.M1(x) ∧RM2(x)
= λx.let Cα ←M1(x), C ′α′ ←M2(x)

in (C ∪ C ′)α·α′

M1;RM2 = λx.semicolon(M1,M1(x),M2(x))
semicolon(M,Cα, C

′
must) = update(M,C ′)must

semicolon(M,Cα, C
′
sur) = (update(M,C ′) ∪ C)α

The function update(M,C) checks the constant map M for each variable found in the
elements of the set C, and if there exists a mapping inM for that variable, uses it to update
C. For example, if M(y) = {w, z} and C = {y + 1}, update(M,C) returns {w + 1, z + 1}.

The abs function, where i ∈ Z, is

abs(M) = λS.λx.let Cmust ← semicolon(S, S(x)must,M(x))
in if C = {i} then i else ⊥

Theorem 4.2.5. R for CP is an exact representation.

Proof. Given in the appendix.

1Precise definitions of isConstant and consVal depend on the kind of constant propagation chosen (e.g.
literal, copy, linear, or non-linear constant propagation [SRH96]).

65

4.2.5 Loop Invariants (LI)

We take the definition of a loop invariant as given in [ASU86]:

A statement inside a loop L is invariant if all the operands of the statement
either are constant, have all their reaching definitions outsideL, or have exactly
one reaching definition, and that definition is an invariant statement in L.

As a simplification we will compute the invariance information of a statement only with
respect to the innermost enclosing loop that surrounds the statement. We assume that
there exists a function loop(P) to obtain that innermost loop. We also assume that the
reaching definitions have been computed and are available for use in LI: RD(n, y) gives
the definitions of y that reach the node n; RDR(n) gives the RD representation for the node
n. (Alternatively, RD can be computed on-the-fly.)

Data is defined as a map containing the invariance information:

I ∈ Data = (Node ⇀ Bool) ∪ {>}

Data is ordered as follows:

I v I ′ if ∀n.I ′(n) is undefined or
I ′(n) v I(n) in the boolean lattice, where false @ true

The definitions of exp and asgn are

exp(e) = id

asgn(n, x, e) = λI.I[n 7→ ∀y ∈ vars(e).isInv(n, y, I)]

where isInv is defined as

isInv(n, y, I) = loop(n) is defined and
((∀d ∈ RD(n, y) . d is not contained in loop(n))
∨(∃d .RD(n, y) = {d} and I(d)))

isInv directly follows from the definition of loop invariants: Invariance of a node is depen-
dent on (1) the reaching definitions of a variable, or (2) a single node if there is only one
reaching definition. This also hints at the definition of a representation:

R = (Node ⇀ IV) ∪ {>R}
IV = P(V ar ∪Node ∪ {true, false})

The invariance information we keep per node, called IV , is a set that contains variables,
nodes, true, or false, where a variable stands for the dependence (1), and a node stands for
the dependence (2). The intuition is that if the IV set of a statement contains a node,
that node must become invariant for the statement to be invariant; if the set contains a

66

variable, the reaching definitions of that variable must eventually satisfy the conditions
for making the statement an invariant. If the available information is enough to conclude
that the statement is not invariant, the set contains false; if the only item in the set is true,
the statement is invariant. In other words, the IV is used to delay the computation of
invariance of a statement. As more information becomes available, IV is updated. Below
are the necessary definitions.

expR(e) = idR
asgnR(x, e, n) = {n 7→ vars(e) ∪ {true}}
M1 ∧RM2 = λn.M1(n) ∪M2(n)
M1;RM2 = M1] fix

(
λM ′2.λn . {updaten(s,M1]M ′2)|s ∈M2(n)}

)
where] is domain disjoint union of functions, and update is defined as

updaten(true,M) = true
updaten(false,M) = false
updaten(n′,M) = if M(n′) = {true} // n′ is invariant

then true
else if false ∈M(n′) // n′ is not invariant

then false
else n′ // cannot update yet, so keep n′

updaten(x,M) = let (K,G)← RDR(n) in
if there are no definitions of x in G
then x // cannot update yet, so keep x
else if there are multiple definitions of x in G

then if all the definitions are outside loop(n)
then true // any definition that may become available later on

// is guaranteed to be outside the loop as well
else false

else if there is a single definition d of x in G
then if d is outside loop(n) then true

else if x ∈ K
then if M(d) = {true} then true else d
else false

Finally, we give the definition of the abs function

abs(M) = λ I. I ∧ I ′ where I ′ is

fix

(
λI2.λn. let B ← {isInvR(n, s, I ∧ I2)|s ∈M(n)}

in B = {true}

)

67

and isInvR is a function that returns a boolean value:

isInvR(n, true, I) = loop(n) is defined
isInvR(n, false, I) = false
isInvR(n, n′, I) = loop(n) is defined and I(n′)
isInvR(n, x, I) = isInv(n, x, I)

Note that there is recursion in the definitions of ;R and abs. The recursion terminates
because it is not possible to have in a valid program two nodes which are solely dependent
on each other, or a node whose invariance is only dependent on itself.

4.2.6 Type Checking (TC)

Type-checking can also be staged by defining a representation. It also extends the language
with declarations and scope to be useful. Michael Katelman gives a detailed analysis of
this in his MS thesis [Kat06].

4.3 Framework for Backward Analysis

We can define a similar framework for backwards analysis. We directly start with the in-
termediate framework that contains break statements. To illustrate how the framework
would be affected by the change in the direction of the dataflow, let us first look at the di-
agrams in Figure 4.12 where the dataflow for a labelled statement containing break state-
ments is depicted for both forward and backward direction. Recall that in the forward
framework, we used the environment to carry the data that flow on the break edges. In
the backward framework, we use the environment for the same purpose. However, this
time, as the diagram in Figure 4.12 also indicates, the datum on a break edge is an input
into the node, rather than an output. For a labelled statement ` : P , recall that the forward
framework took the meet of data that comes along the break edges (i.e. abnormal exits
from P to label `) and the normal exit from P at the exit of the labelled statement.

In backward dataflow, note that the incoming data of P —the body of the labelled
statement— come not only from the normal execution path, but also along the break edges.
Thus, we need to put the input data of a labelled statement directly into the environment
before analyzing the body P ; there is no meet operation. For a break statement, there
cannot be any data coming from the normal execution path — no such path exists. The in-
coming data should be taken directly from the environment, and forwarded as the output
data. The dataflow for other syntactic constructs is straightforward. The formal definition
of the backward analysis framework is given in Figure 4.13.

Computation of representations for the backward analysis functions is presented in
Figure 4.14. The definition for the break statement and labelled statement deserves an

68

...

...

...

...P

...

...

...

...P

break `

break `

break `′

`:

break `

break `

break `′

`:

Figure 4.12: The flow of data for the labelled statement ` : P in the forward and backward
direction. Note that in backward analysis, there may be multiple entrance points into a
node as opposed to single entrance point in the forward analysis.

explanation; the definition of other syntactic constructs is straightforward. The function
RJP K returns a pair of an environment and a representation similar to the one for forward
analysis. The second item of this pair (i.e. the representation) stands for the dataflow
function along the normal execution path. The first item (i.e. the environment) contains for
each label a representation which stands for the meet of dataflow functions along the break
edges for the corresponding label. The function RJP K returns (>EnvR

[` 7→ idR], >R) for a
break statement, because a break statement does not have a normal execution path (hence
>R is returned as the representation) and it forwards any incoming data along its break
edge without any modification (hence >EnvR

[` 7→ idR] is returned as the environment).
For a labelled statement ` : P , the environment that comes from the analysis of the body P
is updated to map the label ` to >R because all the break edges for the label ` are enclosed
within the labelled statement; there are no dangling break edges for label `. Now that we
know the scope of the label, we take the meet of the representation of the body and the
representation for the label, and return it as the second item of the pair. In other words,
the data that arrives at the exit of the labelled statement are the data that flow along the
normal execution path plus the data that flow along the break edges.

The abstraction function for the intermediate backward framework is

absE(ηR, r) = λ(η, d).(η, abs(r)(d) ∧
∧

`∈Label

abs(ηR(`))(η(`)))

69

BJskipK = id

BJx = eK = λ(η, d).(η, asgn(x, e)(d))

BJbreak `K = λ(η, d).(η, η(`))

BJ` : P K = λ(η, d). let (η′, d′)← BJP K(η[` 7→ d], d)
in (η′[` 7→ >Data], d′)

BJP1;P2K = BJP2K;BJP1K

BJif(e) P1 else P2K = λ(η, d). let (η1, d1)← BJP1K(η, d)
(η2, d2)← BJP2K(η, d)

in (η, exp(e)(d1 ∧ d2))

Figure 4.13: Intermediate framework for backward analysis.

RJskipK = (>EnvR
, idR)

RJx = eK = (>EnvR
, asgnR(x, e))

RJbreak `K = (>EnvR
[` 7→ idR], >R)

RJ` : P K = let (η, r)← RJP K
in (η[` 7→ >R], r ∧R η(`))

RJP1;P2K = let (η1, r1)← RJP1K, (η2, r2)← RJP2K
in (η1 ∧R (η2 ;R r1), r2 ;R r1)

RJif(e) P1 else P2K = (RJP1K ∧R RJP2K) ;R expR(e)

Figure 4.14: Representation for framework of Figure 4.13.

Theorem 4.3.1. For a legal program P , if the DFFun functions are distributive (i.e. f(d ∧ d′) =
f(d) ∧ f(d′)), then absE(RJP K) = BJP K.

Proof. By induction on the structure of P .

For the full framework which builds a node map at the top node, the intermediate
framework can again be extended naturally as in forward analysis (Figure 4.9). However,
definingR is not that straightforward. We need to keep an environment for every node in
the node-map. This is because in the backward analysis, there may be multiple entrance
points into a node as opposed to a single entry in the forward analysis; see Figure 4.12
again for an example. The representation we keep associated to a node stands for the
dataflow function when the data enter from the normal execution path; the environment
keeps the representations that stand for the abnormal execution paths (i.e. along break
edges). So the type of the functionR is

R : Pgm→ (Node→ (EnvR ×R))× EnvR ×R

70

BJn : skipK = id

BJn : x = eK = λ(ϕ, η, d).(ϕ[n 7→ asgn(x, e)(d)], η, asgn(x, e)(d))

BJn : break `K = λ(ϕ, η, d).(ϕ[n 7→ η(`)], η, η(`))

BJn : (` : n1 : P)K = λ(ϕ, η, d). let (ϕ′, η′, d′)← BJn1 : P K(ϕ, η[` 7→ d], d)
in (ϕ′[n 7→ d′], η′[` 7→ >Data], d′)

BJn : (n1 : P1;n2 : P2)K = λ(ϕ, η, d). let (ϕ′, η′, d′)← (BJn2 : P2K;BJn1 : P1K)(ϕ, η, d)
in (ϕ′[n 7→ d′], η′, d′)

BJn : if(e) n1 : P1 else n2 : P2K = λ(ϕ, η, d). let (ϕ1, η1, d1)← BJn1 : P1K(ϕ, η, d)
(ϕ2, η2, d2)← BJn2 : P2K(ϕ, η, d)

in ((ϕ1 ∪ ϕ2)[n 7→ exp(e)(d1 ∧ d2)], η, exp(e)(d1 ∧ d2))

Figure 4.15: Full framework for backward analysis.

RJn : skipK = ({n 7→ (>EnvR
, idR)}, >EnvR

, idR)

RJn : x = eK = ({n 7→ (>EnvR
, asgnR(x, e))}, >EnvR

, asgnR(x, e))

RJn : break `K = ({n 7→ (>EnvR
[` 7→ idR],>R)}, >EnvR

[` 7→ idR], >R)

RJn : (` : n1 : P)K = let (ϕ, η, r)← RJn1 : P K
in (closeLabel(`, ϕ[n 7→ (η, r)]), η[` 7→ >R], r ∧R η(`))

RJn : (n1 : P1;n2 : P2)K = let (ϕ1, η1, r1)← RJn1 : P1K, (ϕ2, η2, r2)← RJn2 : P2K
in (λn′. if ϕ2(n′) defined then ϕ2(n′)

if ϕ1(n′) defined then let (η′, r′)← ϕ1(n′)
in (η′ ∧R (η2;R r′), r2;R r′)

if n′ = n then (η1 ∧R (η2 ;R r1), r2 ;R r1),
η1 ∧R (η2 ;R r1), r2 ;R r1)

RJn : if(e) n1 : P1 else n2 : P2K = let (ϕ1, η1, r1)← RJn1 : P1K, (ϕ2, η2, r2)← RJn2 : P2K
in ((ϕ1 ∪ ϕ2)[n 7→ (r1 ∧R r2);R expR(e)],

(η1 ∧R η2);R expR(e),
(r1 ∧R r2);R expR(e))

Figure 4.16: Representation for framework of Figure 4.15.

71

Analogous to how RJP1;P2K in the forward representation function of Figure 4.10 up-
dates the node-map for each node in P1 and P2,RJ` : P K andRJP1;P2K in the full backward
representation function update each mapping in their node-maps as well. Full versions of
B andR are given in Figures 4.15 and 4.16, respectively.

In Figure 4.16, closeLabel is defined as

closeLabel(`, ϕ) = λn. let (η, r)← ϕ(n) in (η[` 7→ >R], r ∧R η(`))

The abs function for the full backward framework is defined as

absF (ϕ, η, r) = λ(ϕ′, η′, d′). let ϕ′′ ← λn. let (η, r)← ϕ(n)
in abs(r)(d′) ∧

∧
`∈Label abs(η(`))(η′(`))

in (ϕ′ ∪ ϕ′′, η′, abs(r)(d′) ∧
∧
`∈Label abs(η(`))(η′(`)))

Theorem 4.3.2. For a legal program P , if the DFFun functions are distributive (i.e. f(d ∧ d′) =
f(d) ∧ f(d′)), then absF (RJP K) = BJP K.

Proof. Similar to the proof for the intermediate framework (Theorem 4.3.1).

4.3.1 Live Variables (LV)

Data is defined as
L ∈ Data = (P(Var)) ∪ {>}

and is ordered by reverse set inclusion.

asgn(n, x, e) = λL.(L \ {x}) ∪ vars(e)
exp(e) = λL.L ∪ vars(e)

R = P(Var)2

asgnR(n, x, e) = ({x}, vars(e))
expR(e) = (∅, vars(e))

Definitions of idR, ;R, ∧R and abs are the same as in RD (Section 4.2.1).
Note that LV is a distributive analysis.

4.3.2 Very Busy Expressions (VBE)

The definitions, except the following, are the same as in AE.

asgn(n, x, e) = λE.(E \ Ex) ∪ sub(e)
asgnR(n, x, e) = ({x}, {e′must | e′ ∈ sub(e)})

Note that VBE is a distributive analysis.

72

HotSpot libgcj Kaffe
Sample Program RD CP TC RD CP TC RD CP TC
Big-plug 2.10 1.19 3.65 7.43 3.78 5.15 9.73 5.23 5.63
Small-plug-A 2.17 1.12 3.50 6.96 3.91 4.28 10.7 4.62 5.55
Small-plug-B 2.40 1.14 2.97 4.78 3.41 4.39 7.03 4.65 5.40
Two-plug 1.67 1.17 1.66 2.59 2.19 2.90 3.83 2.83 3.18
Fib1 ([Kam04]) 1.10 1.07 1.31 1.24 0.93 1.17 1.64 1.26 1.05
Fib2 ([Kam04]) 1.23 1.16 0.67 1.48 0.99 1.18 2.02 1.47 1.05
Sort ([KCC00a]) 1.48 1.21 1.92 1.64 1.08 1.59 1.86 1.29 1.66
Huffman ([Kam04]) 1.11 1.29 0.30 1.04 0.93 1.02 1.31 1.30 0.95
Marshalling 1 ([AJKC05]) 12.37 3.93 28.27 34.83 15.42 9.34 49.64 18.92 12.04
Marshalling 2 ([AJKC05]) 2.01 1.75 16.01 1.83 1.33 1.86 2.59 2.27 1.47

Table 4.1: Benchmarking results. The numbers show the speedup factor: ratio of the base
case to the staged case.

4.4 Performance

We are interested in the run-time costs of two methods of doing static analysis. One method
is to fill in the holes and analyze the complete program at run time (the base analysis); the
other is to use our staged analysis.

The benchmarks we present are of two kinds: artificial benchmarks illustrate how per-
formance is affected by specific features in a program; realistic benchmarks are program
generators drawn from previous publications.

For some analyses, one needs only the dataflow information for the root node; exam-
ples are uninitialized variables and type-checking. For most, we need the information at
many, though not necessarily all, nodes. (Note that the base case must visit every node at
run-time, even if it is only interested in a subset.)

We implemented the framework in Java. In Table 4.1, we present the performance of
three analyses, on a variety of benchmark programs, as ratios between the base and the
staged analyses; higher numbers represent greater speed-up. We run the experiments in
three different Java runtime environments: Sun’s HotSpot (with the client setting), GNU’s
libgcj, and Kaffe. For reaching definitions (RD) and constant propagation (CP), we per-
form the analysis at every assignment statement (roughly half the nodes in the programs).
For type checking (TC), we analyze only the top node. Benchmarking was done on a Linux
machine with 1.5 GHz CPU and 1GB memory.

We briefly describe the benchmarks used in Table 4.1.

• Big-plug is a small program with one hole, filled in by a large plug.

• Small-plug-A is a large program with a hole near the beginning, filled in by a small
plug.

73

• Small-plug-B is a large program with a hole near the end, filled in by a small plug.

• Two-plug is a medium-sized program with two holes, filled in by medium-sized
plugs.

• Fib1 and Fib2 are two versions of a Fibonacci function divided into small pieces for
exposition [Kam04].

• Sort is a generator that produces a sort function by inlining the comparison operation
[KCC00a].

• Huffman is a generator that turns a Huffman tree into a sequence of conditional
statements [Kam04].

• Marshalling 1 is part of a program that produces customized serializers in Java
[AJKC05]; characteristics much like Big-plug.

• Marshalling 2 is a different part of the same program; it has many holes and many
small plugs.

As often happens, the invented benchmark examples show the best performance im-
provements. Our approach does result in slow-downs in some cases; the worst cases are
Fib2 and Huffman, both of which consist of many holes and small plugs. Overall, the
results are quite promising.

4.5 Related Work

Our work shares with several others a concern with representation of dataflow functions,
and some of our representations have appeared previously. In the area of interprocedural
dataflow analysis, Sharir and Pnueli [SP81] introduced the idea of summarizing the analysis
of an entire procedure. Rountev, Kagan and Marlowe [RKM06] discuss concrete represen-
tations for these summary functions, to allow for “whole program” analysis of programs
that use libraries; our representation for reaching definitions (RD) appears there. Reps,
Horwitz, and Sagiv [RHS95] give representations for a class of dataflow problems, in-
cluding reaching definitions and linear constant propagation. (Interprocedural analysis is
similar to staged analysis in that one can think of the procedure call as a “hole,” and the
procedure as a “plug.” However, the control flow issues are very different; that work must
deal with the notion of “valid” paths — where calls match returns — while we must deal
with multiple-exit control structures.) To parallelize static analyses, Kramer, Gupta and
Soffa [KGS94] partition programs and analyze each partition to produce a summary of its
effect on the program as a whole.

In hybrid analysis [MR90], Marlowe and Ryder partition a program based on strong
components, representing dataflow functions for each component. A representation for

74

reaching definitions that is “adequate” in our sense is given there. Marlowe and Ryder
also talk about incremental analysis where the problem is to maintain the validity of an
analysis during source program editing. But note the subtle but important distinction
between incremental analysis and staged analysis: there, any node can change at any time;
here, some parts of the program are fixed and some unknown, and the goal is to fully
exploit the fixed parts.

In approximate analysis [SGM+03], the meta-program is analyzed to determine as much
as possible about what the generated program will look like. This approach has the advan-
tage of avoiding run-time analysis entirely, but the disadvantage that the analysis results
are very approximate.

Lastly, we mention the work of Chambers et al. [Cha02]. That work has the ambitious
goal of automatically staging compilers: a user can indicate when some information will
first become available, and the system will produce an optimizer to efficiently perform the
optimization at that time. The broad goals of that work — optimizing run-time compi-
lation — are the same as ours. However, we are much less ambitious about the use of
automation (and, indeed, that work accommodates a limited number of optimizations);
we are, instead, providing a mathematical framework that can facilitate the manual con-
struction of staged analyses.

4.6 Conclusions

We have presented a framework for static analysis of ASTs, including break statements,
that allows the analysis to be staged, when the representations are adequate. The method
has application to run-time program generation: by optimizing the static analysis of pro-
grams, it can speed up overall run-time code generation time. We presented representa-
tions for several data-flow analyses, namely reaching definitions, available expressions,
constant propagation, loop invariance, live variables, and very busy expressions. We pro-
vided experimental results to demonstrate that staging can achieve significant runtime
performance improvement. The technique has not been integrated into a program gener-
ation system; we leave this as a future work.

75

Chapter 5

Record Calculus as a Staged Type
System

In this chapter we focus on the second challenge of program generation: How can we
guarantee that a generator will produce type-safe code? Several program generation type
systems investigate the same question [Dav96, DP96, KKcS08, KYC06, MTBS99, OMY01,
Rhi05, SGM+03, TN03, YI06]. We show that this problem reduces to the problem of type
checking in record calculus, which is well-studied and mature. This allows us to reuse
several properties already proved in the record calculus domain, giving us a powerful and
sound type system that guarantees type-safety of generated programs.

Major results in this chapter include:

• Definition of a translation from a program generation language to the record calcu-
lus.

• Showing that evaluating a program generator in the staged operational semantics
is equivalent to evaluating its translation in the record operational semantics. This
result brings the preservation property to the record type system with respect to the
staged semantics for free.

• Proving that the record calculus provides a sound type system with respect to the
staged operational semantics.

• Showing that the record calculus type system is equal to the λopenpoly [KYC06] type
system.

We then show that

• the type system can gracefully be extended with subtyping constraints by using
already-existing record subtyping definitions from the literature. A staged type sys-
tem with subtyping constraints, to our knowledge, is new.

• pluggable declarations can be added to the language. Pluggable declarations and
subtyping provide a solution to type-checking the “library specialization problem”
[AK09].

• side-effecting expressions such as references can also be handled by an improved
version of the translation.

76

The results elaborated in this chapter show that a very powerful staged type system can
be obtained by using record calculus properties.

This chapter is organized as follows: In Section 5.1 we give intuition of why record
calculus and program generation are closely related. Section 5.2 informally discusses how
a staged type system works and what we expect from it, and motivate the need for sub-
typing. We formally introduce the program generation language and the record calculus
in Sections 5.3 and 5.4, respectively. Section 5.5 gives the definition of the translation from
the staged language to the record calculus. Section 5.6 states the formal relationship be-
tween the two calculi. In Sections 5.7 through 5.9 we discuss how to extend the languages,
translation, and the type system with subtyping, pluggable declarations, and references.
We provide a comparison of our contributions to the existing work in Section 5.10. We
conclude the chapter in Section 5.11. Proofs of major lemmas and theorems of this chapter
are given in the appendix.

5.1 Using Records for Staged Computing

A quotation defines a program piece that is not executed until it is “run”. Consider 〈2+3〉.
This expression directly evaluates to the value 〈2+3〉, not 〈5〉. “2+3” is executed only when
the quoted expression is “run” as in letx = 〈2 + 3〉 in run(x), which evaluates to 5. This fact
brings a question about the relation between quoted expressions and closures. Recall that
in almost any programming language, expressions guarded by lambda abstractions are not
executed until the function is applied. We can represent a quoted expression as a lambda
abstraction, and “run” as function application. 〈2 + 3〉 can be represented as λz.2 + 3,
which directly evaluates to the closure λz.2+3 without executing 2+3. So, we can rewrite
letx = 〈2 + 3〉 in run(x) as letx = λz.2 + 3 inx(0), where the application evaluates 2 + 3
and results in 5. The name of the function parameter and the function argument are not
important in this example. So, we have an indication that there is a close relation between
lambda abstractions and quoted expressions, as well as “run” and function application.

Let us now consider a more complicated example which splices a fragment into an-
other one using antiquotation: letx = 〈2 + 3〉 in 〈4 + 8(x)〉. This piece of program eval-
uates to 〈4 + (2 + 3)〉. The body of the quoted expression 〈2 + 3〉 is still not executed,
but “extracted out” and spliced into the hole as denoted by the antiquotation. To give
a similar effect, we can consider converting the antiquotation to function application:
letx = λz.2+3 inλw.4+x(0). Because the function application takes place under a lambda
abstraction, the expression “2 + 3” is still not executed, until the context is.

The two examples above were simple in the sense that the quoted expressions were
closed; they did not contain any free variables. Consider 〈y〉. The variable y will obtain
a meaning when the expression is spliced into a context that provides a binding for y.
For instance, in let c = 〈y〉 in 〈let y = 2 in 8(c) + 3〉, the variable y is an integer. This bind-

77

JcKn = c

JxKn = rn ·x

Jλx.eKn = λx. let rn = rn with {x = x} in JeKn

Jfix f(x). eKn = fix f(x). let rn = rn with {f = f, x = x} in JeKn

Je1e2Kn = Je1KnJe2Kn

Jletx = e1 in e2Kn = let rn = rn with {x = Je1Kn} in Je2Kn

J〈e〉Kn = λrn+1. JeKn+1

J 8(e)Kn+1 = JeKn rn+1

Jrun(e)Kn = JeKn{}

Jlift(e)Kn = λrn+1.JeKn

Figure 5.1: A first attempt on a transformation from staged expressions to record calculus
expressions. Variable names are also used as record field labels in the target language. The
superscript n in the translation denotes the stage. The environment at stage n is repre-
sented with the record variable rn.

ing is provided by the code fragment surrounding the antiquotation. Hence, it makes
sense to consider a quoted expression as a lambda abstraction that takes in the bindings
of its free variables rather than ignoring the parameter. The “bindings” are nothing but
an environment. An occurrence of a variable is then a lookup in the environment. So,
using the dot notation e · ` to access the field ` of the record e, we can rewrite 〈y〉 as
λr.r ·y. Note that quoted expressions also can define and use variables within themselves.
These bindings can be considered as updates to the environment. So, an antiquotation
becomes a function application that passes the up-to-date environment to the antiquoted
fragment. The program above, let c = 〈y〉 in 〈let y = 2 in 8(c) + 3〉, can be rewritten as
let c = (λr.r ·y) inλr.let r = rwith {y = 2} in c(r) + 3, where ewith {` = e′} is the operation
that returns a record exactly the same as e, with the exception that field ` maps to e′. The
“run” operation is also a function application similar to an antiquotation, but it should pass
the empty environment to the fragment, because only complete (i.e. closed) fragments are
runnable.

The intuitive closeness between the staged language and the record calculus immedi-
ately suggests a systematic translation. In Figure 5.1, we give a transformation to convert
staged expressions to record calculus expressions. The superscript n in the translation de-
notes the stage. The environment at stage n is represented with the record variable rn.
Note that the environment rn is simply a variable; e.g. r0 is the environment of the meta
level, r1 is the environment of the first stage. Assuming that record variables do not exist
in the staged calculus, we do not get any name collision. The translation converts a vari-
able x to a look-up in the environment of the current stage, denoted rn ·x. Abstractions

78

and let-bindings update the current environment with a new binding. In this update, the
bound variable name is used as the field name in the environment. Quoted expressions
are converted to functions that take as input a record representing the environment in the
next stage. Antiquotations are translated to function applications where the current envi-
ronment becomes the operand. run(·) is also converted to a function application, but this
time the operand is the empty record. fix f(x) is the fix-point operator for the function f
with argument x, and is used for recursion. lift raises a value to the next stage; hence the
translation introduces an abstraction.

We give this first attempt of a translation; however, we will not use it in the upcoming
sections. We will define better versions; the first improvement will provide more useful
results in proving formal properties, the second improvement will handle updatable ref-
erences as well. We initially give this version because it is more intuitive and easier to
understand than the other improved versions. Below we give some examples to illustrate
the translation process. The reader is encouraged to check that both sides would reduce to
equivalent terms when simplified (after substituting r0 with the empty record in transla-
tions). To improve readability of the examples, we assume existence of constructs such as
the if-expression, lists, head (hd) and tail (tl) operators, addition, subtraction, etc. It would
be straightforward to add these into the language. All the translations take place starting
from stage 0 as denoted by the superscript.

Jλc.〈letx = 5 in 8(c)〉K0 = λc.let r0 = r0 with {c = c} in

(λr1.let r1 = r1 with {x = 5} in r0 ·c(r1))

Jlet c = 〈x+ 8〉 in

let g = 〈λx. 8(c)〉 in

(run(g))(10)K0

=
let r0 = r0 with {c = λr1.r1 ·x+ 3} in

let r0 = r0 with {g = λr1.λx.let r1 = r1 with {x = x} in r0 ·c(r1)} in

(r0 ·g({}))(10)

The function below is the factorial function and is written completely in stage 0.

Jfix fact(n). if n = 0 then 1
else fact(n− 1)× nK0 =

fix fact(n). let r0 = r0 with {fact = fact, n = n} in

if r0 ·n = 0 then 1
else (r0 ·fact)(r0 ·n− 1)× r0 ·n

The following example, adapted from [CX03], generates a specialized polynomial cal-
culation function for the polynomial 4 + 6x+ 2x2; specifically λx.4 + (x× (6 +x× (2 + 0))).
A polynomial is represented as a list of integer values; in this case [4; 6; 2].

Jlet poly = fix gen(p). if p = nil then 〈0〉
else 〈 8(lift(hd p)) + x× 8(gen(tl p))〉

in run〈λx. 8(poly [4; 6; 2])〉 K0 =

79

let r0 = r0 with {poly = fix gen(p). let r0 = r0 with {gen = gen, p = p} in

if r0 ·p = nil then λr1.0
else λr1.(λr2.hd (r0 ·p))(r1) + r1 ·x× (r0 ·gen(tl r0 ·p))(r1)}

in (λr1.λx.let r1 = r1 with {x = x} in (r0 ·poly [4; 6; 2])r1){}

Using a record look-up allows for distinguishing variables with the same name in dif-
ferent stages. The examples below illustrate such cases. Note how the occurrence of the
variable y in stage 0 is separated from the occurrence in stage 1.

Jλy.〈y + 8(y)〉K0 = λy.let r0 = r0 with {y = y} in (λr1.r1 ·y + (r0 ·y)(r1))

Jλy.〈λy. 8(y)〉K0 = λy.let r0 = r0 with {y = y} in (λr1.λy.let r1 = r1 with {y = y} in (r0 ·y)(r1))

Being able to translate staged expressions to record calculus expressions brings the
question of whether a record type system could be used to type-check staged expressions.
This would be desired because record type systems have been studied extensively and
have grown mature. The ultimate goal is to use the record type system to decide whether
it is safe to execute a staged expression. In particular, we want to be able to say “the staged
expression e is type-safe if JeK is type-safe.” In this chapter we show that this is feasible;
the record calculus gives a sound type system for staged computation.

5.2 Type-Checking Program Generators

In this section we give an informal introduction to staged typing. Being one of the state-
of-the-art languages for program generation, we take λopenpoly [KYC06] as our starting point
for a staged type system. We show, by examples, how the type system works, and why an
extension with pluggable declarations and subtyping would be desired.

Recall that we take PG by program construction as our context. This means that any free
variable of a fragment will be captured by its surrounding fragment after filling in a hole,
as opposed to PG by partial evaluation’s requirement of having a cross-stage binding for
every free variable. The λopenpoly , being a PG by program construction system, reflects this
property in the types it assigns to fragments. A code piece is given a type of the form
�(Γ . A) with the meaning “the quoted expression will result in a value of type A if it is
used in a context that provides the environment Γ.” For instance, the fragment 〈x + 1〉
could be given the type �({x : int} . int): in an environment that binds x to int, the
fragment will result in a value of type int. Row variables [Wan91, Rém94] are used as
part of environments for flexibility and quantification. For instance, the above fragment
can be typed as �({x : int}ρ . int), which can be instantiated to types like �({x : int, y :
bool} . int) or �({x : int, z : int, w : bool} . int) allowing for usage in more contexts.

80

The function λc.〈letx = 1 in 8(c)〉 can be typed as �({x : int}ρ . α) → �(ρ . α)1 carrying
the meaning that the argument of the function has to be a fragment that will receive an
environment that maps x to int. If the function is applied on 〈x+y〉, which could be typed
to�({x : int, y : int}ρ′.int), the application could be given the type�({y : int}ρ′′.int).
This means that the result of the application should be used in a context that provides an
integer value bound to y. Note that the condition for x disappears from the type because
the fragment itself binds it to an integer.

We use the operator run(·) for bringing fragments to stage-0 and executing. Only “com-
plete” program fragments can be run. Therefore, λopenpoly allows running a fragment only if it
can be given a type�(∅.A), where the empty incoming environment means the fragment
does not have any unbound variables. Fragments making other assumptions about outer
environments are not runnable.

Library Specialization

In [AK09], we gave a comparative study of several techniques addressing the “library
specialization” problem. One of the techniques is program generation. We now use this
example to motivate two extensions to the staged type system: pluggable declarations and
subtyping.

Very briefly, the problem is this: Given a library with several features, how can we
exclude unneeded features so that the library becomes lightweight? The main motivation
is to make the library free of unnecessary fields so that its memory fingerprint becomes
smaller. Program generation allows customizability of the library by making it possible to
include/exclude feature-related code fragments in the library. Take the linked-list class in
Figure 5.2 with the “counter” feature that counts the number of operations performed on
the list object. To make the counter feature optional, we can write the generator function
genLib as shown in the same figure, that takes feature-related code fragments as arguments
(cf stands for “counter field”, ci stands for “counter increment”).

Invoking the genLib function with the arguments 〈int counter=0;〉 and 〈counter++;〉would
yield a linked-list class with the counter feature included. Passing the empty-code argu-
ments 〈〉 and 〈〉 produces a linked-list that does not contain the feature, relieving the class
from carrying the unneeded field and computation.

1Technically row variables are kinded based on their domains [Rém94], and this type is really �({x :
int}ρ{x} . α) → �({x : θ}ρ{x} . α), where ρ{x} means that x is not in the domain of ρ, and θ is a “field
variable” that stands for a type or the absence of the binding. For brevity, we follow the notational convention
used in [KYC06] and denote {x : θ}ρ simply as ρ, and ρ{x} as ρ when the full notation can be inferred from
the context.

81

c l a s s LinkedList {
Object value ;
LinkedList next ;
i n t counter =0;

void add (Object z) {
counter ++;
. . .

}
void reverse () {

counter ++;
. . .

}
. . .

}

Code genLib (Code cf , Code c i) {
return 〈

c l a s s LinkedList {
Object value ;
LinkedList next ;
8 (c f)

void add (Object z) {
8 (c i)
. . .

}
void reverse () {

8 (c i)
. . .

}
. . .

} 〉 ;
}

Figure 5.2: Writing a customizable library using program generation.

Pluggable Declarations

A major motivation of the library specialization problem is to be able to exclude fields. Us-
ing program generation to do this requires that the program generation language supports
quoting and filling in holes with declarations; we refer to this language feature as “plug-
gable declarations”. In λopenpoly , only expressions can be quoted. In Section 5.8 we discuss
how it can be extended with pluggable declarations (the extension is actually a syntactic
sugaring that could be expressed using existing program generation facilities and higher-
order functions).

Assume that λopenpoly provides the ability to quote declarations with the syntax 〈x = e〉,
and quoted declarations can be plugged into let-bindings using the syntax let 8(·) in e.
Analogous to a quoted expression, a quoted declaration is given a type ♦(Γ1 . Γ2) with
the intuition that “the declaration, when used in a context that provides the environment
Γ1, will output the environment Γ2.” For example, the declaration 〈x = y+1〉 can be typed
to ♦({y : int}ρ . {y : int, x : int}ρ). The function λd.〈let 8(d) inx + 1〉 can take the type
♦(ρ1 . {x : int}ρ2)→ �(ρ1 . int) which carries the meaning that the declaration d should
let through an environment that binds x to an int.

Assume also the existence of tuples and arithmetic operations (both would be straight-
forward extensions). Then, a simple library generator could be abstracted out as below.
Suppose for now that the library class contains only one method, v stands for the field of
the class, and we return a single function to model the class. Again, cf stands for “counter
field” and ci stands for “counter increment”.

82

genLib = λcf. λci. 〈let v = 0 in

let 8(cf) in

(λz. 8(ci)...v + z)〉

We can give the following type to the genLib function above:

∀ρ1, ρ2, γ. ♦({v : int}ρ1 . {v : int}ρ2)→ �({v : int, z : int}ρ2 . γ)→ �(ρ1 . int→ int)

The return type of the generator is �(ρ1 . int → int), which names the outermost
environment of the returned code fragment as ρ1. Then, inside the quoted fragment, a
binding for v is made. Hence, the incoming environment of cf is {v : int}ρ1. Because of
the lambda abstraction, a binding for z will be added to the environment that comes out
of cf before it goes into ci. Also, this environment has to contain a binding v:int because v

is being used as an integer in the body of the method. The type of genLib encapsulates all
this information.

The function genLib can be applied on appropriate arguments to generate the desired
code. One such application2 is

genLib 〈cnt = ref 0〉 〈cnt:=!cnt + 1〉

Substituting ρ1 with ∅, ρ2 with {cnt : int ref }, and γ with int gives the type ♦({v : int}.
{v : int, cnt : int ref }) for the first parameter, and�({v : int, z : int, cnt : int ref }.int)
for the second parameter of the function. Note that the arguments 〈cnt = ref 0〉 and
〈cnt:=!cnt + 1〉, respectively, have these types as well, making the application legitimate.
The result then has type �(∅ . int→ int), which is runnable.

Another possible application of the generator is genLib 〈〉 〈0〉, which stands for the case
when the feature is excluded. (The second argument is 〈0〉 instead of 〈〉 because we need
to provide an expression to the generator function.) This application results in another
runnable code value with the same type �(∅ . int → int). If the generator is applied as
genLib 〈〉 〈cnt:=!cnt + 1〉 the type is �({cnt : int ref }ρ . int → int). Since the input
environment of this type is not empty, the type system does not allow evaluation of the
code value via run(·).

Subtyping

We now slightly modify the library generator example to illustrate the need for the second
extension: subtyping. Suppose now the library that will be generated contains two base
methods, and hence two uses of ci.

2This example contains updatable references. We do not include references initially in the formal presen-
tation. References are added later in Section 5.9.

83

genLib = λcf. λci. 〈let v = 0 in

let 8(cf) in

(λz. 8(ci)...v + z),
(λy. 8(ci)...y× v)〉

The environment that goes into the first antiquoted ci is {v : int, z : int}ρ2. However,
the incoming environment of the second use is {v : int, y : int}ρ2. Had we the chance to
give a polymorphic type to ci such as ∀ρ.�({cnt : int ref }ρ . int), we could instantiate
appropriately for the two different uses above. However, because ci is an argument of
the generator function, it cannot be used polymorphically (unless we enter the dangerous
waters of undecidability and use higher-rank polymorphism); every occurrence of ci has
to assume the exact same type. Since the type system has to be conservative because of the
possibility that ci may include y or z as a free variable, the derived type for ci says that both
z and y exist in the incoming environment of ci. So the type given to the generator is

∀ρ1, ρ2, γ. ♦({v : int}ρ1 . {v : int, y : int, z : int}ρ2)→ �({v : int, y : int, z : int}ρ2 . γ)

→ �(ρ1 . (int→ int) ∗ (int→ int))

In this type, the incoming environments of both uses of ci are {v : int, y : int, z :
int}ρ2, which match exactly the expected environment of ci, as would be required by the
type system. However, now an application of the generator that used to be runnable (e.g.
genLib 〈〉 〈0〉) gets the type �({y : int, z : int}ρ) — not a runnable type.

Subtyping can get around this problem. We do not have to feed a code fragment with
the exact environment that it expects. We can provide a richer environment that still sat-
isfies the fragment’s expectations. Take 〈x + 1〉 with the type �({x : int} . int). It is
safe to use this fragment in the environment {x : int}, or in {x : int, y : bool}, or in
{x : int, w : bool, k : int → int}. As long as the environment provides {x : int} we are
fine. This is where subtyping comes into play. Recall that for the above example, the envi-
ronment that goes into the first antiquoted ci is {v : int, z : int, y : θ1}ρ2, and the second
use is {v : int, z : θ2, y : int}ρ2. If we give ci the type {v : int}ρ2, using the properties

{v : int, z : int, y : θ1}ρ2<:{v : int}ρ2

{v : int, z : θ2, y : int}ρ2<:{v : int}ρ2

we can successfully obtain a runnable type as expected. We give in Section 5.7 more details
of subtyping and show how Pottier’s subtyping constraints [Pot00b] can be used to come
up with a staged type system with subtyping that solves the problem of having superflu-
ous requirements on an incoming environment.

84

x ∈ V ar
c ∈ Constant
e ∈ Exp ::= c | x | λx.e | λ∗x.e | fix f(x). e | e e | letx = e in e

| 〈e〉 | 8(e) | run(e) | lift(e)

Figure 5.3: Syntax of λgenpoly.

FV n(c) = ∅
FV 0(x) = {x}

FV n+1(x) = ∅
FV 0(λx.e) =FV 0(e) \ {x}

FV n+1(λx.e) =FV n+1(e)
FV n(λ∗x.e) =FV n(λx.e)
FV n(〈e〉) =FV n+1(e)

FV n+1(8(e)) =FV n(e)

FV n(e1e2) =FV n(e1) ∪ FV n(e2)
FV 0(letx = e1 in e2) =FV 0(e1) ∪ (FV 0(e2) \ {x})

FV n+1(letx = e1 in e2) =FV n+1(e1) ∪ FV n+1(e2)
FV 0(fix f(x). e) =FV 0(e) \ {f, x}

FV n+1(fix f(x). e) =FV n+1(e)
FV n(run(e)) =FV n(e)
FV n(lift(e)) =FV n(e)

Figure 5.4: Finding the stage-0 free variables of λgenpoly expression.

5.3 Staged Language

In this section we give the formal definition of the staged language we use. The language is
defined based on λopenpoly [KYC06] — an ML-like language that supports program generation
with freely-open fragments, references, let-polymorphism, and variable hygiene. For the
moment we exclude references and open3, but add a fix-point operator to have recursion,
and call this language with core program generation facilities λgenpoly. The syntax of the
language is given in Figure 5.3. λ∗ is hygienic variable binding; it uniquely renames the
bound variable to avoid capturing a variable after a fragment in plugged in the scope of the
binding. lift(·) raises a value to the next stage. Extension of the language with references
and pluggable declarations is discussed later.

We use the syntax 〈·〉 for quotation (box in λopenpoly), and 8(·) for antiquotation (unbox1

in λopenpoly). A quotation denotes a computation in the next stage whereas an antiquotation
denotes a computation in the previous stage. There is no multi-stage antiquotation like
λopenpoly ’s unboxk. This can be achieved by nesting antiquotations k times. We use run(·),
instead of λopenpoly ’s unbox0 to evaluate code values.

5.3.1 Auxiliary Definitions

In this section we give auxiliary definitions that are used in the operational semantics and
the type system of the staged calculus.

Definition 5.3.1. The domain of a function f is denoted as dom(f).
3open is a syntax-directed subtyping operator restricted to closed fragments. Our extension with subtyp-

ing, discussed later in the chapter, subsumes open.

85

c[x\e]n = c
x[x\e]0 = e
y[x\e]0 = y, if y 6= x

y[x\e]n+1 = y
(λx.e)[x\e′]0 = λx.e
(λy.e)[x\e′]0 = λz.e[y\z]0[x\e′]0

where z is fresh and y 6= x
(λy.e)[x\e′]n+1 = λy.e[x\e′]n+1

(λ∗x.e)[x\e′]0 = λ∗x.e
(λ∗y.e)[x\e′]0 = λ∗z.e[y\z]0[x\e′]0

where z is fresh and y 6= x
(λ∗y.e)[x\e′]n+1 = λ∗y.e[x\e′]n+1

(fix f(y). e)[x\e′]n = similar to abstraction
(e1e2)[x\e]n = e1[x\e]n e2[x\e]n

(letx = e1 in e2)[x\e]0 = letx = e1[x\e]0 in e2

(let y = e1 in e2)[x\e]0 = let z = e1[x\e]0 in e2[y\z]0[x\e]0
where z is fresh and y 6= x

(let y = e1 in e2)[x\e]n+1 = let y = e1[x\e]n+1 in e2[x\e]n+1

〈e〉[x\e′]n = 〈e[x\e′]n+1〉
8(e)[x\e′]n+1 = 8(e[x\e′]n)
run(e)[x\e′]n = run(e[x\e′]n)
lift(e)[x\e′]n = lift(e[x\e′]n)

Figure 5.5: Staged substitution.

Definition 5.3.2. The function update operator, <+, is defined as follows:

(f<+g)(x) =

g(x), if x ∈ dom(g)

f(x), otherwise

Definition 5.3.3. The depth of an expression e is the maximum number of nested antiquo-
tations in e that are not enclosed by quotations.

Definition 5.3.4. An expression e is a stage-n expression if the depth of e is less than or equal
to n. This also means that a stage-n expression is also a stage-(n+ 1) expression.

Definition 5.3.5. The free variables of a staged expression are the free variables at stage 0.
The definition is in Figure 5.4.

Definition 5.3.6. Substitution in a staged expression replaces variables at stage-0 and is
defined in Figure 5.5.

Definition 5.3.7. Staged renaming [xn m7→ z]e replaces with z the occurrences of the stage-n
variable x in the stage-m expression e. Staged renaming is used in operations regarding
λ∗. The definition of staged renaming is in [KYC06].

86

vn ∈ V aln
V al0 ::= c | λx.e | fix f(x). e | 〈v1〉
V aln+1 ::= c | x | λx.vn+1 | fix f(x). vn+1 | vn+1vn+1

| 〈vn+2〉 | lift(vn+1) | run(vn+1) | letx = vn+1 in vn+1

| 8(vn) (if n > 0)

Figure 5.6: The definition of values in λgenpoly.

ESABS e −→n+1 e
′

λx.e −→n+1 λx.e
′

ESSYM z is fresh for e
λ∗x.e −→n λz.[xn

n7→ z]e

ESFIX e −→n+1 e
′

fix f(x). e −→n+1 fix f(x). e′

ESAPP e1 −→n e
′
1

e1e2 −→n e
′
1e2

e1 ∈ V aln e2 −→n e
′
2

e1e2 −→n e1e
′
2

e2 ∈ V al0
(λx.e)e2 −→0 e[x\e2]0

e2 ∈ V al0
(fix f(x). e)e2 −→0 e[f\fix f(x). e]0[x\e2]0

ESLET e1 −→n e
′
1

letx = e1 in e2 −→n letx = e′1 in e2

e1 ∈ V al0
letx = e1 in e2 −→0 e2[x\e1]0

e1 ∈ V aln+1 e2 −→n+1 e
′
2

letx = e1 in e2 −→n+1 letx = e1 in e′2

ESBOX e −→n+1 e
′

〈e〉 −→n 〈e′〉

ESUBOX e −→n e
′

8(e) −→n+1
8(e′)

e ∈ V al1
8(〈e〉) −→1 e

ESRUN e −→n e
′

run(e) −→n run(e′)
e ∈ V al1

run(〈e〉) −→0 e

ESLIFT e −→n e
′

lift(e) −→n lift(e′)
e ∈ V al0

lift(e) −→0 〈e〉

Figure 5.7: The small-step semantics of λgenpoly.

87

5.3.2 Operational Semantics

Despite the large number of different program generation languages, their dynamic se-
mantics for the core program generation constructs are almost the same. Definitions of
operational semantics can be found in [CMT04, DP96, KKcS08, KYC06, MTBS99, Rhi05]. A
big-step operational semantics of λopenpoly is given in [KYC06]. We choose to present a small-
step semantics of λgenpoly, adapted from [Rhi05]. Having added recursion to the language,
small-step semantics serves better when reasoning about non-terminating reductions. The
values are given in Figure 5.6 and the reduction rules in Figure 5.7. A reduction takes place
at a certain stage. A quotation increments the stage while an antiquotation decrements it.
The reduction of an expression at a stage higher than 0 recurses into the subexpressions
because the subexpressions may contain holes that bring the reduction to stage 0, or that
may be filled in at stage 1. The second rule of ESUBOX is where the actual hole-filling oc-
curs. Note that this rule is defined specifically for stage 1; for optimization purposes, we
could define it to take place at any stage n > 0, however, this would make the application
of the rules non-deterministic. So, this ESUBOX rule is only defined at stage 1.

5.3.3 Type System

We give the λgenpoly type system, adapted from λopenpoly [KYC06]. The definition of types is given
in Figure 5.8; typing rules are in Figure 5.9. A type can be one of (i) a type variable α, (ii) a
constant type ι, (iii) a function type A→ B, or (iv) a box-type �(Γ . A). Code values type
to box-types. A box-type �(Γ . A) has the meaning “the fragment will result in a value
of type A if it is evaluated in a context that provides the environment Γ.” The fields in an
environment Γ can be one of (i) a type A, (ii) Abs, denoting the absence of the binding for
that particular field, or, (iii) a field variable θ. In a judgment ∆0, . . . ,∆n S̀ e : A, the typing
environment ∆i stands for the environment of stage i. Quotations and antiquotations add
or remove new typing environments.

Definition 5.3.8. A type scheme ∀ψ.σ binds the variable ψ in the standard way. FV returns
the set of free variables in a type (scheme).

Definition 5.3.9. For convenience, we denote ∀ψ1.∀ψ2. . . .∀ψn.A as ∀~ψ.A, where ~ψ stands
for ψ1 . . . ψn.

Definition 5.3.10. Generalization of a type to a type scheme with respect to a list of type
scheme environments is defined as

GENA(∆0, . . . ,∆n) = ∀~ψ.A where ~ψ = FV (A) \ FV (∆0, . . . ,∆n)

Definition 5.3.11. A substitution ϕ is a partial function from type system variables to
types. We extend the definition of a substitution to apply on a compound object in the
obvious way.

88

α, β ∈ STyV ar
A,B ∈ SType ::= α | ι | A→ B | �(Γ . A)
θ ∈ SFieldV ar
F ∈ SField ::= A | Abs | θ
ρ ∈ SEnvV ar
Γ ∈ SEnv = V ar ⇀ SField

::= {xi : Fi}m1 | {xi : Fi}m1 ρ
ψ ∈ SEnvV ar⊕SFieldV ar
σ ∈ STyScheme ::= ∀ψ.σ | A
µ ∈ SFieldScheme ::= σ | Abs
∆ ∈ STySchemeEnv = V ar ⇀ SFieldScheme

::= {xi : µi}m1 | {xi : µi}m1 ρ

Figure 5.8: The definition of types in λgenpoly.

TSCON ∆0, . . . ,∆n S̀ c : ι

TSVAR A ≺ ∆n(x)
∆0, . . . ,∆n S̀ x : A

TSABS
∆0, . . . ,∆n<+{x : A} S̀ e : B
∆0, . . . ,∆n S̀ λx.e : A→ B

TSSYM
∆0, . . . ,∆n S̀ λz.[x

n n7→ z]e : A z is fresh for e
∆0, . . . ,∆n S̀ λ

∗x.e : A

TSFIX
∆0, . . . ,∆n<+{f : A→ B, x : A} S̀ e : B

∆0, . . . ,∆n S̀ fix f(x). e : A→ B

TSAPP
∆0, . . . ,∆n S̀ e1 : A→ B ∆0, . . . ,∆n S̀ e2 : A

∆0, . . . ,∆n S̀ e1e2 : B

TSLET
∆0, . . . ,∆n S̀ e1 : A ∆0, . . . ,∆n<+{x : GENA(∆0, · · · ,∆n)} S̀ e2 : B

∆0, . . . ,∆n S̀ letx = e1 in e2 : B

TSBOX
∆0, . . . ,∆n,Γ S̀ e : A

∆0, . . . ,∆n S̀ 〈e〉 : �(Γ . A)

TSUNBOX
∆0, . . . ,∆n S̀ e : �(Γ . A) Γ ≺ ∆n+1

∆0, . . . ,∆n,∆n+1 S̀

8(e) : A

TSRUN
∆0, . . . ,∆n S̀ e : �(∅ . A)

∆0, . . . ,∆n S̀ run(e) : A

TSLIFT
∆0, . . . ,∆n S̀ e : A

∆0, . . . ,∆n S̀ lift(e) : �(Γ . A)

Figure 5.9: The λopenpoly [KYC06] type system rules adapted for λgenpoly– a language with core
program generation facilities, recursion, and no references.

89

x ∈ V ar
a ∈ Label = V ar
r ∈ RV ar
w, f ∈ Name = V ar∪RV ar
c ∈ Constant
e ∈ RExp ::= c | w | λw.e | fix f(x). e | e e | letw = e in e

| {} | ewith {a = e} | e·a

Figure 5.10: Record calculus syntax.

We assume that all substitutions respect domains of variables. That is, a type variable
α is mapped to an A ∈ SType; an environment variable ρ is mapped to a Γ ∈ SEnv; and a
field variable θ is mapped to an F ∈ SField. Hence, ϕA ∈ SType for any A; ϕΓ ∈ SEnv
for any Γ; and ϕF ∈ SField for any F .

Definition 5.3.12 (Instantiation). A type A is an instance of a type scheme ∀~ψ.A′, written
A ≺ ∀~ψ.A′, if and only if there is a substitution ϕ with domain ~ψ such that ϕA′ = A.

A type scheme σ is more general than a type scheme σ′, denoted σ′ ≺ σ with a slight
abuse of notation, if and only if A ≺ σ for any A ≺ σ′.

Environment instantiation, overloading ≺, is defined as follows:

{xi : Fi}m1 ≺ {xi : µi}m1 ⇐⇒ Fi ≺ µi for any i ∈ [1..m]

{xi : Fi}m1 ρ ≺ {xi : µi}m1 ρ ⇐⇒ Fi ≺ µi for any i ∈ [1..m]

For all the typing rules in Figure 5.9, the difference from λopenpoly is that, due to the ab-
sence of references, there is no store typing that is being threaded through a proof tree.
The TSLET rule, additionally, does not distinguish between expansive and non-expansive
expressions. The soundness of this type system with respect to the operational semantics
is given in [KYC06].

5.4 Record Language

Let λrecpoly be a record calculus with the exception that the record and non-record variables
are disjoint. Records are mappings from labels to values. The syntax of λrecpoly is given in
Figure 5.10. The record operations are (1) record update via the with operator, (2) accessing
a value in a record using the label, and (3) the empty record.

Definition 5.4.1. We use the shorter notation {a1 = e1, a2 = e2, . . . , am = em} for the
expression {}with {a1 = e1}with {a2 = e2} . . . with {am = em}.

90

5.4.1 Auxiliary Definitions

Definition 5.4.2. The free variables of a record calculus expression are defined as follows.

FV (c)=∅
FV (w)={w}

FV (λw.e)=FV (e) \ {w}
FV (fix f(x). e)=FV (e) \ {f, x}

FV (e1e2)=FV (e1) ∪ FV (e2)

FV (letw = e1 in e2)=FV (e1) ∪ (FV (e2) \ {w})
FV ({})=∅

FV (e1 with {a = e2})=FV (e1) ∪ FV (e2)
FV (e·a)=FV (e)

5.4.2 Operational Semantics

We give operational semantics of the record calculus using unrestricted reductions, where
simplifications can be performed under lambda abstractions as well. We will give call-
by-value semantics when we introduce updatable references into the language (in Section
5.9). The reductions are performed according to the following rules.

(λw.e1)e2 −→β e1[w\e2]

letw = e1 in e2 −→β e2[w\e1]

(e2 with {a1 = e1})·a2 −→β e2 ·a2 if a1 6= a2

(e2 with {a = e1})·a −→β e1

ewith {a1 = e1}with {a2 = e2} −→β ewith {a2 = e2}with {a1 = e1} if a1 6= a2

ewith {a = e1}with {a = e2} −→β ewith {a = e2}

A reduction is the congruence closure of the rules above. That is, if an expression e1 is
inside a context C[] and e1 −→β e2, then C[e1] −→β C[e2].

5.4.3 Type System

The definition of types and other objects is in Figure 5.11; typing rules are in Figure 5.12.
This record type system is not completely standard. One can notice that (1) we distinguish
between record variables and non-record variables, (2) the grammar of types does not
allow construction of certain types that would normally be allowed in a standard record
calculus; in particular, we want to avoid having types of the form T → Γ. These changes
are needed to make the type system sound with respect to the staged semantics. Although
this type system is more restricted than a standard record type system (i.e. we cannot type-
check as many expressions), it is still sound with respect to the record semantics, and we
do not lose expressiveness with respect to the staged semantics. (We will see that we obtain
a type system equal to λgenpoly.) The essence of the need for these changes in the definition of
the types comes from the fact that a quoted expression is translated to a function.

91

α, β ∈ RLegTyV ar
A,B ∈ RLegType ::= α | ι | T → A
T ∈ RType ::= A | Γ
θ ∈ RFieldV ar
F ∈ RField ::= A | Abs | θ
ρ ∈ RRecV ar
Γ ∈ RRec = Label ⇀ RField

::= {ai : Fi}m1 | {ai : Fi}m1 ρ
ψ ∈ RTyV ar⊕RRecV ar⊕RFieldV ar
σ ∈ RTyScheme ::= ∀ψ.σ | T
∆ ∈ RTySchemeEnv = Name ⇀ RTyScheme

Figure 5.11: The definition of types in the record calculus.

TRCON ∆ R̀ c : ι

TRVAR A ≺ ∆(x)
∆ R̀ x : A

Γ ≺ ∆(r)
∆ R̀ r : Γ

TRABS
∆<+{x : A} R̀ e : B
∆ R̀ λx.e : A→ B

∆<+{r : Γ} R̀ e : B
∆ R̀ λr.e : Γ→ B

TRFIX
∆<+{f : A→ B, x : A} R̀ e : B

∆ R̀ fix f(x). e : A→ B

TRAPP
∆ R̀ e1 : T → B ∆ R̀ e2 : T

∆ R̀ e1e2 : B

TRLET

∆ R̀ e1 : A
∆<+{x : GENA(∆)} R̀ e2 : B

∆ R̀ letx = e1 in e2 : B

∆ R̀ e1 : Γ
∆<+{r : GENΓ(∆)} R̀ e2 : B

∆ R̀ let r = e1 in e2 : B

TRACC
∆ R̀ e : Γ Γ(a) = A

∆ R̀ e·a : A

TREMPTY ∆ R̀ {} : ∅

TRUPD
∆ R̀ e1 : Γ ∆ R̀ e2 : A

∆ R̀ e1 with {a = e2} : Γ<+{a : A}

Figure 5.12: The type system of the record calculus.

Let us now illustrate with examples how these restrictions help:

• Why should record variables be separated from non-record variables?
Consider the expression 〈42〉 2. This is ill-typed because a quoted expression is being
used as a function. The translation of this expression at stage 0 is (λr1.42)2. If we
do not distinguish record variables, the lambda abstraction in the translation can be
given the type int→ int, meaning that (λr1.42)2 would pass the type-checker. This
is certainly not wanted. Restricting record variables to record types prevents this
kind of failure.

For similar reasons, non-record variables should be restricted to non-record types.
An ill-typed staged expression whose translation would otherwise pass the record
type system is λx.〈42〉x. Assigning a record type to the variable x would yield a
valid type if non-record variables are not restricted to non-record types.

92

• Why should types in the form T → Γ not be allowed?
Restricting non-record variables to non-record types is not sufficient. A quoted ex-
pression is translated to a function, but we want to apply this function only when
filling in a hole or running the expression. Other applications should not be allowed.
If types of the form T → Γ could be constructed, we could create an expression
which results in the type Γ, and could feed this type to the lambda abstraction that
represents the quoted expression. Consider the expression λx.λy.〈42〉 (x y). Assign-
ing the type int → ∅ to x and int to y would yield a valid type for the translation
of this expression, which is ill-typed in the staged semantics.

The record type system enjoys the following (standard) definitions and lemmas.

Definition 5.4.3.
GENT (∆) = ∀~ψ.T where ~ψ = FV (T) \ FV (∆)

Definition 5.4.4. A substitution ϕ is a partial function from type system variables to types.
We extend the definition of a substitution to apply on a compound object in the obvious
way.

We assume that all substitutions respect domains of variables. That is, a type variable
α is mapped to anA ∈ RLegType; a record variable ρ is mapped to a Γ ∈ RRec; and a field
variable θ is mapped to an F ∈ RField. Hence, ϕA ∈ RLegType for any A; ϕΓ ∈ RRec for
any Γ; and ϕF ∈ RField for any F .

Definition 5.4.5 (Instantiation). A type T is an instance of a type scheme ∀~ψ.T ′, written
T ≺ ∀~ψ.T ′, if and only if there is a substitution ϕ with domain ~ψ such that ϕT ′ = T .

A type scheme σ is more general than a type scheme σ′, denoted σ′ ≺ σ with a slight
abuse of the notation, if and only if T ≺ σ for any T ≺ σ′.

The record calculus satisfies the standard lemmas such as Weakening/Strengthening,
Substitution, Generalization, Preservation, and Progress. Standard proofs in the style of
Wright and Felleisen [WF94] apply with minor changes.

5.5 Transformation

In this section we provide the definition of a translation, J·KR0,...,Rn , from λgenpoly expressions
to λrecpoly. This is an improved version of the initial translation given in Figure 5.1. We do not
use that original translation because the improved version provides a more useful result
about the relation between staged and record operational semantics as well as making
some of the proofs less complicated. Consider the expression 〈λx.x + y〉. This would be
translated by the first translation to (λr1.λx.let r1 = r1 with {x = x} in r1 ·x + r1 ·y). Note
that the binding of x is in the fragment. Therefore there is no need to access x through

93

a record; we could as well translate 〈λx.x + y〉 to (λr1.λx.x + r1 ·y), where only the free
variable y is looked up in the environment. The new translation does exactly that: If a
variable already exists in the scope, no record lookup for that variable is made. However,
we need to be careful about variables with the same name that occur in different stages,
because when the quotations are removed, a higher-stage binding may capture a lower
stage variable. Take the expression (λy.〈λy. 8(y) + y〉). It is wrong to simply translate it
to (λy.λr1.λy.y(r1) + y). It should rather be translated to (λz.λr1.λw.z(r1) + w), which
preserves the meaning. For this purpose, we use “renaming environments”, denoted by
the subscript R0, . . . , Rn, where Ri carries the variables bound so far at stage i. It maps
them to fresh names so that we can replace a variable avoiding any unintentional capture.
The translation is given in Figure 5.13. The definition of a renaming environment is below.

Definition 5.5.1 (Renaming environment). A renaming environment R is defined as fol-
lows.

R ∈ RenamingEnv ::= {} | r | Rwith {x = y}

A renaming environment defines a function from variables to record expressions:

(Rwith {x = y})(x) = y

(Rwith {z = y})(x) = R(x) if x 6= z

r(x) = r·x

{}(x) = error

The domain of a renaming environment is the set of variables for which there are explicit
mappings:

dom(Rwith {x = y}) = dom(R) ∪ {x}

dom(r) = {}

dom({}) = {}

Throughout this chapter, we assume that free variables in a renaming environment are
unique. That is, for any renaming environment sequence R0, . . . , Rn in JeKR0,...,Rn we have

(i) z 6∈ FV (R′i) ∪ FV n(e) for any Ri = R′i with {x = z}

(ii) FV (Ri) ∩ FV (Rj) = ∅ if i 6= j

Note that these conditions are preserved by the transformation. Also, in order to reduce
notational clutter, we assume that the record variable in Rn is rn.

94

JcKR0,...,Rn = c

JxKR0,...,Rn = Rn(x)

Jλx.eKR0,...,Rn = λz. JeKR0,...,Rn with {x=z} where z is fresh

Jλ∗x.eKR0,...,Rn = Jλz.[xn n7→ z]eKR0,...,Rn where z is fresh

Jfix f(x). eKR0,...,Rn = fix g(z). JeKR0,...,Rn with {f=g,x=z} where g, z are fresh

Je1e2KR0,...,Rn = Je1KR0,...,RnJe2KR0,...,Rn

Jletx = e1 in e2KR0,...,Rn = let z = Je1KR0,...,Rn in Je2KR0,...,Rn with {x=z} where z is fresh

J〈e〉KR0,...,Rn = λr. JeKR0,...,Rn,r where r is fresh

J 8(e)KR0,...,Rn,Rn+1 = (JeKR0,...,Rn)Rn+1

Jrun(e)KR0,...,Rn = (JeKR0,...,Rn){}

Jlift(e)KR0,...,Rn = λr. JeKR0,...,Rn where r is fresh

Figure 5.13: Transformation from λgenpoly expressions to λrecpoly.

core(Abs) = Abs

core(∀~ψ.A) = A

JιK = ι

JψK = ψ

JA→ BK = JAK→ JBK

J�(Γ . A)K = JΓK→ JAK

JAbsK = Abs

J∀ψ.σK = ∀ψ.JσK

J{x1 : µ1, . . . , xm : µm}ρK = ∀~ψ.{x1 : Jcore(µ1)K, . . . , xm : Jcore(µm)K}ρ
where ~ψ = BV (µ1) ∪ . . . ∪BV (µ2), and BV (µ1) . . . BV (µ2) are
distinct from each other and free variables.

J∆0, . . . ,∆nKR0,...,Rn ={r0 : J∆0K, . . . , rn : J∆nK}<+
{z : J∆0(x)K | x ∈ dom(R0) ∧ z = R0(x)}<+ . . . <+
{z : J∆n(x)K | x ∈ dom(Rn) ∧ z = Rn(x)}

Figure 5.14: Translating λgenpoly types to record calculus types.

95

5.5.1 Type Transformation

The translation in Figure 5.14 converts objects in the λgenpoly type system to objects in the
record calculus.

Lemma 5.5.2 (Type translation is well-defined). LetA be a λgenpoly type. Then JAK ∈ RLegType.
Similarly, JΓK ∈ RRec, for any Γ. Furthermore, for any B′ ∈ RLegType, there exists a unique
λgenpoly type B such that JBK = B′. Similarly, for any Γ′ ∈ RType, there exists a unique Γ such that
JΓK = Γ′. Therefore, J·K for types is reversible (i.e. is a bijection).

Proof. Straightforward.

5.6 Relation Between Staged Programming and Record Calculus

In this section we provide formal properties about the relation between staged compu-
tation and the record calculus. We show that the record type system can be used as a
sound type system for staged programming, and this type system is as powerful as the
λopenpoly [KYC06] type system. Although our focus is on typing, we first begin with the theo-
rem which states that evaluating a staged expression in the staged semantics is equivalent
to evaluating the expression’s translation in the record semantics. In addition to show-
ing the close relation between staged computation and record calculus, this theorem’s real
value comes into play when proving that the record type system preserves types with re-
spect to staged semantics. The relation between the two operational semantics gives the
preservation property for free.

Theorem 5.6.1 (Operational Equivalence). Let e1 be a stage-n λgenpoly expression such that
FV n(e1) = ∅. If e1 −→n e2, then Je1K{},R1,...,Rn

−→∗β Je2K{},R1,...,Rn
.

Proof. By structural induction on e1, based on the last applied reduction rule.

We now show that the record type system can be used as a sound type system for the
staged language. We follow the standard approach of splitting the soundness into two
properties: preservation and progress. Preservation comes for free as a result of Theorem
5.6.1. Progress is explicitly proved.

Later in this section we also prove that the record calculus forms a type system equal
to λopenpoly . This result suffices to prove soundness of the record type system with respect
to staged semantics (because λopenpoly is proven to be sound [KYC06]). However, we prefer
to prove soundness via preservation and progress because this would be the approach to
take if a variant of a record type system is used for which there is no equal staged type
system known. And in fact this is exactly the case for the type system with subtyping (see
Section 5.7).

96

Theorem 5.6.2 (Preservation). Let e1 be a stage-n λgenpoly expression such that FV n(e1) = ∅ (i.e.
e1 does not have any stage-0 free variables). If ∆ R̀ Je1K{},R1,...,Rn

: A and e1 −→n e2, then
∆ R̀ Je2K{},R1,...,Rn

: A.

Proof. By Theorem 5.6.1 we have Je1K{},R1,...,Rn
−→∗β Je2K{},R1,...,Rn

. By the Preservation
property of the record type system with respect to the record semantics, we have ∆ R̀

Je2K{},R1,...,Rn
: A.

Lemma 5.6.3. Let e be a stage-n λgenpoly expression. If ∆ R̀ JeKR0,...,Rn : T , then T ∈ RLegType.

Proof. By a straightforward case analysis.

Theorem 5.6.4 (Progress). Let e1 be a stage-n λgenpoly expression. If ∆ R̀ Je1K{},R1,...,Rn
: A, then

either e1 ∈ V aln or there exists e2 such that e1 −→n e2.

Proof. By structural induction on e1. Lemma 5.6.3 forms a key part in the proof.

Theorem 5.6.5 (Soundness). Let e1 be a stage-0 λgenpoly expression. If ∅ R̀ Je1K{} : A, then either
e1 ⇑, or there exists e2 ∈ V al0 such that e1 −→∗0 e2 and ∅ R̀ Je2K{} : A.

Proof. Follows from Theorems 5.6.2 and 5.6.4.

We finally show that the record calculus provides a type system that is the same as
λopenpoly [KYC06]. This result is important because it shows the power of the type system we
obtain via record calculus. Proving only soundness is not sufficient for usefulness — a
type system that rejects everything is also sound.

Theorem 5.6.6. Let e be a stage-n λgenpoly program. Then

∆0, . . . ,∆n S̀ e : A ⇐⇒ J∆0, . . . ,∆nKR0,...,Rn R̀ JeKR0,...,Rn : JAK

Proof. By structural induction on e.

5.7 Extending λgenpoly with Subtyping

In Section 5.2 we showed using the library specialization problem why subtyping is needed.
In this section we give more details about the need and use of subtyping. We then discuss
the existing literature that provides a record type system with subtyping. We finally re-
late the subtyped record calculus to staged semantics. To distinguish subtyping between
record fields from subtyping between types, we use the notation of Rémy [Rém94] in this
section. Existing bindings are denoted as Pre A, whereas absence is still Abs.

97

5.7.1 Power of Subtyping

A simplification of the library specialization example from Section 5.2 — assuming the
existence of tuples — is the function

λc.〈letx = 1 in 8(c), let y = 1 in 8(c)〉

Let us call this function G. The best type that λopenpoly can give to G is

�({x : Pre int, y : Pre int}ρ . α)→ �({x : Pre int, y : Pre, int}ρ . α ∗ α)

Even though this type is sound, it is not satisfactory. Let us now examine through two
examples why this type does not suffice and what the ideal type would look like.

• SupposeG is applied on 〈0〉. The result of the application would be 〈letx = 1 in 0, let y =
1 in 0〉. This fragment does not require any variables from outside; hence it is runnable.
Its type ideally would be�(ρ.int∗int). However, the λopenpoly type for the application
is �({x : Pre int, y : Pre int}ρ . int ∗ int), which makes unnecessary requirements
for x and y, and does not allow us to run() the value.

• Suppose G is applied on 〈x + 1〉. The result of the application would be 〈letx =
1 inx + 1, let y = 1 inx + 1〉. This fragment requires x to come as an integer value
from outside, but imposes no requirements for y. Hence its type ideally would be
�({x : Pre int}ρ . int ∗ int). However, the λopenpoly type for the application is again
�({x : Pre int, y : Pre int}ρ . int ∗ int) which makes an unnecessary requirement
for y similar to the case above.

In summary, we do not want the type system to result in code types that put unneces-
sary requirement on the outer environment. λopenpoly does not satisfy this. The technical rea-
son is that c is a parameter of a function and in the Hindley/Milner style let-polymorphism
function parameters cannot be given polymorphic types because type checking and infer-
ence then becomes undecidable [Wel94, Jim96]. Otherwise we could give a more general
type to c and instantiate it accordingly for the two different uses. Because we cannot use
a polymorphic type, different uses of the variable have to have the exact same type, re-
sulting in unneeded requirements. This is where subtyping becomes very handy: We can
loosen the condition that different uses must have the same type. Suppose c has the type
�(Γ . int). As long as the context of an antiquotation of c provides the contents of Γ, we
are fine; there is no harm in providing c with a richer environment than it needs. Suppose
also that the outer environment of the fragment 〈letx = 1 in 8(c), let y = 1 in 8(c)〉 is Γ′. The
environment that goes into the first antiquotation of c is Γ′<+{x : Pre int} and the second

98

is Γ′<+{y : Pre int}. We want these environments to “satisfy” Γ. That is, we want

Γ′<+{x : Pre int} <: Γ and Γ′<+{y : Pre int} <: Γ

Recall that the environments are nothing but records. Therefore this relation is simply
record subtyping [Pie02]: Γ1 is a subtype of Γ2 if Γ1(z) is a subtype of Γ2(z) for all z ∈
dom(Γ2) (thus, PreA <: Abs). Because x and y are critical variables, let us write Γ′ as
{x : θ1, y : θ2}ρ where the field variable θi means either absence of the binding or presence
of a type. Then, we want Γ to be the least upper bound (lub) of {x : Pre int, y : θ2}ρ and
{x : θ1, y : Pre int}ρ in the record subtyping lattice. This lub value is {x : θ1, y : θ2}ρ with
the condition that Pre int <: θ1 and Pre int <: θ2. So, we can give G the type

�({x : θ1, y : θ2}ρ . α)→ �({x : θ1, y : θ2}ρ . α ∗ α) where Pre int <: θ1 and Pre int <: θ2

Let us now check if this type can fulfill our needs.

• Suppose G is applied on 〈0〉. The operand has no requirements for x or y. Therefore
we can set θ1 = Abs and θ2 = Abs. This satisfies the constraints of the type because
Pre int <: Abs and results in �({x : Abs, y : Abs}ρ . int ∗ int): a runnable type
(simply instantiate ρ with ∅ and note that Abs stands for the absence of the binding).
This is a desired type as mentioned before.

• Suppose G is applied on 〈x + 1〉. The operand requires x to come from the outer
environment as an integer and has no requirements for y. Therefore we can set θ1 =
Pre int and θ2 = Abs. This satisfies the constraints of the type because Pre int <:
Pre int and Pre int<: Abs, resulting in�({x : Pre int, y : Abs}ρ.int∗int). Again,
a desired type for the application.

To check that the type is sound, suppose we apply G on a fragment that requires y to
be a boolean value such as 〈y & false〉. This would set θ2 to Pre bool. The application
would result in the fragment 〈letx = 1 in y & false, let y = 1 in y & false〉 which clearly is
type-incorrect and should be rejected. With the substitution θ2 = Pre bool, the constraint
Pre int <: θ2 fails because int is not a subtype of bool. Hence the type system would
reject the application as expected.

5.7.2 Subtyped Record Calculus

Using a type with subtyping constraints works very well for our purposes. The question is,
does there exist any type system that could give us such types? The answer is, fortunately,
yes. Odersky, Sulzmann and Wehr define HM(X) [OSW99] which is a Hindler/Milner-
style type system parameterized on a constraint system X. Given a constraint system that

99

satisfies the requirements, HM(X) can provide a type system with a principal type infer-
ence algorithm for free. Pottier defines SRC, a constraint system that combines subtyp-
ing, records, and row variables [Pot00b]. SRC is a sound constraint system in the style of
[OSW99], and yields the type system HM(SRC).

Taking advantage of the close relation between staged computation and record calcu-
lus, we can use HM(SRC) to type-check staged expressions after translating them to the
record calculus. The translation is the same.

SRC is a very powerful constraint system; it is more powerful than we need. It pro-
vides conditional constraints that handle the tricky record concatenation problem. We do
not need record concatenation. Handling record extension suffices in our context. So we
ignore conditional constraints. SRC is parameterized on a ground signature. Pottier defines
a sample ground signature in [Pot00b] and uses the resulting system to obtain a type sys-
tem that can type-check accurate pattern matching, record concatenation and first-class
messages using a single framework. We use the same ground signature Pottier defines.
Below are the modifications we need to make to the definition of types in Figure 5.11. This
definition is then fed into SRC to obtain a type system with record subtyping and row
variables. It is straightforward to check that these definitions preserve the properties of
the ground signature.

T ∈ RType ::= . . . | > | ⊥
F ∈ RField ::= . . . | bot

The modifications are straightforward. Pottier requires types to form a lattice where
the smallest and greatest elements are nullary. Therefore we add > and a ⊥ to the types,
and bot to the definition of fields. The ordering between types is standard and the same
as in [Pot00b]; the left-hand-side of a function type is contravariant, its right-hand-side
and record types are covariant. Fields are ordered as bot < PreA < Abs. Note that
this ordering is simpler than Pottier’s, where Abs and PreA are incomparable and have
a common upper value, Either A. Pottier uses that ordering again to handle the record
concatenation problem. Because we do not need concatenation, a simple chain ordering
suffices.

HM(X) assumes core ML as the syntax of its language. New syntax can be treated
as function applications where the functions are kept in a pervasive environment. In
HM(SRC), record operations have the following types.

{} : {}
·a : ∀α, ρ.{a : Preα}ρ→ α

with {a = } : ∀θ, α, ρ.{a : θ}ρ→ α→ {a : Preα}ρ

In the record language we distinguished record variables from regular variables in
order to keep the type system sound with respect to staged semantics. We need to do the
same in HM(SRC). We do not elaborate this issue since it is straightforward.

100

A question arises for the requirement of a lattice in the definition of types. Suppose f
is a function with two applications: f(1) and f(true). Let the input type of f be α. Type
inference collects for α the constraints int<: α and bool<: α, which give α = > assuming
a standard flat lattice, and the type is accepted by the type system. However, this could be
considered as an ill-typed situation by many type systems. Even though Pottier requires
types to form a lattice, this is not a requirement for the soundness of the constraint system,
but for the correctness of constraint simplification algorithms which improve readability
of constraints that are attached to types. There are simplification algorithms that do not
impose a lattice structure but are less efficient than Pottier’s [Fre97, Reh98], as well as other
record subtype systems that do not assume lattices [EST95].

Nanevski [Nan02] defines a staged language where the type of a fragment contains
the free variables of the fragment, called the “support set”. A subtyping rule is defined,
making it possible to use a code fragment in a context that provides more variables than
required. In other words, subtyping loosens the support set of a code value. While this
idea is very useful, it does not provide a general solution to the subtyping problem we
cover here, because a support set contains only the names of the variables; no type infor-
mation is stored. Hence, we can only reason about existence or absence of a variable in the
support set. On the other hand, Pottier’s subtyping constraints give the ability to keep the
types related to variables and also the subtyping relations between these types. Therefore,
Pottier’s system subsumes Nanevski’s definition of subtyping in our context.

5.7.3 Implementation

Pottier provides an implementation of his subtyped constraint system, called Wallace
[Pot00a]. He also provides an implementation of a type system for a toy programming
language that supports record operations. To experiment with the ideas we discussed
about subtyping, we have implemented the translation and the type inference algorithm
of λopenpoly . We then type-checked the resulting translations in Wallace. The types output by
our implementation and Wallce are in conformance with our expectations. A screenshot
of our test for the example discussed in Section 5.7.1 is given in Figure 5.15.

5.7.4 Staged Semantics and Subtyped Record Calculus

Subtyping is about being able to replace a value of some type with another value of sub-
type without sacrificing safety. We mentioned above that it is okay to supply a “richer”
environment to a code fragment than the environment it expects. Suppose the code frag-
ment’s type is �(Γ . A) and it is provided with the environment Γ′. Then, what we really
want is that the �(Γ . A) behave like �(Γ′ . A). That is

�(Γ . A) <: �(Γ′ . A)

101

Figure 5.15: The first picture above is a screenshot of our implementation of the translation
and the λopenpoly type system. The example being tested is the one discussed in Section 5.7.1.
Here, an ASCII representation of the type is given, where “%” stands for the ∀ symbol, and
“>” stands for the . symbol. The second picture is Pottier’s implementation of the record
type system with subtyping constraints, called Wallace. “e.x<-e’” is Pottier’s syntax for
“e with x=e’”. In Wallace’s types, “%” denotes the quantified variables, and “<” is the
subtyping relation. The type reported by Wallace is exactly the one we expect, as discussed
in Section 5.7.1.

Because Γ′ is richer than Γ, we have Γ′ <: Γ. This suggests that the subtyping relation for
the environment component of a �-type is contravariant. With a similar reasoning, it is
easy to find that the relation for the type part is covariant. So we have

Γ′ <: Γ A <: A′

�(Γ . A) <: �(Γ′ . A′)

Recall that �-types are translated to function types. That is, J�(Γ . A)K = JΓK → JAK,
where the left-hand-side type is contravariant and the right-hand-side is covariant [Pie02].
Therefore, subtyping relations are preserved by the translation.

We can again use the record calculus type system to type-check staged expressions.
The following state related properties. We first state that the record type system with
subtyping is sound with respect to staged semantics. This is done via Preservation and
Progress again.

102

Theorem 5.7.1 (Preservation). Let e1 be a stage-n λgenpoly expression such that FV n(e1) = ∅
(i.e. e1 does not have any stage-0 free variables). If e1 −→n e2 and Je1K{},R1,...,Rn

is typable
in HM(SRC), then Je2K{},R1,...,Rn

is also typable in HM(SRC) to the same type under the same
assumptions.

Proof. By Theorem 5.6.1 we have Je1K{},R1,...,Rn
−→∗β Je2K{},R1,...,Rn

. Because HM(SRC) is a
sound type system, it has the Preservation property. Therefore, Je2K{},R1,...,Rn

can be given
the same type of Je1K{},R1,...,Rn

.

Theorem 5.7.2 (Progress). Let e1 be a stage-n λgenpoly expression. If Je1K{},R1,...,Rn
is typable in

HM(SRC), then either e1 ∈ V aln or there exists e2 such that e1 −→n e2.

Proof. Similar to Theorem 5.6.4, by reverse reasoning about the structure of types that a
result of the translation can get.

Theorem 5.7.3 (Soundness). HM(SRC) is a sound type system with respect to staged semantics.

Proof. By Theorems 5.7.1 and 5.7.2.

The theorem below says that anything typable in the λopenpoly type system is also typable
in the record calculus with subtyping. As illustrated by the library specialization example,
subtyped record calculus can type more expressions.

Theorem 5.7.4. Let e be a stage-n λgenpoly program. If ∆0, . . . ,∆n S̀ e : A then in HM(SRC),
JeKR0,...,Rn is typable to JAK with no constraints under the environment J∆0, . . . ,∆nKR0,...,Rn .

Proof. By Theorem 5.6.6, we have J∆0, . . . ,∆nKR0,...,Rn R̀ JeKR0,...,Rn : JAK. Because record
calculus with subtyping subsumes record calculus without subtyping, the same judgment
holds in HM(SRC), too.

We do not give a definition for a standalone staged type system that has subtyping. We
leave it as future work.

5.8 Extending λgenpoly with Pluggable Declarations

In this section we discuss how we can extend the staged language with pluggable declara-
tions. Additions to the syntax and static and dynamic semantics are listed in Figure 5.16.
We refer to this language as λdeclpoly. We use a type of the form ♦(Γ . Γ′) for quoted decla-
rations. The choice of the symbol ♦ is arbitrary; it is not related to another usage in other
areas of mathematic, in particular as the possibility operator in modal logic. In fact, the
modal property of ♦ is the same as �, which is briefly discussed by Kim, Yi and Calcagno
[KYC06, §3.3]: If e has type ♦(Γ.Γ′), then 8(e) (as part of a let-binding let 8(e) in e′) produces
the environment Γ′ if used in an environment satisfying Γ.

103

Syntax

Exp ::= . . . | 〈〉 | 〈x = e〉 | let 8(e) in e

Values

V al0 ::= . . . | 〈〉 | 〈x = v1〉
V aln+1 ::= . . . | 〈〉 | 〈x = vn+2〉

| let 8(vn) in vn+1 (if n > 0)

Operational Rules

ESDEC e −→n+1 e
′

〈x = e〉 −→n 〈x = e′〉

ESLET2 e1 −→n e
′
1

let 8(e1) in e2 −→n+1 let 8(e′1) in e2

e1 ∈ V aln e2 −→n+1 e
′
2

let 8(e1) in e2 −→n+1 let 8(e1) in e′2

e1 ∈ V al1 e2 ∈ V al1
let 8(〈x = e1〉) in e2 −→1 letx = e1 in e2

e2 ∈ V al1
let 8(〈〉) in e2 −→1 e2

Types

SType ::= . . . | ♦(Γ . Γ′)

Typing Rules

TSEDEC ∆0, . . . ,∆n P̀
〈〉 : ♦(Γ . Γ)

TSDEC ∆0, . . . ,∆n,Γ P̀
e : A

∆0, . . . ,∆n P̀
〈x = e〉 : ♦(Γ . Γ<+{x : A})

TSLET2

∆0, . . . ,∆n P̀
e1 : ♦(Γ . Γ′) Γ ≺ ∆n+1

∆0, . . . ,∆n,Γ′ P̀
e2 : A

∆0, . . . ,∆n,∆n+1 P̀
let 8(e1) in e2 : A

Other typing rules are copied from λgen
poly.

Other Definitions

FV n(〈x = e〉) = FV n+1(e)
FV n+1(let 8(e1) in e2) = FV n(e1) ∪ FV n+1(e2)

〈y = e〉[x\e′]n = 〈y = e[x\e′]n+1〉
(let 8(e1) in e2)[x\e′]n+1 = let 8(e1[x\e′]n) in e2[x\e′]n+1

〈x = e〉[ym n7→ z] = 〈x = e[ym n+17→ z]〉
(let 8(e1) in e2)[ym n+17→ z] = let 8(e1[ym n7→ z]) in e2[ym n+17→ z]

Figure 5.16: Extending λgenpoly with pluggable declarations. We refer to the resulting lan-
guage as λdeclpoly.

104

In this section we show that the extension with pluggable declarations retains sound-
ness of the staged type system. We also show that pluggable declarations are syntactic
sugaring. We finally discuss how the translation into the record calculus is affected.

5.8.1 Soundness of the λdeclpoly Type System

We now show that the new staged type system that handles pluggable declarations (or
bindings, in the ML terminology) is sound. The original staged type system, λgenpoly, was
already proven sound in [KYC06]. We show that the Preservation and Progress are still
valid.

Theorem 5.8.1 (Preservation). Let e1 be a stage-n λdeclpoly expression. If ∅,∆1, . . . ,∆n P̀ e1 : A
and e1 −→n e2, then ∅,∆1, . . . ,∆n P̀ e2 : A.

Proof. By structural induction on e1.

Theorem 5.8.2 (Progress). Let e1 be a stage-n λdeclpoly expression. If ∅,∆1, . . . ,∆n P̀ e1 : A, then
either e1 ∈ V aln or there exists e2 such that e1 −→n e2.

Proof. By structural induction on e1.

5.8.2 Pluggable Declarations are Syntactic Sugar

We now show that pluggable declarations are syntactic sugaring; what we can express us-
ing them can already be expressed using the existing quotation/antiquotation mechanism.

First, define the following desugaring function, δ(·), from λdeclpoly expressions to λgenpoly ex-
pressions. (Cases not shown simply recurse into subexpressions.)

δ(〈〉) = λy.〈 8(y)〉

δ(〈x = e〉) = (λv.λy.〈letx = 8(v) in 8(y)〉) 〈δ(e)〉

δ(let 8(e1) in e2) = 8(δ(e1) 〈δ(e2)〉)

Note that the desugaring function for the quoted declaration 〈x = e〉 produces a function
application where 〈δ(e)〉 is the operand. Not placing it inside the λ-abstraction allows for
any antiquotations to be evaluated, which would not be possible under the abstraction at
stage-0.

Also define the desugaring function below from λdeclpoly types to λgenpoly types. Cases not
shown simply recurse into sub-components.

δ(♦(Γ1 . Γ2)) = �(δ(Γ2) . A)→ �(δ(Γ1) . A) for any type A.

105

The following theorem states that desugaring preserves operational semantics; evalua-
tion of an expression with pluggable declarations is equivalent to evaluating its desugared
version.

Theorem 5.8.3. Let e1 be a λdeclpoly expression such that e1 −→n e2. Then δ(e1) −→∗n δ(e2).

In addition to operational semantics, we also show that desugaring preserves typing.
The theorem below states that anything typable in λdeclpoly is also typable in λgenpoly after desug-
aring.

Theorem 5.8.4. ∆0, . . . ,∆n P̀ e : A =⇒ δ(∆0), . . . , δ(∆n) S̀ δ(e) : δ(A)

Proof. By structural induction on e.

Note that although the desugaring function δ(·) is surjective, it is not injective. This
prevents the desugaring from being reversible. This is the reason why the relation shown
in Theorem 5.8.4 is one-directional (=⇒) instead of an if-and-only-if (⇐⇒) relation.

The properties shown in Theorems 5.8.3 and 5.8.4 mean that anything expressible us-
ing pluggable declarations is also expressible using core program generation facilities (i.e.
quotable expressions). In other words, pluggable declarations do not bring extra expres-
sive power. Despite this fact, they are useful because they eliminate the need to use higher-
order functions which may make a program hard to understand and manipulate for pro-
grammers.

5.8.3 Translation into Record Calculus

The fact that a declaration is syntactically not an expression but that it becomes an expres-
sion when quoted brings a problem in typing. We first explain the problem, then elaborate
a solution.

Analogous to a quoted expression, the immediate idea is to represent a quoted decla-
ration as a function that takes in an environment as its input. As the output, the function
produces another environment. More concretely, the quoted declaration 〈x = e〉 at stage
n would be translated to the function λr.rwith {x = e′} where e′ is the translation of e.
This function would have to be given a type of the form Γ1 → Γ2. However, this type
cannot be constructed from the definition in Figure 5.11 given for the record type system.
Adding this type to the grammar of types introduces the problems mentioned in Section
5.4.3. To overcome this problem, we can translate quoted declarations to higher order
functions similar to desugaring. For instance, the declaration 〈x = 1〉 would first be con-
verted to λy.〈letx = 1 in 8(y)〉 and then translated to record calculus. However, this trans-
lation brings another problem. Misuses of declarations as functions cannot be detected;
e.g. 〈x = 1〉〈0〉 would pass the type checker. To overcome this problem, we translate dec-
larations to functions that take a unique value as input; let-bindings with holes then apply

106

the antiquoted declaration to this unique value. This way we can distinguish declarations
from quoted expressions or lambda abstractions because the translation of a declaration
cannot be applied to anything but the unique value. For this purpose, we add to the record
language a special variable and constant κ that has type κ. This constant and its type do
not exist in the staged language. We then extend the definition of record types as follows:

T ∈ RType ::= . . . | κ

The translation function is then extended with the following definitions.

J〈〉KR0,...,Rn = λκ.λy.λr. y(r)

J〈x = e〉KR0,...,Rn = λκ.λy.λr. let z = JeKR0,...,Rn,r in y(rwith {x = z}) where r, y, z are fresh.

Jlet 8(e1) in e2KR0,...,Rn+1 = (Je1KR0,...,Rn)κ (λr.Je2KR0,...,Rn,r)Rn+1 where r is fresh.

We now show that the record calculus provides a sound type system with respect to
λdeclpoly operational semantics. Following the same approach we did for λgenpoly, we first state
the theorem about the relation between two operational semantics, which provides the
preservation theorem for free. This is followed by the progress theorem.

Theorem 5.8.5 (Operational Equivalence). Let e1 be a stage-n λdeclpoly expression such that
FV n(e1) = ∅. If e1 −→n e2, then Je1K{},R1,...,Rn

−→∗β Je2K{},R1,...,Rn
.

Proof. By structural induction on e1, based on the last applied reduction rule.

Theorem 5.8.6 (Preservation). Let e1 be a stage-n λdeclpoly expression. If ∆ R̀ Je1K{},R1,...,Rn
: A

and e1 −→n e2, then ∆ R̀ Je2K{},R1,...,Rn
: A.

Proof. By the same proof method we used in Theorem 5.6.2: By Theorem 5.8.5 we have
Je1K{},R1,...,Rn

−→∗β Je2K{},R1,...,Rn
. By the Preservation property of the record type system

with respect to the record semantics, we have ∆ R̀ Je2K{},R1,...,Rn
: A.

Theorem 5.8.7 (Progress). Let e1 be a stage-n λdeclpoly expression. If ∆ R̀ Je1K{},R1,...,Rn
: A, then

either e1 ∈ V aln or there exists e2 such that e1 −→n e2.

Proof. By structural induction on e.

Theorem 5.8.8 (Soundness). Let e1 be a stage-0 λdeclpoly expression. If ∅ R̀ Je1K{} : A, then either
e1 ⇑, or there exists e2 ∈ V al0 such that e1 −→∗0 e2 and ∅ R̀ Je2K{} : A.

Proof. Follows from Theorems 5.8.6 and 5.8.7.

We finally show that using the record type system to type-check λdeclpoly expression yields
a type system that is as powerful as the λdeclpoly type system. We first extend the definition of
type translation:

J♦(Γ1 . Γ2)K = κ→ (JΓ2K→ B)→ (JΓ1K→ B) for any B

107

Note that the first half of Lemma 5.5.2 still holds. That is, for any λdeclpoly type A, JAK ∈
RLegType. However, the backwards direction, which says that for any A′ ∈ RLegType

there exists a λgenpoly type A such that JAK = A′, is no longer valid due to the extension of the
type system with κ. Because of this fact, the relation between λdeclpoly type system and record
type system is no longer bi-directional (i.e. not an iff relation). The relation we have now
says that anything typable in λdeclpoly is also typable in the record calculus. This property
essentially means that record calculus provides a type system as powerful as λdeclpoly, and is
much more important than the other direction.

Theorem 5.8.9. Let e be a stage-n λdeclpoly program. Then

∆0, . . . ,∆n P̀ e : A =⇒ J∆0, . . . ,∆nKR0,...,Rn R̀ JeKR0,...,Rn : JAK

Proof. By structural induction on e.

In conclusion, the record calculus provides a sound type system that is as powerful as
λdeclpoly.

5.9 Extending λgenpoly with References

The order of evaluation in the (call-by-value) semantics of λgenpoly, which is given in Figure
5.7, is not preserved by the translation given in Figure 5.13, if the result of the translation
is evaluated using standard call-by-value semantics of the record calculus: In the staged
semantics holes in a quoted fragment are evaluated first. However, the translation con-
verts a quoted expression to a lambda abstraction which would immediately evaluate to a
closure, giving the behavior that the holes would be evaluated only when the quoted ex-
pression is “run”. Because we did not have any side-effects in the language (and because
non-termination is ignored by the type system due to undecidability), this difference in the
order of evaluation did not matter (for the very same reason we postponed formal defini-
tion of the call-by-value record semantics). The translation, however, would be problem-
atic in the presence of side effects. Consider the stage-0 expression 〈x + 8(ref 0; 〈1〉)〉. Its
transformation would be λr1.(r1·x+ (ref 0;λr.1)r1). Executing the staged expression eval-
uates the hole, resulting in a new memory allocation. On the other hand, its translation is
an abstraction, and immediately evaluates to a closure without expanding the memory.

In this section we first add references to the record calculus and the staged language.
We then modify the translation to preserve the order of execution and show several formal
properties. We conclude with a discussion of how to handle pluggable declarations in the
presence of references.

108

V al0 ::= . . . | `
V aln+1 ::= . . . | ` | ref vn+1 | !vn+1 | vn+1:=vn+1

S ∈ Store = Location ⇀ V al0

ESABS S, e −→n+1 S ′, e′
S, λx.e −→n+1 S ′, λx.e′

ESSYM z is fresh
S, λ∗x.e −→n S, λz.[xn n7→ z]e

ESFIX S, e −→n+1 S ′, e′
S, fix f(x). e −→n+1 S ′, fix f(x). e′

ESAPP S, e1 −→n S ′, e′1
S, e1e2 −→n S ′, e′1e2

e1 ∈ V aln S, e2 −→n S ′, e′2
S, e1e2 −→n S ′, e1e′2

e2 ∈ V al0
S, (λx.e)e2 −→0 S, e[x\e2]0

e2 ∈ V al0
S, (fix f(x). e)e2 −→0 S, e[f\fix f(x). e]0[x\e2]0

ESLET S, e1 −→n S ′, e′1
S, letx = e1 in e2 −→n S ′, letx = e′1 in e2

e1 ∈ V al0
S, letx = e1 in e2 −→0 S, e2[x\e1]0

e1 ∈ V aln+1 S, e2 −→n+1 S ′, e′2
S, letx = e1 in e2 −→n+1 S ′, letx = e1 in e′2

ESBOX S, e −→n+1 S ′, e′
S, 〈e〉 −→n S ′, 〈e′〉

ESUBOX S, e −→n S ′, e′
S, 8(e) −→n+1 S ′, 8(e′)

e ∈ V al1
S, 8(〈e〉) −→1 S, e

ESRUN S, e −→n S ′, e′
S, run(e) −→n S ′, run(e′)

e ∈ V al1
S, run(〈e〉) −→0 S, e

ESLIFT S, e −→n S ′, e′
S, lift(e) −→n S ′, lift(e′)

e ∈ V al0
S, lift(e) −→0 S, 〈e〉

ESREF S, e −→n S ′, e′
S, ref e −→n S ′, ref e′

e ∈ V al0 ` 6∈ dom(S)
S, ref e −→0 S<+{` : e}, `

ESDEREF S, e −→n S ′, e′
S, !e −→n S ′, !e′

S(`) = v
S, !` −→0 S, v

ESASGN S, e1 −→n S ′, e′1
S, e1:=e2 −→n S ′, e′1:=e2

e1 ∈ V aln S, e2 −→n S ′, e′2
S, e1:=e2 −→n S ′, e1:=e′2

e2 ∈ V al0
S, `:=e2 −→0 S<+{` : e2}, e2

Figure 5.17: The operational semantics of λopenpoly with references.

TSREF Σ; ∆0, . . . ,∆n S̀
e : A

Σ; ∆0, . . . ,∆n S̀
ref e : A ref TSDEREF Σ; ∆0, . . . ,∆n S̀

e : A ref
Σ; ∆0, . . . ,∆n S̀

!e : A

TSASGN

Σ; ∆0, . . . ,∆n S̀
e1 : A ref

Σ; ∆0, . . . ,∆n S̀
e2 : A

Σ; ∆0, . . . ,∆n S̀
e1:=e2 : A TSLOC Σ(`) = A

Σ; ∆0, . . . ,∆n S̀
` : A ref

TSLETIMP

Σ; ∆0, . . . ,∆n S̀
e1 : A expansiven(e1)

Σ; ∆0, . . . ,∆n<+{x : A}
S̀
e2 : B

Σ; ∆0, . . . ,∆n S̀
letx = e1 in e2 : B

TSLETAPP

Σ; ∆0, . . . ,∆n S̀
e1 : A ¬expansiven(e1)

Σ; ∆0, . . . ,∆n<+{x : GENA(Σ,∆0, . . . ,∆n)}
S̀
e2 : B

Σ; ∆0, . . . ,∆n S̀
letx = e1 in e2 : B

Figure 5.18: The λopenpoly typing rules to handle references. Other rules are the same as before
except propagating the store typing.

109

v ∈ RV al ::= . . . | `
S ∈ RStore = Location ⇀ RV al

ERAPP S, e1 −→R S ′, e′1
S, e1e2 −→R S ′, e′1e2

e1 ∈ RV al S, e2 −→R S ′, e′2
S, e1e2 −→R S ′, e1e′2

e2 ∈ RV al
S, (λw.e1)e2 −→R S, e1[w\e2]

e2 ∈ RV al
S, (fix f(x). e1)e2 −→R S, e1[f\fix f(x). e1][x\e2]

ERLET S, e1 −→R S ′, e′1
S, letw = e1 in e2 −→R S ′, letw = e′1 in e2

e1 ∈ RV al
S, letw = e1 in e2 −→R S, e2[w\e1]

ERUPD S, e1 −→R S ′, e′1
S, e1 with {a = e2} −→R S ′, e′1 with {a = e2}

e1 ∈ RV al S, e2 −→R S ′, e′2
S, e1 with {a = e2} −→R S ′, e1 with {a = e′2}

e2 ∈ RV al
S, {aj : vj}m1 with {a = e2} −→R S, {aj : vj}m1 <+{a : e2}

ERACC S, e −→R S ′, e′
S, e·a −→R S ′, e′ ·a

S, {aj : vj}m1 ·ai −→R S, vi

ERREF S, e −→R S ′, e′
S, ref e −→R S ′, ref e′

e ∈ RV al ` 6∈ dom(S)
S, ref e −→R S<+{` : e}, `

ERDEREF S, e −→R S ′, e′
S, !e −→R S ′, !e′

S(`) = v
S, !` −→R S, v

ERASGN S, e1 −→R S ′, e′1
S, e1:=e2 −→R S ′, e′1:=e2

e1 ∈ RV al S, e2 −→R S ′, e′2
S, e1:=e2 −→R S ′, e1:=e′2

e2 ∈ RV al
S, `:=e2 −→R S<+{` : e2}, e2

Figure 5.19: The operational semantics of record calculus with references.

TRREF Σ; ∆
R̀
e : A

Σ; ∆
R̀

ref e : A ref

TRDEREF Σ; ∆
R̀
e : A ref

Σ; ∆
R̀

!e : A

TRASGN Σ; ∆
R̀
e1 : A ref Σ; ∆

R̀
e2 : A

Σ; ∆
R̀
e1:=e2 : A

TRLOC Σ(`) = A
Σ; ∆

R̀
` : A ref

TRLETIMP

Σ; ∆
R̀
e1 : A expansive(e1)

Σ; ∆<+{x : A}
R̀
e2 : B

Σ; ∆
R̀

letx = e1 in e2 : B

TRLETAPP

Σ; ∆
R̀
e1 : A ¬expansive(e1)

Σ; ∆<+{x : GENA(Σ,∆)}
R̀
e2 : B

Σ; ∆
R̀

letx = e1 in e2 : B

expansive(c) = false
expansive(w) = false
expansive(λw.e) = false
expansive(fix f(w). e) = false
expansive(e1e2) = true
expansive(letx = e1 in e2) =

expansive(e1) ∨ expansive(e2)
expansive(e·w) = expansive(e)
expansive({}) = false
expansive(e1 with {w = e2}) =

expansive(e1) ∨ expansive(e2)
expansive(`) = false
expansive(ref e) = true
expansive(!e) = expansive(e)
expansive(e1:=e2) =

expansive(e1) ∨ expansive(e2)

Figure 5.20: The new typing rules to handle references in the record calculus. These are
standard [Har94, Wri95].

110

5.9.1 Adding References to the Staged and Record Calculi

The following syntax is added to the staged language. The resulting language is the same
as λopenpoly except open. The same syntax is added to the record calculus as well.

e ∈ Exp ::= . . . | ` | ref e | !e | e:=e

` ∈ Location

The operational semantics of λgenpoly is extended with references as shown in Figure 5.17.
The definitions of FV , FV n and substitution are extended straightforwardly. An extension
is also made to the staged type system as shown in Figure 5.18. This extension requires a
new reference type and a store typing to be added to the judgments.

A ∈ SType ::= . . . | A ref

Σ ∈ SStoreTyping = Location ⇀ SType

The store typing is used to look up the types of the locations occurring free (see the
TSLOC rule). Let-bindings now have to take memory expansion into account when gener-
alizing types. This is done by the expansiven predicate in [KYC06], which is an adaptation
of Wright’s original definition [Wri95].

Definition 5.9.1. expansiven(e) is as defined in [KYC06], except the following cases:

expansiven(λx.e) = false

expansiven(λ∗x.e) = false

expansiven(fix f(x). e) = false

We modified the definition of expansiveness in [KYC06] because that definition is
unnecessarily conservative for abstractions. Our definition is still safe, and preserves
demotion-closedness because only stage-1 values can be demoted to stage-0, and stage-1
values do not contain holes not filled in yet. In other words, any hole that possibly exists
under the abstraction has to be filled in before the lambda abstraction can be demoted to
stage-0, making the abstraction non-expansive at any stage. The following expression, for
example, is rejected by the λopenpoly type system, but is succesfully accepted with the modifi-
cation we gave.

〈let id = (λx.let t = 8(〈0〉) inx) in id(1), id(true)〉

Later on, in Theorem 5.9.13, we will state that the record calculus provides a type system
equal to λopenpoly (with the modification given above). With the original definition of expan-
siveness we would be able to get only an =⇒ relation instead of ⇐⇒ .

The record calculus operational semantics and the type system are extended with ref-
erences analogously as shown in Figures 5.19 and 5.20, respectively. The definition of pos-

111

sibly memory-expanding expressions is also given. In the typing rules omitted in Figure
5.20, the store typing is simply threaded through a proof tree.

Below we define safe-β-reductions: reductions that are guaranteed to not modify the
store. This is used in the main theorem which states that translating a staged expression
and then evaluating it in the record semantics produces the same side-effects as evaluation
using the staged semantics.

Definition 5.9.2 (Side-effect freedom). An expression e is said to be “side-effect-free”, de-
noted as SEF (e), if it is guaranteed not to change the store when evaluated. The formal
definition is as follows:

SEF (c) = true
SEF (w) = true

SEF (λw.e) = true
SEF (fix f(x). e) = true

SEF (e1e2) = false
SEF (letw = e1 in e2) =SEF (e1) ∧ SEF (e2)
SEF (e1 with {a = e2}) =SEF (e1) ∧ SEF (e2)

SEF (e·a) =SEF (e)
SEF ({}) = true
SEF (`) = true

SEF (ref e) = false
SEF (!e) =SEF (e)

SEF (e1:=e2) = false

Definition 5.9.3 (Safe β-reduction). The following are defined to be safe β-reductions.

(λw.e1)e2 −→|β| e1[w\e2] if SEF (e2)

letw = e1 in e2 −→|β| e2[w\e1] if SEF (e1)

(e2 with {a1 = e1})·a2 −→|β| e2 ·a2 if a1 6= a2 and SEF (e1)

(e2 with {a = e1})·a −→|β| e1 if SEF (e2)

ewith {a1 = e1}with {a2 = e2} −→|β| ewith {a2 = e2}with {a1 = e1}

if a1 6= a2, SEF (e1) and SEF (e2)

ewith {a = e1}with {a = e2} −→|β| ewith {a = e2} if SEF (e1)

5.9.2 Accounting for References in the Translation

We present a new version of the translation in Figure 5.21 that converts hole-filling into
function application where holes become arguments. The example we gave at the begin-
ning of the section, 〈x+ 8(ref 0; 〈1〉)〉, for instance, translates to (λh.λr1.r1·x+h(r1))(ref 0;λr1.1).
Call-by-value semantics ensures that holes are evaluated before being filled in, preserving
the order of evaluation. Below is the classical exponentiation example, written using a
reference. Instead of threading the exponent value through recursive calls, we keep it as a
global variable and decrement before each recursion. Even though the translation renames
variables, not to harm readability of the code, we do not rename them unless they are ac-
cessed from a record. The given code generates the function (λx.x×x×x× 1) which takes

112

JcKR0,...,Rn = (c, nil)

JxKR0,...,Rn = (Rn(x), nil)

Jλx.eKR0,...,Rn = (λz.e0, H)
where JeKR0,...,Rn with {x=z} = (e0, H), and z is fresh.

Jλ∗x.eKR0,...,Rn = Jλz.[xn n7→ z]eKR0,...,Rn , where z is fresh

Jfix f(x). eKR0,...,Rn = (fix g(z). e0, H)
where JeKR0,...,Rn with {f=g,x=z} = (e0, H), and g, z are fresh.

Je1e2KR0,...,Rn = (e′1e
′
2, zip(H1, H2))

where Je1KR0,...,Rn = (e′1, H1) and Je2KR0,...,Rn = (e′2, H2).

Jletx = e1 in e2KR0,...,Rn = (let z = e′1 in e′2, zip(H1, H2))
where Je1KR0,...,Rn = (e′1, H1) and Je2KR0,...,Rn with {x=z} = (e′2, H2), and z is fresh.

J〈e〉KR0,...,Rn = ((λ~π.λr.e0)~ep, H)
where JeKR0,...,Rn,r = (e0, {(~π, ~ep)} :: H) and r is fresh.

J 8(e)KR0,...,Rn,Rn+1 = (π(Rn+1), {(π, e0)} :: H)
where JeKR0,...,Rn = (e0, H) and π is fresh.

Jrun(e)KR0,...,Rn = (e0{}, H) where JeKR0,...,Rn = (e0, H).

Jlift(e)KR0,...,Rn = (letπ = e0 inλr.π,H) where JeKR0,...,Rn = (e0, H), and π is fresh.

J`KR0,...,Rn = (`, nil)

Jref eKR0,...,Rn = (ref e0, H) where JeKR0,...,Rn = (e0, H).

J!eKR0,...,Rn = (!e0, H) where JeKR0,...,Rn = (e0, H).

Je1:=e2KR0,...,Rn = (e′1:=e′2, zip(H1, H2))
where Je1KR0,...,Rn = (e′1, H1) and Je2KR0,...,Rn = (e′2, H2).

The zip function is defined below, where :: is the cons operation:

zip(h1 :: H1, h1 :: H2) = (h1 ∪ h2) :: zip(H1, H2)
zip(nil, H2) = H2

zip(H1, nil) = H1

Figure 5.21: Transformation modified to handle expressions with side-effects.

113

the cube of its argument. The translation returns the function

λy.(λr.r ·x× (λr.r ·x× (λr.r ·x× (λr.1)r)r)r){x = y}

which does the same thing through record operations.

Jletn = ref 0 in

let pow = fix gen(). if !n = 0 then 〈1〉 else 〈x× 8(n:=!n− 1; gen())〉
in n:=3; run 〈λx. 8(pow())〉K0 =

letn = ref 0 in

let pow = fix gen(). if !n = 0 then (λr.1) else (λπ.λr.r ·x× π(r))(n:=!n− 1; gen())
in n:=3; (λπ.λr.λy.π(rwith {x = y}))(pow()){}

The power function below is yet another version that counts the number of multiplica-
tions generated. It is adapted from [KKcS08, §6].

Jlet cnt = ref 0 in

let pow = fix gen(n). λx.if n = 0 then 〈1〉
else cnt:=!cnt+ 1; 〈 8(x)× 8(gen n x)〉

in run 〈λx. 8(pow 3 〈x〉)〉K0 =

let cnt = ref 0 in

let pow = fix gen(n). λx.if n = 0 then (λr.1)
else cnt:=!cnt+ 1; (λπ1.λπ2.λr.π1(r)× π2(r)) x (gen n x)

in (λπ.λr.λy.π(rwith {x = y}))(pow 3 (λr.r ·x)){}

The example below produces a specialized version of vector product. For this exam-
ple we assume that there is a built-in function nth that, given i and a list `, returns the ith

element of `. This is a two-level specialization. The first level produces a generator spe-
cialized for a fixed length; the second level specializes the code further for the values kept
in a vector. For instance, run(prod 2) gives

λv.〈nth 8(lift(2)) w × 8(lift(nth 2 v)) + nth 8(lift(1)) w × 8(lift(nth 1 v)) + 8(〈0〉)〉

and 〈λw. 8(run(prod 2)[5; 7])〉 is 〈λw.(nth 2 w)× 5 + (nth 1 w)× 7 + 0〉. We can now run this
code value and apply it to a vector of length 2, such as [2; 3].

Jlet prod =
let aux = fix gen(n).

if n = 0 then 〈〈0〉〉
else 〈〈nth 8(lift(8(lift(n)))) w × 8(lift(nth 8(lift(n)) v)) + 8(8(gen(n− 1)))〉〉

in λn.〈λv. 8(aux n)〉
in (run 〈λw. 8(run(prod 2)[5; 7])〉)[2; 3]K0 =

114

let prod =
let aux = fix gen(n).

if n = 0 then λr2.λr1.0
else (λπ4.λπ5.λπ6.λr2. (λπ1.λπ2.λπ3.λr1.(nth (π1r1) (r1 ·w))× π2(r2) + π3(r2))

(letπ = π4(r2) inλr.π)
(letπ = nth (π5 r2) (r2 ·v) inλr.π)
(π6(r2)))

(letπ = n inλr.π)
(letπ = n inλr.π)
(gen(n− 1))

in λn.(λπ7.λr.λv
′.π7(rwith {v = v′}))(aux n)

in (λπ8.λr.λw
′.π8(rwith {w = w′}))((prod 2){}[5; 7]){}[2; 3]

The value that is returned by the transformation of an expression e now has the form of
a pair: (e0, {(πi, ei)}m1 :: . . . ::{(πi, ei)}p1). Here, e0 is the actual result of the transformation
where each hole not enclosed by a quotation has been replaced by a unique variable π. The
second item in the return value, a list of variable and expression sets, contains these unique
hole-filler variables accompanied with the corresponding antiquoted expression. A set in
the returned list corresponds to a specific stage. The stage gets closer to 0 as we move from
left to right in the list. The transformation of a quotation retrieves the variable-expression
pairs from the top of the list, and uses them to “fill” in the holes via function application.
For the example given above, J 8(ref 0; 〈1〉)K{},r1 gives (π(r1), [{(π, ref 0;λr.1)}]). Based on
this value, J〈x + 8(ref 0; 〈1〉)〉K{} returns ((λπ.λr1.r1 ·x + π(r1))(ref 0;λr.1), nil). Note that
the number of sets returned is equal to the depth of the transformed expression:

Lemma 5.9.4. Let e be a stage-n program, and JeKR0,...,Rn = (e0, H). The length of H is equal to
the depth of e, giving n ≥ length of H .

Proof. By a straightforward induction on the structure of e. Note that length of zip(H1, H2)
is equal to max(length of H1, length of H2). The only expression that adds a new item to
H is quotation, and the only expression that removes an item from H is antiquotation.

Translation of types and judgments stays the same. There are two extensions to be
made. The first one converts a staged store typing to a record store typing:

J{`i : A}K = {`i : JAK}

The second extension translates a store:

Definition 5.9.5 (Store translation). Let S = {`i : vi} be a λopenpoly store. Its translation to a
λrecpoly store is defined as follows:

J{`i : vi}K = {`i : v′i}where (v′i, nil) = JviK{}

115

Note that all the values in S are stage-0 values, and the second item of the result of trans-
lating a stage-0 is guaranteed to always be nil by Lemma 5.9.4.

5.9.3 Relating the Staged and Record Calculi

We now show that the translation preserves the order of evaluation and the record calculus
still provides a sound type system with respect to staged semantics with side-effects. The
properties related to the record calculus are still valid with the extension made. We do not
repeat them. We first give auxiliary definitions and lemmas. The Close operation below
packs the result of a translation into a single function application. We use the notation
{(~π,~e)} for the set {(πi, ei)}m1 .

Definition 5.9.6. Let JeKR0,...,Rn = (e0, {(~π1, ~e1)} :: . . . ::{(~πm, ~em)}). Close is defined as

Close(JeKR0,...,Rn) = (λ ~πm.(· · · ((λ ~π1.e0)~e1) · · ·)) ~em

Below is the theorem stating that record operational semantics together with the trans-
lation is equivalent to staged operational semantics. The crucial property expressed by this
theorem is that translation from the staged language into the record calculus preserves the
order of evaluation, and hence the side effects of an expression.

Theorem 5.9.7. Let e1 be a stage-n λopenpoly expression such that FV n(e1) = ∅. If S, e1 −→n S ′, e2,
then JSK, Close(Je1K{},R1,...,Rn

) −→R JS ′K, e′2 such that e′2 −→∗|β| Close(Je2K{},R1,...,Rn
).

Proof. By structural induction on e1, based on the last applied reduction rule. As a remark,
an examination of the proof shows that safe-β reductions taken above are only “adminis-
trative” reductions in the style of Danvy and Filinski [DF92].

The following definition states the consistency between stores and store typings.

Definition 5.9.8 (Well-typed stores). A store S is well typed with respect to a store typing
Σ, denoted Σ |= S, if and only if dom(S) = dom(Σ), and Σ; ∅ R̀ S(`) : Σ(`) for any
` ∈ dom(S).

Theorem 5.9.9 (Preservation). Let e1 be a stage-n λopenpoly expression. If

Σ; ∆ R̀ Close(Je1K{},R1,...,Rn
) : A and S, e1 −→n S ′, e2

such that Σ |= JSK, then for some Σ′ ⊇ Σ we have

Σ′; ∆ R̀ Close(Je2K{},R1,...,Rn
) : A and Σ′ |= JS ′K

Proof. By Theorem 5.9.7 we have JSK, Close(Je1K{},R1,...,Rn
) −→R JS ′K, e′2 such that e′2 −→∗|β|

Close(Je2K{},R1,...,Rn
). By the preservation property of the record calculus, there exists Σ′′

116

such that Σ′′ ⊇ Σ and Σ′′ |= JS ′K giving the judgment Σ′′; ∆ R̀ e′2 : A. Using the preserva-
tion property of the record calculus again, and the fact that e′2 −→∗|β| Close(Je2K{},R1,...,Rn

)
does not modify the store, we get Σ′′; ∆ R̀ Close(Je2K{},R1,...,Rn

) : A.

Theorem 5.9.10 (Progress). Let e1 be a stage-n λopenpoly expression. If Σ; ∆ R̀ Close(Je1K{},R1,...,Rn
) :

A, then either e1 ∈ V aln, or for any store S such that Σ |= S , there exist e2 and S ′ such that
S, e1 −→n S ′, e2.

Proof. By structural induction on e1.

Theorem 5.9.11 (Soundness). Let e1 be a stage-0 λopenpoly expression and Je1K{} = (e0, nil). If
∅; ∅ R̀ e0 : A, then either e1 ⇑, or there exists e2 ∈ V al0 such that Je2K{} = (e′0, nil) and
∅, e1 −→∗0 S, e2 and Σ; ∅ R̀ e′0 : A where Σ |= S.

Proof. Follows from Theorems 5.9.9 and 5.9.10.

We have the following relation between expansion tests of record calculus and staged
typing:

Lemma 5.9.12. For any stage-n expression e, expansiven(e) ⇐⇒ expansive(e0) where
JeKR0,...,Rn = (e0, H).

Proof. By a straightforward induction on the structure of e.

Theorem 5.6.6, which stated that the record type system combined with the translation
is equal to the λopenpoly type system, is now stated as follows:

Theorem 5.9.13. Let e be a staged program.

Σ; ∆0, . . . ,∆n S̀ e : A ⇐⇒ JΣK; J∆0, . . . ,∆nKR0,...,Rn R̀ Close(JeKR0,...,Rn) : JAK

Proof. By induction on the structure of e.

5.9.4 Handling Pluggable Declarations in the Presence of References

In Section 5.8 we extended the staged language with pluggable declarations. We also gave
a translation to the record calculus. In the presence of references, the translation has to
be modified in the same way we did for the core language. The new definition of the
translation is given below.

J〈〉KR0,...,Rn = (λκ.λy.λr. y(r), nil)

J〈x = e〉KR0,...,Rn = ((λ~π.λκ.λy.λr.let z = e0 in y(rwith {x = z}))~ep, H)
where JeKR0,...,Rn,r = (e0, {(~π, ~ep)} :: H), and r, z are fresh.

Jlet 8(e1) in e2KR0,...,Rn,Rn+1 = (π κ (λr.e′0)Rn+1, zip({(π, e0)} :: H, H ′))
where Je1KR0,...,Rn = (e0, H), π, r are fresh, and Je2KR0,...,Rn,r = (e′0, H

′)

117

A similar modification to the desugaring function is also needed. Because this change
is along the same lines of the change made to the translation function, we omit it.

5.10 Related Work

We now compare the papers that are closest to our work in this chapter.
Translating a staged language to record calculus, as motivated in Section 5.1, has pre-

viously been proposed by Kameyama, Kiselyov and Shan [KKcS08]. They translate λα1ν , a
two-stage version of Taha and Nielsen’s λα [TN03], to System F [Gir72, Rey74] with tuples
and higher order polymorphism. Our work differs from [KKcS08] as follows.

• Our translation is not restricted to two-stage program generation; it is multi-staged.

• Targeting “PG by program construction”, our source language allows freely-open
fragments, as opposed to the “PG by partial evaluation” approach in [KKcS08] which
rejects fragments containing free variables that are not in the scope of an outer bind-
ing.

• The translation of λα1ν is guided by type and environment classifier annotations. Nei-
ther the source nor the target language in our translation contains type annotations.
The target language, record calculus, already has a principal type inference algo-
rithm defined. We simply use this algorithm to infer types.

• We provide a proof of the equivalence of the dynamic semantics of staged computa-
tion and record calculus. For a similar relation, [KKcS08] gives a conjecture.

• We have let-polymorphism (i.e. rank-1 polymorphism) as in λopenpoly . We do not allow
higher order polymorphism as in λα1ν . This prevents polymorphic types to live across
stages. The following program (we omitted type annotations) is typable in MetaML-
like typing (e.g. in λα1ν) but not in our system.

〈let f = λx.x in 8(〈f(1), f(true)〉)〉

An interesting question is how the idea of translation would apply to a PG by partial
evaluation language with rank-1 polymorphism and no type annotations, such as MetaML
[TS00]. The example above requires cross-stage persistence of polymorphic types. Our
translation fails to type-check it because the translation converts quotations to lambda
abstraction and antiquotations to function applications, and function parameters cannot
have polymorphic types in rank-1 polymorphism. (Recall that Kameyama et al. assume
higher rank polymorphism and the existence of type annotations, so they do not face this
problem.) To have variable bindings to be available cross-stage, we could define a new

118

translation which does not throw away the topmost environment when there is an an-
tiquotation, but puts it aside to reuse when a quotation is encountered later on (instead of
starting with a fresh environment), so that previously defined variables will be available.
The example above would then translate to

λr.let g = λx.x in (λr.g(1), g(true))(rwith {f = g})

which successfully type-checks. This translation, however, suffers from scope extrusion.
Consider 〈λx. 8(run(〈x〉))〉, which should be rejected because a fragment with a free vari-
able is being run. Its translation would be λr.λy.(λr.y){}(rwith {x = y}), which is admis-
sible by the record type system. We plan to investigate this problem as a future research.

Chen and Xi [CX03] give a translation to convert fragments to first-order abstract syn-
tax expressions. They represent program variables using deBruijn indices. Their target
language is second-order lambda calculus with recursion. One advantage is that they can
translate first-order abstract syntax (without holes) back to regular syntax (with quota-
tions). A problem in their system is ”at level k > 0, a bound variable merely represents a
deBruijn index and a binding may vanish or occur ’unexpectedly’” [CX03]. An example
that illustrates this problem in the existence of references is given by Kim, Yi and Calcagno
[KYC06, §6.4]. In [CX03], polymorphism is restricted to stage 0 only.

Kim, Yi and Calcagno define a language called λopenpoly that allows program generation
using freely-open code fragments [KYC06]. The language combines many features such
as references, variable hygiene to avoid unintended capture as well as intentional variable
capturing, and let-polymorphism together with core program generation facilities of quo-
tation, antiquotation, and “run” (to execute quoted fragments). A sound type system and
a principal type inference algorithm are provided. We took λopenpoly as a starting point for a
staged language.

Nanevski [Nan02] takes the approach of relaxing Davies’ notion of closed code [DP96,
Dav96] to allow manipulation of open code together with a sound “run” construct. He in-
troduces a new semantic category, names, that stands for the free variables in a code piece.
Free variables become part of a fragment’s type as the “support set” — the variables that
the code piece depends on. Only code values that have empty support sets can be “run”;
other code values can only be used to fill in holes. Similar to row-polymorphism, there
exists support set polymorphism. Pattern matching for code values is introduced. This
makes it possible to do computation based on the structure of a fragment. An example
is given that performs β-reduction inside quotations. An important feature of the type
system is subtyping: the support set of a code value can be loosened to allow its use in dif-
ferent contexts. Because no type information is kept for free variables inside a support set,
only the existence or absence of a variable can be expressed. In our work, we use subtyping
constraints as defined by Pottier [Pot00b]. Subtyping constraints subsume Nanevski’s no-

119

tion of subtyping and provide more expressibility. In particular, they successfully address
the subtyping requirement revealed by the library specialization problem. The definition
of subtyping in [Nan02] does not suffice for this problem. To our knowledge, a staged type
system with subtyping constraints is new.

In addition to these differences, we added pluggable declarations to our staged language
and showed that pluggable declarations are a syntactic sugaring that helps us avoid higher
order functions.

5.11 Conclusions

Guaranteeing that a program generator produces type-safe programs has received exten-
sive interest in the literature. We have tackled the same problem in the context of PG
by program construction. We have shown that the problem reduces to type-checking in
record calculus, which is an extensively studied area. This allows us to apply formal prop-
erties of the record calculus to program generation. An example is subtyping; we have
discussed how a staged type system can be enriched with subtyping constraints. The
close relation between the record and staged calculi exists in the presence of side-effecting
expressions as well. We have also shown how to extend the language and the type sys-
tem with pluggable declarations. These extensions yield a powerful type system that can
successfully address the important requirements motivated by the library specialization
problem.

We believe that the three extensions we discussed, namely subtyping, pluggable dec-
larations, and updatable references, are orthogonal; it is possible to combine them without
any fundamental problems. None of the extensions, nor the core program generation lan-
guage, requires the programmer to write any type annotations; existing type-inference
algorithms can be used to infer the types. These features form a nice package as a program
generation system.

120

Chapter 6

Conclusions and Future Work

Program generation (PG) is a widely applicable technique. It poses two important chal-
lenges for the developers of program generation systems. The first challenge is the effi-
ciency of generation: How can we generate code faster? The second is the safety of the
generated program: How can we ensure that the generated code will be type-safe? In
this dissertation, we focused on these two problems in the context of “PG by program
construction”.

There are two approaches that can be taken to address the first challenge.

• Avoid program generation if it is not likely to bring advantage. To do this, we experi-
mented with the idea of “just-in-time” generation (Chapter 2). Our empirical results
show that this is an effective technique that improves the efficiency gains from pro-
gram generation while imposing negligible overhead.

• Take advantage of available fragments of the program that will be generated to reduce the cost
of generation. We discussed two techniques that are based on this idea. The first tech-
nique uses source-level transformations to optimize the intermediate representation
of a fragment (Chapter 3). This technique builds on the principle of compositionality
of the compiler for program generation. The second technique performs at compile
time a portion of analyses that have to be done during runtime generation, so that
less time will be spent for generation (Chapter 4). To do this, we defined a frame-
work that leads to staging of analyses. We also provided benchmarking results for
both techniques to show that the techniques are indeed useful.

To address the second challenge of program generation, we showed that record cal-
culus can be used to develop a powerful type system (Chapter 5). We gave a translation
to convert program generators to record calculus programs, and proved that the two pro-
grams execute equivalently. This makes it possible to use a record calculus type system to
type-check program generators. We showed that this type system can further be extended
with more advanced features, such as subtyping, by using already-existing definitions and
properties from the record calculus domain.

Below we discuss some ideas, which, we think, form interesting topics for future re-
search.

121

In Chapter 2 we discussed how a program generator is written starting from non-
generative code. It would be interesting to see how the same style applies to other appli-
cations that share similar characteristics with marshalling — applications where a generic
algorithm handles many different kinds of data. It would also be interesting to see the
effect of just-in-time generation on other applications.

In Chapter 3 we discussed the lessons we learned from our experience in applying
source-level transformations on Java. The dynamic character of Java makes it difficult
to optimize away many computations. Performing the transformations on a more static
language, like C, may yield better results. Another possibility is to try a language whose
compiler would require only one pass over a program. This improves our abilities for
optimization as more information becomes available. In a prototype language we had
achieved much higher speedup [Akt05, AK05].

In Chapter 4 we gave a framework for data-flow analysis that can be naturally staged.
It would be interesting to see if flow/context insensitive analyses can be staged as well.
Some variants of pointer and shape analysis are examples. Another question that is worth
investigating is whether there is a systematic way to obtain representations from the tradi-
tional definition of analyses. Finally, using the analysis framework for a purpose different
from staging is a possibility. Because fragments can be individually analyzed and reduced
to representations using our framework, it may be possible to parallelize data-flow anal-
ysis of programs. There already exists work focusing on this problem [LRF95, LRM91,
LR94, KGS94]. We believe that our framework has a potential for better results in this area
as it can handle arbitrarily small fragments with multiple exits.

In Chapter 5 we gave theoretical results. The program generation language we used
is an ML-like functional language. It would be interesting to see how the results we
found could be extended to a more mainstream, object-oriented language. Because we
are translating program generators to programs in record calculus, and because records
form the fundamentals of object theory [AC96], we believe there is a high potential in
the generalization of our translation to object oriented languages. Inheritance, a key fea-
ture in object-orientation, may pose a difficulty. We expect theoretical and practical re-
sults obtained in the areas of subtyping in records [Pot00b] and type inference of objects
[Pal95, PWO97, PZ02] to be very useful in overcoming the challenges of the extension to
object-orientation. Lastly, we think that implementation of a powerful type system for a
staged version of a mainstream language is an important goal that the program generation
community should achieve.

According to type theorists, data-flow analysis is a kind of a type system; according
to compiler developers, type-checking is a kind of a data-flow analysis. This dual view
shows the close relation between type-checking and data-flow analysis. A question that
is worth investigating is whether a staged type system can be generalized as a framework
for data-flow analysis of staged programs. Another related idea is whether it is possible to

122

optimize the program that will be generated, by statically optimizing the translation of the
generator in the record calculus using traditional compiler optimizations. This is sensible
because the execution of a staged program and its translation are equivalent.

We have stated that a staged type system can be obtained by translating a staged pro-
gram to the record calculus and using a record type system. A question that naturally
arises is how to design a standalone staged type system that is as powerful (e.g. has sub-
typing constraints, references, pluggable declarations), but that does not require the use
of a translation and dependence on a record type system. Deriving such a type system
may be simply a matter of reverse engineering from the results we have given. We plan to
investigate this problem in the near future.

We hope that the results shown in this dissertation will be useful to researchers in
design and implementation of new program generation systems, and will lead to new
research topics.

123

Appendix A

Proofs

A.1 Proofs of Theorems in Chapter 4

Proof of Theorem 4.1.4. The proof is by induction on the structure of P .

• Case 1. P = skip

abs(FRJskipKr) = abs(idR(r))

= abs(r)

= abs(r) ; id

= abs(r) ; abs(idR)

= abs(r) ; abs(RJskipK)

= abs(r ;RRJskipK)

• Case 2. P = x = e

abs(FRJx = eKr) = abs(asgnR(x, e)(r))

= abs(r ;R asgnR(x, e))

= abs(r ;RRJx = eK)

• Case 3. P = P1;P2

By the induction hypothesis, we have, ∀r ∈ R,

abs(FRJP1Kr) = abs(r ;RRJP1K)

abs(FRJP2Kr) = abs(r ;RRJP2K)

Now we work on P1;P2:

124

abs(FRJP1;P2Kr) = abs(FRJP2K(FRJP1Kr))

= abs((FRJP1Kr) ;RRJP2K) (A.1)

= abs((FRJP1Kr)); abs(RJP2K)

= abs(r ;RRJP1K); abs(RJP2K) (A.2)

= abs(r); abs(RJP1K); abs(RJP2K)

= abs(r); abs(RJP1K ;RRJP2K)

= abs(r); abs(RJP1;P2K)

= abs(r ;RRJP1;P2K)

Induction hypothesis is used to derive (A.1) and (A.2).

• Case 4. P = if(e) P1 else P2

By the induction hypothesis, we have, ∀r ∈ R,

abs(FRJP1Kr) = abs(r ;RRJP1K)

abs(FRJP2Kr) = abs(r ;RRJP2K)

Now we work on if(e) P1 else P2:

abs(FRJif(e) P1 else P2Kr) = abs((expR(e) ; (FRJP1K ∧R FRJP2K))r)

= abs((FRJP1K ∧R FRJP2K)(r ;R expR(e)))

= abs(FRJP1K(r ;R expR(e)) ∧R FRJP2K(r ;R expR(e)))

= abs(FRJP1K(r ;R expR(e))) ∧ abs(FRJP2K(r ;R expR(e)))

= abs((r ;R expR(e)) ;RRJP1K) ∧ abs((r ;R expR(e)) ;RRJP2K) (A.3)

= abs(r ;R expR(e)); abs(RJP1K) ∧ abs(r ;R expR(e)); abs(RJP2K)

= abs(r); abs(expR(e)); abs(RJP1K) ∧ abs(r); abs(expR(e)); abs(RJP2K)

= abs(r); abs(expR(e)); (abs(RJP1K) ∧ abs(RJP2K))

= abs(r); abs(expR(e)); (abs(RJP1K ∧R RJP2K))

= abs(r); abs(expR(e) ;R (RJP1K ∧R RJP2K))

= abs(r); abs(RJif(e) P1 else P2K)

= abs(r ;R (RJif(e) P1 else P2K))

Induction hypothesis is used to derive (A.3).

125

Proof of Theorem 4.1.6. The proof is by induction on the structure of P .

• Case 1. P = skip

absE(RJskipK) = absE((>EnvR
, idR))

= λ(η′, d′).(λ`.η′(`) ∧ abs(>EnvR
(`))d′, abs(idR)d′)

= λ(η′, d′).(λ`.η′(`) ∧ abs(>R)d′, id(d′))

= λ(η′, d′).(λ`.η′(`) ∧ (λd.>Data)d′, d′)

= λ(η′, d′).(λ`.η′(`) ∧ >Data, d′)

= λ(η′, d′).(λ`.η′(`), d′)

= λ(η′, d′).(η′, d′)

= FJskipK

• Case 2. P = x = e

absE(RJx = eK) = absE((>EnvR
, asgnR(x, e)))

= λ(η′, d′).(λ`.η′(`) ∧ abs(>EnvR
(`))d′, abs(asgnR(x, e))d′)

= λ(η′, d′).(λ`.η′(`) ∧ abs(>R)d′, asgn(x, e)(d′))

= λ(η′, d′).(λ`.η′(`) ∧ (λd.>Data)d′, asgn(x, e)(d′))

= λ(η′, d′).(λ`.η′(`) ∧ >Data, asgn(x, e)(d′))

= λ(η′, d′).(λ`.η′(`), asgn(x, e)(d′))

= λ(η′, d′).(η′, asgn(x, e)(d′))

= FJx = eK

• Case 3. P = break `

absE(RJbreak `K) = absE((>EnvR
[` 7→ idR],>R))

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(>EnvR
[` 7→ idR](`′))d′, abs(>R)d′)

= λ(η′, d′).(
(
λ`′.

{
η′(`) ∧ abs(idR)d′ if ` = `′

η′(`′) ∧ abs(>R)d′ if ` 6= `′

)
,>Data)

= λ(η′, d′).(
(
λ`′.

{
η′(`) ∧ d′ if ` = `′

η′(`′) if ` 6= `′

)
,>Data)

= λ(η′, d′).(η′[` 7→ η′(`) ∧ d′], >Data)

= FJbreak `K

• Case 4. P = ` : P ′

126

Let (η, r) = RJP ′K. By the induction hypothesis we have

FJP ′K = absE(RJP ′K)

= absE((η, r))

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η(`′))d′, abs(r)d′)

Now we work on absE(RJ` : P ′K). Note that because we require all the programs to
be legal, the incoming environment has ` mapped to >Data.

absE(RJ` : P ′K) = absE((η[` 7→ >R], r ∧R η(`)))

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η[` 7→ >R](`′))d′, abs(r ∧R η(`))d′)

= λ(η′, d′).(λ`′.

{
η′(`) ∧ abs(>R)d′ if ` = `′

η′(`′) ∧ abs(η(`′))d′ if ` 6= `′
, abs(r ∧R η(`))d′)

= λ(η′, d′).(λ`′.

{
>Data ∧ >Data if ` = `′

η′(`′) ∧ abs(η(`′))d′ if ` 6= `′
, abs(r ∧R η(`))d′)

= λ(η′, d′).(λ`′.

{
>Data if ` = `′

η′(`′) ∧ abs(η(`′))d′ if ` 6= `′
, abs(r ∧R η(`))d′) (A.4)

And FJ` : P ′K:

FJ` : P ′K = λ(η′, d′). let (η1, d1)← FJP ′K(η′, d′)

in (η1[` 7→ >Data], d1 ∧ η1(`))

= λ(η′, d′). let (η1, d1)← (λ(η′, d′).(λ`′.η′(`′) ∧ abs(η(`′))d′, abs(r)d′))(η′, d′)

in (η1[` 7→ >Data], d1 ∧ η1(`))

= λ(η′, d′). let (η1, d1)← (λ`′.η′(`′) ∧ abs(η(`′))d′, abs(r)d′)

in (η1[` 7→ >Data], d1 ∧ η1(`))

= λ(η′, d′).((λ`′.η′(`′) ∧ abs(η(`′))d′)[` 7→ >Data],

abs(r)d′ ∧ (λ`′.η′(`′) ∧ abs(η(`′))d′)(`))

= λ(η′, d′).((λ`′.η′(`′) ∧ abs(η(`′))d′)[` 7→ >Data], abs(r)d′ ∧ η′(`) ∧ abs(η(`))d′)

= λ(η′, d′).(λ`′.

{
>Data if ` = `′

η′(`′) ∧ abs(η(`′))d′ if ` 6= `′
, abs(r)d′ ∧ >Data ∧ abs(η(`))d′)

= λ(η′, d′).(λ`′.

{
>Data if ` = `′

η′(`′) ∧ abs(η(`′))d′ if ` 6= `′
, abs(r ∧R η(`))d′)

= (A.4)

• Case 5. P = P1;P2

127

Let (η1, r1) = RJP1K and (η2, r2) = RJP2K. By the induction hypothesis we have

FJP1K = absE(RJP1K)

= absE((η1, r1))

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η1(`′))d′, abs(r1)d′)

FJP2K = absE(RJP2K)

= absE((η2, r2))

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η2(`′))d′, abs(r2)d′)

Now we work on absE(RJP1;P2K).

absE(RJP1;P2K) = absE((η1 ∧R (r1;R η2), r1;R r2))

= λ(η′, d′).(λ`′.η′(`′) ∧ abs((η1 ∧R (r1;R η2))(`′))d′, abs(r1;R r2)d′) (A.5)

And FJP1;P2K:

FJP1;P2K = λ(η′, d′).(FJP1K;FJP2K)(η′, d′)

= λ(η′, d′).FJP2K(FJP1K(η′, d′))

= λ(η′, d′).FJP2K((λ(η′, d′).(λ`′.η′(`′) ∧ abs(η1(`′))d′, abs(r1)d′))(η′, d′))

= λ(η′, d′).FJP2K(λ`′.η′(`′) ∧ abs(η1(`′))d′, abs(r1)d′)

= λ(η′, d′).(λ(η′, d′).(λ`′.η′(`′) ∧ abs(η2(`′))d′, abs(r2)d′))

(λ`′.η′(`′) ∧ abs(η1(`′))d′, abs(r1)d′)

= λ(η′, d′).(λ`′.(λ`′.η′(`′) ∧ abs(η1(`′))(d′))(`′) ∧ abs(η2(`′))(abs(r1)d′),

abs(r2)(abs(r1)d′))

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η1(`′))(d′) ∧ abs(η2(`′))(abs(r1)d′), abs(r1;R r2)d′)

= λ(η′, d′).(λ`′.η′(`′) ∧ abs((η1 ∧R (r1;R η2))(`′))d′, abs(r1;R r2)d′)

= (A.5)

• Case 6. P = if(e) P1 else P2

Let (η1, r1) = RJP1K and (η2, r2) = RJP2K. By the induction hypothesis we have

FJP1K = absE(RJP1K)

= absE((η1, r1))

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η1(`′))d′, abs(r1)d′)

128

FJP2K = absE(RJP2K)

= absE((η2, r2))

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η2(`′))d′, abs(r2)d′)

Now we work on absE(RJif(e) P1 else P2K).

absE(RJif(e) P1 else P2K) = absE(expR(e);R ((η1, r1) ∧R (η2, r2)))

= absE(expR(e);R ((η1, r1) ∧R (η2, r2)))

= absE((expR(e);R (η1 ∧R η2), expR(e);R (r1 ∧R r2)))

= λ(η′, d′).(λ`′.η′(`′) ∧ abs((expR(e);R (η1 ∧R η2))(`′))d′,

abs(expR(e);R (r1 ∧R r2))d′)

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(expR(e);R (η1(`′) ∧R η2(`′)))d′,

abs(expR(e);R (r1 ∧R r2))d′) (A.6)

And FJif(e) P1 else P2K:

FJif(e) P1 else P2K = λ(η′, d′). let (η′1, d
′
1)← FJP1K(η′, exp(e)d′)

(η′2, d
′
2)← FJP2K(η′, exp(e)d′)

in (η′1, d
′
1) ∧ (η′2, d

′
2)

= λ(η′, d′). let (η′1, d
′
1)← (λ(η′, d′).(λ`′.η′(`′) ∧ abs(η1(`′))d′, abs(r1)d′))(η′, exp(e)d′)

(η′2, d
′
2)← (λ(η′, d′).(λ`′.η′(`′) ∧ abs(η2(`′))d′, abs(r2)d′))(η′, exp(e)d′)

in (η′1, d
′
1) ∧ (η′2, d

′
2)

= λ(η′, d′). let (η′1, d
′
1)← (λ`′.η′(`′) ∧ abs(η1(`′))(exp(e)d′), abs(r1)(exp(e)d′))

(η′2, d
′
2)← (λ`′.η′(`′) ∧ abs(η2(`′))(exp(e)d′), abs(r2)(exp(e)d′))

in (η′1, d
′
1) ∧ (η′2, d

′
2)

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η1(`′))(exp(e)d′) ∧ η′(`′) ∧ abs(η2(`′))(exp(e)d′),

abs(r1)(exp(e)d′) ∧ abs(r2)(exp(e)d′))

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η1(`′))(exp(e)d′) ∧ abs(η2(`′))(exp(e)d′),

abs(expR(e);R (r1 ∧R r2))d′)

= (A.6)

Proof of Theorem 4.1.7. The proof is by induction on the structure of P .

• Case 1. P = skip

129

For this case, we have (η, r) = (>EnvR
, idR) = RJskipK.

absE(FRJskipK(η′, r′)) = absE(idR(η′, r′))

= absE((η′, r′))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′, abs(r′)d′′) (1)

And

absE((λ`′.η′(`′) ∧R (r′ ;R>EnvR
(`′)), r′ ;R idR))

= absE((λ`′.η′(`′) ∧R (r′ ;R>R), r′ ;R idR))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (r′ ;R>R))(`′))d′′, abs(r′ ;R idR)d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R>R))d′′, abs(r′)d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′ ∧ >Data, abs(r′)d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′, abs(r′)d′′)

= (1)

• Case 2. P = x = e

For this case, we have (η, r) = (>EnvR
, asgnR(x, e)) = RJx = eK.

absE(FRJx = eK(η′, r′)) = absE((η′, asgnR(x, e)(r′)))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′, abs(asgnR(x, e)(r′))d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′, abs(r′ ;R asgnR(x, e))d′′) (2)

And

absE((λ`′.η′(`′) ∧R (r′ ;R>EnvR
(`′)), r′ ;R asgnR(x, e)))

= absE((λ`′.η′(`′) ∧R (r′ ;R>R), r′ ;R asgnR(x, e)))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (r′ ;R>R))(`′))d′′,

abs(r′ ;R asgnR(x, e))d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R>R))d′′, abs(r′ ;R asgnR(x, e))d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′ ∧ >Data, abs(r′ ;R asgnR(x, e))d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′, abs(r′ ;R asgnR(x, e))d′′)

= (2)

• Case 3. P = break `

130

For this case, we have (η, r) = (>EnvR
[` 7→ idR],>R) = RJbreak `K.

absE(FRJbreak `K(η′, r′)) = absE((η′[` 7→ r′ ∧R η′(`)],>R))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′[` 7→ r′ ∧R η′(`)](`′))d′′, abs(>R)d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′[` 7→ r′ ∧R η′(`)](`′))d′′,>Data)

= λ(η′′, d′′).(
(
λ`′.

{
η′′(`) ∧ abs(r′ ∧R η′(`))d′′ if ` = `′

η′′(`′) ∧ abs(η′(`′))d′′ if ` 6= `′

)
,>Data) (3)

And

absE((λ`′.η′(`′) ∧R (r′ ;R>EnvR
[` 7→ idR](`′)), r′ ;R>R)))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (r′ ;R>EnvR
[` 7→ idR](`′)))(`′))d′′,

abs(r′ ;R>R)d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R>EnvR
[` 7→ idR](`′)))d′′,>Data)

= λ(η′′, d′′).(
(
λ`′.

{
η′′(`) ∧ abs(η′(`) ∧R (r′ ;R idR))d′′ if ` = `′

η′′(`) ∧ abs(η′(`) ∧R (r′ ;R>R))d′′ if ` 6= `′

)
,>Data)

= λ(η′′, d′′).(
(
λ`′.

{
η′′(`) ∧ abs(η′(`) ∧R r′)d′′ if ` = `′

η′′(`) ∧ abs(η′(`′))d′′ if ` 6= `′

)
,>Data)

= (3)

• Case 4. P = ` : P ′

Let (η, r) = RJP ′K. By the induction hypothesis, we obtain

absE(FRJP ′K(η′, r′))

= absE((λ`′.η′(`′) ∧R (r′ ;R η(`′)), r′ ;R r))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (r′ ;R η(`′)))(`′))d′′, abs(r′ ;R r)d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η(`′)))d′′, abs(r′ ;R r)d′′) (4)

Let (η1, r1) = FRJP ′K(η′, r′). Then we get

absE(FRJP ′K(η′, r′)) = absE((η1, r1))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η1(`′))d′′, abs(r1)d′′) (5)

Since (4) = (5), we obtain

abs(r′ ;R r)d′′ = abs(r1)d′′

131

and

η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η(`′)))d′′ = η′′(`′) ∧ abs(η1(`′))d′′

When `′ = `, using the legality condition, we get

η′′(`) ∧ abs(η′(`) ∧R (r′ ;R η(`)))d′′ = η′′(`) ∧ abs(η1(`))d′′

⇒ >Data ∧ abs(>R ∧R (r′ ;R η(`)))d′′ = >Data ∧ abs(η1(`))d′′

⇒ abs(r′ ;R η(`))d′′ = abs(η1(`))d′′

Now we work on ` : P ′:

absE(FRJ` : P ′K(η′, r′))

= absE((η1[` 7→ >R], r1 ∧R η1(`)))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η1[` 7→ >R](`′))d′′, abs(r1 ∧R η1(`))d′′)

= λ(η′′, d′′).(λ`′.

{
η′′(`) ∧ abs(>R)d′′ if ` = `′

η′′(`′) ∧ abs(η1(`′))d′′ if ` 6= `′
,

abs(r1)d′′ ∧ abs(η1(`))d′′)

= λ(η′′, d′′).(λ`′.

{
η′′(`) if ` = `′

η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η(`′)))d′′ if ` 6= `′
,

abs(r′ ;R r)d′′ ∧ abs(r′ ;R η(`))d′′)

= λ(η′′, d′′).(λ`′.

{
η′′(`) if ` = `′

η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η(`′)))d′′ if ` 6= `′
,

abs(r′ ;R (r ∧R η(`)))d′′) (6)

132

And using the fact thatRJ` : P ′K = (η[` 7→ >R], r ∧R η(`)), we have

absE((λ`′.η′(`′) ∧R (r′ ;R η[` 7→ >R](`′)), r′ ;R (r ∧R η(`))))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (r′ ;R η[` 7→ >R](`′)))(`′))d′′,

abs(r′ ;R (r ∧R η(`)))d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η[` 7→ >R](`′)))d′′,

abs(r′ ;R (r ∧R η(`)))d′′)

= λ(η′′, d′′).(λ`′.

{
η′′(`) ∧ abs(η′(`) ∧R (r′ ;R>R))d′′ if ` = `′

η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η(`′)))d′′ if ` 6= `′
,

abs(r′ ;R (r ∧R η(`)))d′′)

= λ(η′′, d′′).(λ`′.

{
η′′(`) ∧ abs(>R ∧R (r′ ;R>R))d′′ if ` = `′

η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η(`′)))d′′ if ` 6= `′
,

abs(r′ ;R (r ∧R η(`)))d′′)

= λ(η′′, d′′).(λ`′.

{
η′′(`) if ` = `′

η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η(`′)))d′′ if ` 6= `′
,

abs(r′ ;R (r ∧R η(`)))d′′)

= (6)

• Case 5. P = P1;P2

Let (η1, r1) = RJP1K, (η2, r2) = RJP2K, (ηa, ra) = FRJP1K(η′, r′), and (ηb, rb) =
FRJP2K(ηa, ra). By the induction hypothesis, we have

absE(FRJP1K(η′, r′)) = absE((ηa, ra))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηa(`′))d′′, abs(ra)d′′)

and

absE(FRJP1K(η′, r′)) = absE((λ`′.η′(`′) ∧R (r′ ;R η1(`′)), r′ ;R r1))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (r′ ;R η1(`′)))(`′))d′′, abs(r′ ;R r1)d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η1(`′)))d′′, abs(r′ ;R r1)d′′)

Similarly, for P2

absE(FRJP2K(ηa, ra)) = absE((ηb, rb))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηb(`′))d′′, abs(rb)d′′)

133

and

absE(FRJP2K(ηa, ra)) = absE((λ`′.ηa(`′) ∧R (ra ;R η2(`′)), ra ;R r2))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.ηa(`′) ∧R (ra ;R η2(`′)))(`′))d′′, abs(ra ;R r2)d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηa(`′) ∧R (ra ;R η2(`′)))d′′, abs(ra ;R r2)d′′)

These give us the equalities

η′′(`′) ∧ abs(ηa(`′))d′′ = η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η1(`′)))d′′

abs(ra)d′′ = abs(r′ ;R r1)d′′

η′′(`′) ∧ abs(ηb(`′))d′′ = η′′(`′) ∧ abs(ηa(`′) ∧R (ra ;R η2(`′)))d′′

abs(rb)d′′ = abs(ra ;R r2)d′′

Now, returning to P1;P2, we have

absE(FRJP1;P2K(η′, r′)) = absE(FRJP2K(FRJP1K(η′, r′)))

= absE(FRJP2K(ηa, ra))

= absE((ηb, rb))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηb(`′))d′′, abs(rb)d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηa(`′) ∧R (ra ;R η2(`′)))d′′, abs(ra ;R r2)d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηa(`′))d′′ ∧ abs(η2(`′))(abs(ra)d′′), abs(r2)(abs(ra)d′′))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η1(`′)))d′′

∧abs(η2(`′))(abs(r′ ;R r1)d′′),

abs(r2)(abs(r′ ;R r1)d′′))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′)) ∧ (abs(r′); abs(η1(`′)))d′′

∧(abs(r′); abs(r1); abs(η2(`′)))d′′,

(abs(r′); abs(r1); abs(r2))d′′) (7)

for the left-hand-side of the equivalence. And using the fact thatRJP1;P2K = (η1 ∧R
(r1 ;R η2), r1;R r2), for the right-hand-side of the equivalence we have

134

absE((λ`′.η′(`′) ∧R (r′ ;R (η1 ∧R (r1 ;R η2))(`′)), r′ ;R (r1;R r2)))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (r′ ;R (η1 ∧R (r1 ;R η2))(`′)))(`′))d′′,

abs(r′ ;R (r1;R r2))d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R (η1 ∧R (r1 ;R η2))(`′)))d′′,

abs(r′ ;R (r1;R r2))d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′)) ∧ (abs(r′); abs((η1 ∧R (r1 ;R η2))(`′)))d′′,

(abs(r′); abs(r1); abs(r2))d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′)) ∧ (abs(r′); abs(η1(`′)))d′′

∧(abs(r′); abs(r1); abs(η2(`′)))d′′,

(abs(r′); abs(r1); abs(r2))d′′)

= (7)

• Case 6. P = if(e) P1 else P2

Let (η1, r1) = RJP1K, (η2, r2) = RJP2K, (ηa, ra) = FRJP1K(η′, expR(e)r′), and (ηb, rb) =
FRJP2K(η′, expR(e)r′). By the induction hypothesis, we have

absE(FRJP1K(η′, expR(e)r′)) = absE((ηa, ra))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηa(`′))d′′, abs(ra)d′′)

and

absE(FRJP1K(η′, expR(e)r′))

= absE((λ`′.η′(`′) ∧R (expR(e)r′ ;R η1(`′)), expR(e)r′ ;R r1))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (expR(e)r′ ;R η1(`′)))(`′))d′′,

abs(expR(e)r′ ;R r1)d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′;R expR(e);R η1(`′)))d′′,

abs(r′;R expR(e);R r1)d′′)

Similarly, for P2

absE(FRJP2K(η′, expR(e)r′)) = absE((ηb, rb))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηb(`′))d′′, abs(rb)d′′)

135

and

absE(FRJP2K(η′, expR(e)r′))

= absE((λ`′.η′(`′) ∧R (expR(e)r′ ;R η2(`′)), expR(e)r′ ;R r2))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (expR(e)r′ ;R η2(`′)))(`′))d′′,

abs(expR(e)r′ ;R r2)d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′;R expR(e);R η2(`′)))d′′,

abs(r′;R expR(e);R r2)d′′)

These give us the equalities

η′′(`′) ∧ abs(ηa(`′))d′′ = η′′(`′) ∧ abs(η′(`′) ∧R (r′;R expR(e);R η1(`′)))d′′

abs(ra)d′′ = abs(r′;R expR(e);R r1)d′′

η′′(`′) ∧ abs(ηb(`′))d′′ = η′′(`′) ∧ abs(η′(`′) ∧R (r′;R expR(e);R η2(`′)))d′′

abs(rb)d′′ = abs(r′;R expR(e);R r2)d′′

Now, returning to if(e) P1 else P2, we have

absE(FRJif(e) P1 else P2K(η′, r′)) = absE((ηa ∧R ηb, ra ∧R rb))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηa(`′) ∧R ηb(`′))d′′, abs(ra ∧R rb)d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′;R expR(e);R η1(`′)))d′′

∧abs(η′(`′) ∧R (r′;R expR(e);R η2(`′)))d′′,

abs(r′;R expR(e);R r1)d′′ ∧ abs(r′;R expR(e);R r2)d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′ ∧ abs(r′;R expR(e);R η1(`′))d′′

∧abs(r′;R expR(e);R η2(`′))d′′,

abs(r′;R expR(e);R r1)d′′ ∧ abs(r′;R expR(e);R r2)d′′) (8)

And using the fact that

RJif(e) P1 else P2K = (expR(e);R (η1 ∧R η2), expR(e);R (r1 ∧R r2))

136

we get

absE((λ`′.η′(`′) ∧R (r′ ;R (expR(e);R (η1(`′) ∧R η2(`′)))), r′ ;R (expR(e);R (r1 ∧R r2))))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R (expR(e);R (η1(`′) ∧R η2(`′)))))d′′,

abs(r′ ;R (expR(e);R (r1 ∧R r2)))d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′ ∧ abs(r′;R expR(e);R η1(`′))d′′

∧abs(r′;R expR(e);R η2(`′))d′′,

abs(r′;R expR(e);R r1)d′′ ∧ abs(r′;R expR(e);R r2)d′′)

= (8)

Proof of Theorem 4.2.1. To show that a representation is exact (i.e. abs is an isomorphism
between R and DFFun), we need to prove two claims:

1. R is adequate (i.e. abs defines a homomorphism)

2. abs is injective. (i.e. ∀r1, r2 ∈ R, r1 6= r2 ⇒ abs(r1) 6= abs(r2))

Claim 1: R for RD is adequate. Proof:

• abs(>R) = λD.>Data holds by definition.

• abs(idR) = abs((∅,∅)) = λD.∅ ∪ (D \∅) = λD.D = id

• abs(asgnR(n, x, e)) = abs(({x}, {n})) = λD.{n} ∪ (D \ {x}) = λD.{n} ∪ (D \Dx) =
asgn(n, x, e)

• abs(expR(e)) = abs((∅,∅)) = λD.∅ ∪ (D \∅) = λD.D = exp(e)

• abs((K1, G1);R (K2, G2)) = abs((K1 ∪K2, G2 ∪ (G1 \K2)))
= λD.G2 ∪ (G1 \K2) ∪ (D \ (K1 ∪K2))
= λD.G2 ∪ (G1 \K2) ∪ ((D \K1) ∩ (D \K2)) (1)

abs((K1, G1)); abs((K2, G2)) = (λD.G1 ∪ (D \K1)); (λD.G2 ∪ (D \K2))
= λD.G2 ∪ ((G1 ∪ (D \K1)) \K2)
= λD.G2 ∪ (G1 \K2) ∪ ((D \K1) \K2)
= λD.G2 ∪ (G1 \K2) ∪ ((D \K1) ∩ (D \K2))
= (1)

• abs((K1, G1) ∧R (K2, G2)) = abs((K1 ∩K2, G1 ∪G2))
= λD.G1 ∪G2 ∪ (D \ (K1 ∩K2)) (2)

137

abs((K1, G1)) ∧ abs((K2, G2)) = (λD.G1 ∪ (D \K1)) ∧ (λD.G2 ∪ (D \K2))
= λD.G1 ∪ (D \K1) ∪G2 ∪ (D \K2)
= λD.G1 ∪G2 ∪ (D \ (K1 ∩K2))
= (2)

Therefore, R for RD is adequate.

Claim 2: abs is injective.Proof:
By contradiction. Let r1 = (K1, G1), r2 = (K2, G2) and r1 6= r2, which implies K1 6= K2

and/or G1 6= G2. Assume abs(r1) = abs(r2). Then we have

λD.G1 ∪ (D \K1) = λD.G2 ∪ (D \K2)

which means, for all D ∈ Data,

G1 ∪ (D \K1) = G2 ∪ (D \K2)

Now there are two cases to consider: K1 = K2 and K1 6= K2.

• For the first case, take D to be the empty set. Then we get G1 = G2. But this conflicts
with our initial assumption.

• For the second case, without loss of generality, assume K1 \K2 6= ∅. We can pick D
to be {n} for some n ∈ Node such that n : x = e, x ∈ (K1 \K2) and n 6∈ G1. Then we
end up with the equality

G1 ∪∅ = G2 ∪ {n}

which is impossible because G1 does not include n.

Proof of Theorem 4.2.5. We provide the sketch of the proof here. We first show that R is
adequate.

• abs(>R) = λM.>Data holds by definition.

• abs(idR) = abs(λv.∅sur) = λS.λv. let Cmust ← semicolon(S, S(v)must,∅sur)
in if C = {i} then i else ⊥

= λS.λv. let Cmust ← S(v)must
in if C = {i} then i else ⊥

= λS.λv.S(v)
= id

• abs(asgnR(n, x, e)) = abs(λv.∅sur[x 7→ {e}must])
= λS.λv. let Cmust ← semicolon(S, S(v)must, (λv.∅sur[x 7→ {e}must])(v))

in if C = {i} then i else ⊥

138

= λS.λv.

{
S(v) if v 6= x

update(S, {e}) if v = x

= λS.S[x 7→ if isConstant(e, S) then consVal(e,M) else ⊥]
= asgn(n, x, e)

• abs(expR(e)) = abs(λv.∅sur) = λS.S = exp(e)

• abs(M1 ∧RM2) = abs(λv.M1(v) ∧RM2(v))
= λS.λv. let Cmust ← semicolon(S, S(v)must,M1(v) ∧RM2(v))

in if C = {i} then i else ⊥
= (1)

and

abs(M1) ∧ abs(M2) =
(λS.λv.let Cmust ← semicolon(S, S(v)must,M1(v))

in if C = {i} then i else ⊥

)
∧

(λS.λv.let Cmust ← semicolon(S, S(v)must,M2(v))
in if C = {i} then i else ⊥

)
= (2)

Showing that (1) = (2) is a straightforward case analysis based on the annotations of
the values obtained from M1(v) and M2(v).

• abs(M1;RM2) = abs(λv.semicolon(M1,M1(v),M2(v)))
= λS.λv. let Cmust ← semicolon(S, S(v)must, semicolon(M1,M1(v),M2(v)))

in if C = {i} then i else ⊥
= (3)

and

abs(M1); abs(M2) =
(λS.λv.let Cmust ← semicolon(S, S(v)must,M1(v))

in if C = {i} then i else ⊥

)
;

(λS.λv.let Cmust ← semicolon(S, S(v)must,M2(v))
in if C = {i} then i else ⊥

)
= (4)

Showing that (3) = (4) is a straightforward case analysis based on the annotations of
the values obtained from M1(v) and M2(v).

Next step of the proof requires showing that the representations uniquely represent func-
tions. This part in essence follows the same principles of the corresponding proof of RD
(Section 4.2.1).

Proof of Theorem 4.3.1. The proof is by induction on the structure of P .

139

• Case 1. P = skip

absE(RJskipK) = absE((>EnvR
, idR))

= λ(η′, d′).(η′, abs(idR)d′ ∧
∧

`′∈Label

abs(>EnvR
(`′))(η′(`′)))

= λ(η′, d′).(η′, d′ ∧
∧

`′∈Label

>Data)

= λ(η′, d′).(η′, d′)

= BJskipK

• Case 2. P = x = e

absE(RJx = eK) = absE((>EnvR
, asgnR(x, e)))

= λ(η′, d′).(η′, abs(asgnR(x, e))d′ ∧
∧

`′∈Label

abs(>EnvR
(`′))(η′(`′)))

= λ(η′, d′).(η′, asgn(x, e)d′ ∧
∧

`′∈Label

>Data)

= λ(η′, d′).(η′, asgn(x, e)d′)

= BJx = eK

• Case 3. P = break `

absE(RJbreak `K) = absE((>EnvR
[` 7→ idR], >R))

= λ(η′, d′).(η′, abs(>R)d′ ∧
∧

`′∈Label

abs(>EnvR
[` 7→ idR](`′))(η′(`′)))

= λ(η′, d′).(η′, >Data ∧ abs(idR)(η′(`)))

= λ(η′, d′).(η′, η′(`))

= BJbreak `K

• Case 4. P = ` : P ′

Let (η, r) = RJP ′K. By the induction hypothesis we have

BJP ′K = absE(RJP ′K) = absE((η, r))

= λ(η′, d′).(η′, abs(r)d′ ∧
∧

`′∈Label

abs(η(`′))(η′(`′)))

140

Now we work on ` : P ′.

absE(RJ` : P ′K) = absE((η[` 7→ >R], r ∧R η(`)))

= λ(η′, d′).(η′, abs(r ∧R η(`))d′ ∧
∧

`′∈Label

abs(η[` 7→ >R](`′))(η′(`′)))

= λ(η′, d′).(η′, abs(r)d′ ∧ abs(η(`))d′ ∧
∧

`′∈Label,`′ 6=`
abs(η(`′))(η′(`′))) (1)

And

BJ` : P ′K = λ(η′, d′). let (η1, d1)← BJP ′K(η′[` 7→ d′], d′)

in (η1[` 7→ >Data], d1)

= λ(η′, d′). let (η1, d1)← (η′[` 7→ d′], abs(r)d′ ∧
∧

`′∈Label

abs(η(`′))(η′[` 7→ d′](`′)))

in (η1[` 7→ >Data], d1)

= λ(η′, d′).(η′[` 7→ >Data], abs(r)d′ ∧ abs(η(`))d′ ∧
∧

`′∈Label,`′ 6=`
abs(η(`′))(η′(`′)))

Because we require all the programs to be legal, the incoming environment η′ has `
mapped to >Data. This means that η′ = η′[` 7→ >Data]. So

= λ(η′, d′).(η′, abs(r)d′ ∧ abs(η(`))d′ ∧
∧

`′∈Label,`′ 6=`
abs(η(`′))(η′(`′)))

= (1)

• Case 5. P = P1;P2

Let (η1, r1) = RJP1K and (η2, r2) = RJP2K. By the induction hypothesis we have

BJP1K = absE(RJP1K)

= absE((η1, r1))

= λ(η′, d′).(η′, abs(r1)d′ ∧
∧

`′∈Label

abs(η1(`′))(η′(`′)))

and

BJP2K = absE(RJP2K)

= absE((η2, r2))

= λ(η′, d′).(η′, abs(r2)d′ ∧
∧

`′∈Label

abs(η2(`′))(η′(`′)))

141

Now we work on P1;P2.

absE(RJP1;P2K) = absE((η1 ∧R (η2;R r1), r2;R r1))

= λ(η′, d′).(η′, abs(r2;R r1)d′ ∧
∧

`′∈Label

abs((η1 ∧R (η2;R r1))(`′))(η′(`′)))

= λ(η′, d′).(η′, abs(r2;R r1)d′ ∧
∧

`′∈Label

(abs(η1(`′))(η′(`′))

∧abs(η2(`′);R r1)(η′(`′)))) (3)

And

BJP1;P2K = λ(η′, d′).(BJP2K;BJP1K)(η′, d′)

= λ(η′, d′).BJP1K(BJP2K(η′, d′))

= λ(η′, d′).BJP1K(η′, abs(r2)d′ ∧
∧

`′∈Label

abs(η2(`′))(η′(`′)))

= λ(η′, d′).
(
η′, abs(r1)

(
abs(r2)d′ ∧

∧
`′∈Label

abs(η2(`′))(η′(`′))
)

∧
(∧
`′∈Label

abs(η1(`′))(η′(`′))
))

= λ(η′, d′).
(
η′, abs(r2;R r1)d′ ∧

(∧
`′∈Label

abs(η2(`′);R r1)(η′(`′))
)

∧
(∧
`′∈Label

abs(η1(`′))(η′(`′))
))

= λ(η′, d′).
(
η′, abs(r2;R r1)d′ ∧

∧
`′∈Label

(abs(η2(`′);R r1)(η′(`′)) ∧ abs(η1(`′))(η′(`′)))
)

= (3)

We note that we used the distributivity property above.

• Case 6. P = if(e) P1 else P2

Let (η1, r1) = RJP1K and (η2, r2) = RJP2K. By the induction hypothesis we have

BJP1K = absE(RJP1K)

= absE((η1, r1))

= λ(η′, d′).(η′, abs(r1)d′ ∧
∧

`′∈Label

abs(η1(`′))(η′(`′)))

142

BJP2K = absE(RJP2K)

= absE((η2, r2))

= λ(η′, d′).(η′, abs(r2)d′ ∧
∧

`′∈Label

abs(η2(`′))(η′(`′)))

Now we work on if(e) P1 else P2.

absE(RJif(e) P1 else P2K) = absE(((η1 ∧R η2);R expR(e), (r1 ∧R r2);R exp(e)))

= λ(η′, d′).
(
η′, abs((r1 ∧R r2);R exp(e))d′

∧
∧

`′∈Label

abs(((η1 ∧R η2);R expR(e))(`′))(η′(`′))
)

= λ(η′, d′).
(
η′, exp(e)(abs(r1 ∧R r2)d′)

∧exp(e)
(∧
`′∈Label

abs(η1(`′) ∧R η2(`′))(η′(`′))
))

(4)

Let (η′1, d
′
1) = BJP1K(η′, d′) and (η′2, d

′
2) = BJP2K(η′, d′). Then

BJif(e) P1 else P2K = λ(η′, d′).(η′, exp(e)(d1 ∧ d2))

= λ(η′, d′).
(
η′, exp(e)((abs(r1)d′ ∧

∧
`′∈Label

abs(η1(`′))(η′(`′)))

∧(abs(r2)d′ ∧
∧

`′∈Label

abs(η2(`′))(η′(`′))))
)

= λ(η′, d′).
(
η′, exp(e)(abs(r1 ∧R r2)d′ ∧

∧
`′∈Label

abs(η1(`′) ∧R η2(`′))(η′(`′)))
)

= λ(η′, d′).
(
η′, exp(e)(abs(r1 ∧R r2)d′) ∧ exp(e)

(∧
`′∈Label

abs(η1(`′) ∧R η2(`′))(η′(`′))
))

= (4)

We note that we used the distributivity property above.

A.2 Proofs of Theorems in Chapter 5

A.2.1 Record Language

The record calculus λrecpoly satisfies the following standard lemmas.

Lemma A.2.1 (Weakening/Strengthening). If ∆(w) = ∆′(w) for all w ∈ FV (e), then ∆ R̀

e : T iff ∆′ R̀ e : T .

143

Lemma A.2.2 (Substitution). If ∆ R̀ e2 : T and ∆<+{w : ∀~ψ.T} R̀ e1 : T ′ where ~ψ∩FV (∆) =
∅, then ∆ R̀ e1[w\e2] : T ′.

Lemma A.2.3. If ∆ R̀ e : T , then ϕ∆ R̀ e : ϕT for any substitution ϕ.

Lemma A.2.4 (Generalization). Let ∆ :: {w : σ′} R̀ e : T and σ′ ≺ σ. Then ∆ :: {w : σ} R̀ e :
A.

A.2.2 Transformation

Definition A.2.5. inst [KYC06] creates a monotype environment Γ from the polytype en-
vironment ∆, such that Γ ≺ ∆, by instantiating the contained polytypes using distinct
renaming substitutions.

Lemma A.2.6. We have the following properties:

• Γ ≺ ∆ ⇐⇒ JΓK ≺ J∆K

• GENinst(∆)(∆) = ∆

• GENΓ(∆) ≺ ∆ if Γ ≺ ∆.

Lemma A.2.7. Let e be a stage-n program andm ≥ n. ThenFV (JeKR0,...,Rm) ⊆
⋃m
i=m−n FV (Ri).

Proof. By a straightforward structural induction on e.

Lemma A.2.8. Let e be a stage-n λgenpoly expression with FV (e) = {x1, . . . , xm}. Then,

JeKR0,R1,...,Rn = JeKR′0,R1,...,Rn

if R0(xi) = R′0(xi) for any i ∈ {1..m}.

Proof. By a straightforward structural induction on e.

Corollary A.2.9. Let e be a stage-0 expression with no free variables. Then JeK{} = JeKR0 for any
R0.

Lemma A.2.10. Let e be a λgenpoly expression such that e ∈ V aln+1. Then

JeK{},R1,...,Rn+1
= JeKR1,...,Rn+1

Proof. By a straightforward induction on the structure of e.

Lemma A.2.11. Let e1 be a stage-n and e2 a stage-0 λgenpoly expression with no free variables. Then

Je1KR0,R1,...,Rn [z\Je2K{}] = Je1[x\e2]nKR0,R1,...,Rn

where R0(x) = z.

144

Proof. By induction on the structure of e1. We only show the interesting cases. Other cases
follow easily from the I.H.

• Case e1 = y, n > 0: Because of our assumption on the renaming environments,
Rn(y) 6= z. Hence, JyKR0 with {x=z},R1,...,Rn

[z\Je2K{}] = Rn(y)[z\Je2K{}] = Rn(y). And
we have
Jy[x\e2]nKR0,R1,...,Rn = JyKR0,R1,...,Rn = Rn(y).

• Case e1 = x, n = 0: We have JxKR0 with {x=z}[z\Je2K{}] = z[z\Je2K{}] = Je2K{}. We also
have Jx[x\e2]0KR0 = Je2KR0 . By Lemma A.2.8, Je2K{} = Je2KR0 .

• Case e1 = y, n = 0, and y 6= x: Trivial.

A.2.3 Relation Between Staged Programming and Record Calculus

Lemma A.2.12. R·x −→∗β R(x) for any R.

Proof. By structural induction on R.

• Case R = {}: We have {}·x −→β error. Also {}(x) = error by definition.

• Case R = r: Trivial.

• Case R = R′ with {y = z}: If x = y, then R′ with {x = z}·x −→β z and (R′ with {x =
z})(x) = z.

If x 6= y, then R′ with {y = z}·x −→β R
′ ·x and (R′ with {y = z})(x) = R′(x). By I.H.

we have R′ ·x −→∗β R′(x).

Lemma A.2.13. (R(x))[r\R′] −→∗β (R[r\R′])(x) for any R,R′.

Proof. By structural induction on R.

• Case R = {}: We have {}(x)[r\R′] = error and ({}[r\R′])(x) = error by definition.

• Case R = r′: If r = r′, then (r(x))[r\R′] = R′ ·x and (r[r\R′])(x) = R′(x). By Lemma
A.2.12, R′ ·x −→∗β R′(x).

If r 6= r′, then (r′(x))[r\R′] = r′ ·x and (r′[r\R′])(x) = r′ ·x.

• Case R = R1 with {y = z}: If x = y, then ((R1 with {x = z})(x))[r\R′] = z and
((R1 with {x = z})[r\R′])(x) = z.

If x 6= y, then ((R1 with {y = z})(x))[r\R′] = (R1(x))[r\R′] and ((R1 with {y =
z})[r\R′])(x) = (R1[r\R′])(x). By I.H. we have (R1(x))[r\R′] −→∗β (R1[r\R′])(x).

Lemma A.2.14. Let e be a stage-n λgenpoly expression. Then

JeKR0,...,Rn [rm\Rm] −→∗β JeKR0[rm\Rm],...,Rn[rm\Rm]

145

Proof. By structural induction on e. In the VAR case we use Lemma A.2.13. In the BOX case
we use the fact that the newly introduced environment variable Rn+1 is fresh. Other cases
easily follow from the I.H.

Proof of Theorem 5.6.1. By induction on the structure of e1, based on the last applied reduc-
tion rule. The proof mostly follows from the I.H. We only show interesting cases here.

• Case APP(3). We have
e′ ∈ V al0

(λx.e)e′ −→0 e[x\e′]0

So,

J(λx.e)e′K{} = (λz.JeK{x=z})Je′K{} where z is fresh

−→β JeK{x=z}[z\Je′K{}]

= Je[x\e′]0K{} by Lemma A.2.11

• Case UBOX(2). We have
e ∈ V al1
8(〈e〉) −→1 e

Note that

J 8(〈e〉)K{},R1
= J〈e〉K{}R1

= (λr1.JeK{},r1)R1 where r1 is fresh

−→β (JeK{},r1)[r1\R1]

−→∗β JeK{},R1
by Lemma A.2.14

• Case RUN(2). We have
e ∈ V al1

run(〈e〉) −→0 e

So,

Jrun(〈e〉)K{} = (J〈e〉K{}){}

= (λr1.JeK{},r1){} where r1 is fresh

−→β JeK{},r1 [r1\{}]

−→∗β JeK{},{} by Lemma A.2.14

= JeK{} by Lemma A.2.10

• Case LIFT(2). We have
e ∈ V al0

lift(e) −→0 〈e〉

146

So,

Jlift(e)K{} = (λr1.JeK{}) where r1 is fresh

Since FV 0(e) = ∅, JeK{} = JeKr1 by Lemma A.2.8. Hence;

= (λr1.JeKr1)

= (λr1.JeK{},r1) by Lemma A.2.10

= J〈e〉K{}

Proof of Lemma 5.6.4. By structural induction on e. The proof mostly follows from the I.H.
In UBOX, APP and RUN cases we use Lemma 5.6.3 and do reverse reasoning from types to
expressions. We show the APP and UBOX cases.

• Case e = e1e2 at stage n. We have, using Lemma 5.6.3,

∆ R̀ Je1K{},R1,...,Rn
: A→ B ∆ R̀ Je2K{},R1,...,Rn

: A
∆ R̀ Je1e2K{},R1,...,Rn

: B

By I.H we have two subcases:

1. ∃e′1 such that e1 −→n e
′
1. In this case, e1e2 −→n e

′
1e2.

2. e1 ∈ V aln. By I.H. we have two subcases:

(a) ∃e′2 such that e2 −→n e
′
2. In this case, e1e2 −→n e1e

′
2.

(b) e2 ∈ V aln. We again have two subcases:

i. n > 0: In this case e1e2 ∈ V aln.

ii. n = 0: Because Je1K{} has the function type A → B and e1 is a value at
stage-0, e1 must be either λx.e3 or fix f(x). e3, for some e3. Therefore we
have either (λx.e3)e2 −→0 e3[x\e2]0 or
(fix f(x). e3)e2 −→0 e3[f\fix f(x). e3]0[x\e2]0.

• Case e = 8(e1) at stage n + 1. Note that J 8(e1)K{},R1,...,Rn+1
= (Je1K{},R1,...,Rn

)Rn+1.
We have

∆ R̀ (Je1K{},R1,...,Rn
)Rn+1 : A

Because the record expression Rn+1 can only be given record types, we must have

∆ R̀ Je1K{},R1,...,Rn
: Γ→ A

for some Γ. By I.H. we have two subcases:

147

1. ∃e′1 such that e1 −→n e
′
1. In this case, 8(e1) −→n+1

8(e′1).

2. e1 ∈ V aln. We have two subcases:

(a) n > 0: In this case, 8(e1) ∈ V aln+1.

(b) n = 0: Recall that e1 ∈ V al0 and it types to Γ → A. The only stage-0 value
whose translation can have such a type is 〈e′〉 for some e′ ∈ V al1. Hence,
8(e1) = 8(〈e′〉), and by ESUBOX, we have 8(〈e′〉) −→1 e

′

Lemma A.2.15. Let e be a stage-n λgenpoly expression. Then

∆ :: {rn : J∆nK} R̀ JeKR0,...,Rn−1,Rn : A

if and only if
∆ :: {rn : J∆n<+{x : σ}K} R̀ JeKR0,...,Rn−1,Rn : A

where x ∈ dom(Rn).

Proof. This is the “weakening” lemma adapted to translation and records. AssumeRn(x) =
z. Then, because of the translation, any occurrence of x at level n will be replaced with z
and its type is grabbed from ∆ — it is independent from rn’s type. Any variable y 6∈
dom(Rn) will be translated to rn·y, and can still be given the same type because J∆nK(y) =
J∆n<+{x : σ}K(y).

Proof of Lemma 5.6.6. By structural induction on e.

• Case e = c.

Trivial.

• Case e = x, (=⇒). We have ∆0, . . . ,∆n S̀ x : A with the premise A ≺ ∆n(x). Note
that JxKR0,...,Rn = Rn(x). We have two subcases.

(i) Case Rn(x) = z for some z: By the definition of type translation,

(J∆0, . . . ,∆nKR0,...,Rn)(z) = J∆n(x)K

Using the fact that JAK ≺ J∆n(x)K, we get

J∆0, . . . ,∆nKR0,...,Rn R̀ z : JAK

(ii) CaseRn(x) = rn·x: By the definition of type translation, (J∆0, . . . ,∆nKR0,...,Rn)(rn) =
J∆nK. Using the fact that A ≺ ∆n(x), it is easy to construct a Γ such that
Γ(x) = JAK and Γ ≺ J∆nK. Hence, J∆0, . . . ,∆nKR0,...,Rn R̀ rn : Γ, which gives

J∆0, . . . ,∆nKR0,...,Rn R̀ rn ·x : JAK

148

• Case e = x, (⇐=). Note that JxKR0,...,Rn = Rn(x). We have two subcases.

(i) Case Rn(x) = z for some z: We have

J∆0, . . . ,∆nKR0,...,Rn R̀ z : JAK

with the premise JAK ≺ (J∆0, . . . ,∆nKR0,...,Rn)(z). By the definition of type
translation, (J∆0, . . . ,∆nKR0,...,Rn)(z) = J∆n(x)K, hence JAK ≺ J∆n(x)K. There-
fore, A ≺ ∆n(x), which gives ∆0, . . . ,∆n S̀ x : A.

(ii) Case Rn(x) = rn ·x: We have

J∆0, . . . ,∆nKR0,...,Rn R̀ rn ·x : JAK

with the premises Γ ≺ J∆nK and Γ(x) = JAK. These two premises imply A ≺
∆n(x), which gives ∆0, . . . ,∆n S̀ x : A.

• Case e = λx.e′, (=⇒). Note that JeKR0,...,Rn = λz. Je′KR0,...,Rn with {x=z} where z is
fresh.

1. We have ∆0, . . . ,∆n S̀ λx.e
′ : A→ B with the premise

2. ∆0, . . . ,∆n<+{x : A} S̀ e
′ : B.

3. J∆0, . . . ,∆n<+{x : A}KR0,...,Rn with {x=z} R̀ Je′KR0,...,Rn with {x=z} : JBK by I.H. and
(2).

4. J∆0, . . . ,∆nKR0,...,Rn<+{z : JAK} R̀ Je′KR0,...,Rn with {x=z} : JBK by (3) and Lemma
A.2.15.

5. J∆0, . . . ,∆nKR0,...,Rn R̀ λz.Je′KR0,...,Rn with {x=z} : JAK→ JBK by (4) and TRABS.

• Case e = λx.e′, (⇐=). Note that JeKR0,...,Rn = λz. Je′KR0,...,Rn with {x=z} where z is
fresh.

1. We have J∆0, . . . ,∆nKR0,...,Rn R̀ λz.Je′KR0,...,Rn with {x=z} : JCK

2. By TRABS, we have JCK = A′ → B′ for some A′, B′. By Lemma 5.5.2, there exist
A,B such that JAK = A′ and JBK = B′. Therefore
J∆0, . . . ,∆nKR0,...,Rn R̀ λz.Je′KR0,...,Rn with {x=z} : JAK→ JBK

3. J∆0, . . . ,∆nKR0,...,Rn<+{z : JAK} R̀ Je′KR0,...,Rn with {x=z} : JBK as a premise of by
(2).

4. J∆0, . . . ,∆n<+{x : A}KR0,...,Rn with {x=z} R̀ Je′KR0,...,Rn with {x=z} : JBK
by (3) and Lemma A.2.15.

5. ∆0, . . . ,∆n<+{x : A} S̀ e
′ : B by I.H. and (4).

6. ∆0, . . . ,∆n S̀ λx.e
′ : A→ B (5) and TSABS.

149

• Case e = λ∗x.e′ is very similar to the abstraction case.

• Case e = fix f(x). e′ is very similar to the abstraction case.

• Case e = e1e2, (=⇒). Easily follows from the I.H.

• Case e = e1e2, (⇐=).

1. We have J∆0, . . . ,∆nKR0,...,Rn R̀ Je1e2KR0,...,Rn : JAK with the premises

2. J∆0, . . . ,∆nKR0,...,Rn R̀ Je1KR0,...,Rn : T → JAKand

3. J∆0, . . . ,∆nKR0,...,Rn R̀ Je2KR0,...,Rn : T for some T

4. T = B′ ∈ RLegType by Lemma 5.6.3

5. B′ = JBK for some B by Lemma 5.5.2

6. ∆0, . . . ,∆n S̀ e2 : B by (3), (5), and I.H.

7. ∆0, . . . ,∆n S̀ e1 : B → A by (2), (5), and I.H.

8. ∆0, . . . ,∆n S̀ e1e2 : A by (6), (7), and TSAPP.

• Case e = letx = e1 in e2 uses the same principles in the abstraction and application
cases together with the fact that type translation does not alter bound/unbound type
variables.

• Case e = 〈e′〉, (=⇒). Note that JeKR0,...,Rn = λrn+1. Je′KR0,...,Rn,rn+1 where rn+1 is
fresh.

1. We have ∆0, . . . ,∆n S̀ 〈e
′〉 : �(Γ . A) with the premise

2. ∆0, . . . ,∆n,Γ S̀ e
′ : A.

3. J∆0, . . . ,∆n,ΓKR0,...,Rn,rn+1 R̀ Je′KR0,...,Rn,rn+1 : JAK by I.H. and (2).

4. J∆0, . . . ,∆n,ΓKR0,...,Rn,rn+1 = J∆0, . . . ,∆nKR0,...,Rn<+{rn+1 : JΓK}
by the definition of type translation

5. J∆0, . . . ,∆nKR0,...,Rn<+{rn+1 : JΓK} R̀ Je′KR0,...,Rn,rn+1 : JAK by (3) and (4).

6. J∆0, . . . ,∆nKR0,...,Rn R̀ λrn+1.Je′KR0,...,Rn,rn+1 : JΓK→ JAK by (5) and TRABS.

• Case e = 〈e′〉, (⇐=). Note that JeKR0,...,Rn = λrn+1. Je′KR0,...,Rn,rn+1 where rn+1 is
fresh.

1. We have J∆0, . . . ,∆nKR0,...,Rn R̀ λrn+1.Je′KR0,...,Rn,rn+1 : JAK

2. JAK = Γ′ → B′ for some Γ′ and B′. by TRABS

3. JΓK = Γ′ and JBK = B′ for some Γ and B. by Lemma 5.5.2

4. (1) has the premise
J∆0, . . . ,∆nKR0,...,Rn<+{rn+1 : JΓK} R̀ Je′KR0,...,Rn,rn+1 : JBK by TRABS

150

5. J∆0, . . . ,∆n,ΓKR0,...,Rn,rn+1 = J∆0, . . . ,∆nKR0,...,Rn<+{rn+1 : JΓK}
by the definition of type translation

6. J∆0, . . . ,∆n,ΓKR0,...,Rn,rn+1 R̀ Je′KR0,...,Rn,rn+1 : JBK by (4) and (5).

7. ∆0, . . . ,∆n,Γ S̀ e
′ : B by I.H. and (6).

8. ∆0, . . . ,∆n S̀ 〈e
′〉 : �(Γ . B) by (7) and TSBOX.

• Case e = 8(e1), (=⇒). Note that JeKR0,...,Rn,Rn+1 = (Je1KR0,...,Rn)Rn+1.

1. We have ∆0, . . . ,∆n,∆n+1 S̀

8(e1) : A with the premises

2. ∆0, . . . ,∆n S̀ e1 : �(Γ . A) and

3. Γ ≺ ∆n+1.

4. J∆0, . . . ,∆nKR0,...,Rn R̀ Je1KR0,...,Rn : JΓK→ JAK by I.H. and (2).

5. J∆0, . . . ,∆n,∆n+1KR0,...,Rn,Rn+1 R̀ Je1KR0,...,Rn : JΓK→ JAK by (4) and Lemma
A.2.1.

6. Without loss of generality, assume Rn+1 = rn+1 with {x = z}. We have

7. (J∆0, . . . ,∆n,∆n+1KR0,...,Rn,Rn+1)(rn+1) = J∆n+1K

8. From (3) we have JΓK ≺ J∆n+1K.

9. J∆0, . . . ,∆n,∆n+1KR0,...,Rn,Rn+1 R̀ rn+1 : JΓK by (7), (8), and TRVAR.

10. (J∆0, . . . ,∆n,∆n+1KR0,...,Rn,Rn+1)(z) = J∆n+1(x)K = J∆n+1K(x) by definition

11. From (8) we have JΓK(x) ≺ J∆n+1K(x).

12. J∆0, . . . ,∆n,∆n+1KR0,...,Rn,Rn+1 R̀ z : JΓK(x) by (10), (11), and TRVAR.

13. J∆0, . . . ,∆n,∆n+1KR0,...,Rn,Rn+1 R̀ Rn+1 : JΓK<+{x : JΓK(x)} by (9), (12), and
TRUPD.

14. JΓK<+{x : JΓK(x)} = JΓK

15. J∆0, . . . ,∆n,∆n+1KR0,...,Rn,Rn+1 R̀ Rn+1 : JΓK by (13) and (14).

16. J∆0, . . . ,∆n,∆n+1KR0,...,Rn,Rn+1 R̀ (Je1KR0,...,Rn)Rn+1 : JAK by (5), (15) and
TRAPP.

• Case e = 8(e1), (⇐=). This case applies the (=⇒) case in the backwards direction
with the additional use of Lemma 5.5.2 and the fact that Γ ≺ ∆ and A ≺ ∆(x) imply
Γ<+{x : A} ≺ ∆.

• Case e = run(e′).

Follows easily from the I.H.

• Case e = lift(e′).

Follows easily from the I.H. and Lemma A.2.1.

151

A.2.4 Extension with Pluggable Declarations

Proof of Theorem 5.8.1. By structural induction on e1, based on the last applied reduction.
We only show the cases for the new syntax.

• Case e1 = 〈〉. Not possible because 〈〉 ∈ V aln.

• Case e1 = 〈x = e〉. We have

e −→n+1 e
′

〈x = e〉 −→n 〈x = e′〉

and
∅,∆1, . . . ,∆n,Γ P̀ e : A

∅,∆1, . . . ,∆n P̀ 〈x = e〉 : ♦(Γ . Γ<+{x : A})

By I.H., we have ∅,∆1, . . . ,∆n,Γ P̀ e′ : A, which gives, by TSDEC, that

∅,∆1 . . . ,∆n P̀ 〈x = e′〉 : ♦(Γ . Γ<+{x : A})

• Case e1 = let 8(e3) in e4. The two cases when we have

e3 −→n e
′
3

let 8(e3) in e4 −→n+1 let 8(e′3) in e4

and
e3 ∈ V aln e4 −→n+1 e

′
4

let 8(e3) in e4 −→n+1 let 8(e3) in e′4

easily follow from the I.H.

• Case e1 = let 8(〈x = e3〉) in e4 and

e3 ∈ V al1 e4 ∈ V al1

let 8(〈x = e3〉) in e4 −→1 letx = e3 in e4

We have
∅ P̀ 〈x = e3〉 : ♦(Γ . Γ′) Γ ≺ ∆1 ∅,Γ′ P̀ e4 : A

∅,∆1 P̀ let 8(〈x = e3〉) in e4 : A

By TSDEC, for some B, we must have ∅,Γ P̀ e3 : B and Γ′ = Γ<+{x : B}.

By the Generalization Lemma (from [KYC06]) and the premise Γ ≺ ∆1, we have
∅,∆1 P̀ e3 : B.

Again by the Generalization Lemma and the fact that Γ<+{x : B} ≺ ∆1<+{x :
GENB(∅,∆1)}, we have ∅,∆1<+{x : GENB(∅,∆1)} P̀ e4 : A.

Finally, by TSLET, we obtain ∅,∆1 P̀ letx = e3 in e4 : A.

• Case e1 = let 8(〈〉) in e is straightforward.

152

Proof of Theorem 5.8.2. By structural induction on e1. We only show the cases for the new
syntax.

• Case e1 = 〈〉. 〈〉 ∈ V aln.

• Case e1 = 〈x = e〉. We have

∅,∆1, . . . ,∆n,Γ P̀ e : A
∅,∆1, . . . ,∆n P̀ 〈x = e〉 : ♦(Γ . Γ<+{x : A})

By I.H. we either have e ∈ V aln+1, which means 〈x = e〉 ∈ V aln, or we have e′ such
that e −→n+1 e

′, which means 〈x = e〉 −→n 〈x = e′〉.

• Case e1 = let 8(e3) in e4. We have

∅,∆1, . . . ,∆n P̀ e3 : ♦(Γ . Γ′) Γ ≺ ∆n+1 ∅,∆1, . . . ,∆n,Γ′ P̀ e4 : A
∅,∆1, . . . ,∆n,∆n+1 P̀ let 8(e3) in e4 : A

By I.H. we either have e3 −→n e
′
3, which means let 8(e3) in e4 −→n+1 let 8(e′3) in e4. Or

we have e3 ∈ V aln. In this case, by I.H. we have two subcases:

– e4 −→n+1 e
′
4, which means let 8(e3) in e4 −→n+1 let 8(e3) in e′4.

– e4 ∈ V aln+1. We again have two subcases. If n > 0, we have let 8(e3) in e4 ∈
V aln+1. If n = 0, we first recall that e3 ∈ V al0 and that e3 types to ♦(Γ . Γ′).
The only stage-0 value that can be given such a type is either 〈x = e5〉 for some
e5 ∈ V al1, which by ESLET2 gives let 8(〈x = e5〉) in e4 −→1 letx = e5 in e4; or 〈〉,
which again by ESLET2 gives let 8(〈〉) in e4 −→1 e4.

Lemma A.2.16. Let e be a λdeclpoly expression such that e ∈ V aln+1. Then δ(e) is a λgenpoly expression
such that δ(e) ∈ V aln+1.

Proof. By a straightforward structural induction on e.

Proof of Theorem 5.8.3. By structural induction on e1, based on the last applied reduction.
The proof mostly follows from the I.H. We show the most interesting cases here.

• We have
e −→n+1 e

′

〈x = e〉 −→n 〈x = e′〉

By I.H., δ(e) −→∗n+1 δ(e
′). Hence,

δ(〈x = e〉) = (λv.λy.〈letx = 8(v) in 8(y)〉) 〈δ(e)〉

−→∗n (λv.λy.〈letx = 8(v) in 8(y)〉) 〈δ(e′)〉

= δ(〈x = e′〉)

153

• We have
e3 ∈ V al1 e4 ∈ V al1

let 8(〈x = e3〉) in e4 −→1 letx = e3 in e4

Note that

δ(let 8(〈x = e3〉) in e4) = 8(((λv.λy.〈letx = 8(v) in 8(y)〉) 〈δ(e3)〉) 〈δ(e4)〉)

By Lemma A.2.16, δ(e3), δ(e4) ∈ V al1. Hence,

8(((λv.λy.〈letx = 8(v) in 8(y)〉) 〈δ(e3)〉) 〈δ(e4)〉)

−→1
8((λy.〈letx = 8(〈δ(e3)〉) in 8(y)〉) 〈δ(e4)〉)

−→1
8(〈letx = 8(〈δ(e3)〉) in 8(〈δ(e4)〉)〉)

−→1
8(〈letx = δ(e3) in 8(〈δ(e4)〉)〉)

−→1
8(〈letx = δ(e3) in δ(e4)〉)

−→1 letx = δ(e3) in δ(e4)

= δ(letx = e3 in e4)

Proof of Theorem 5.8.4. By structural induction on e. The most interesting cases are below.

• We have
∆0, . . . ,∆n,Γ P̀ e1 : A

∆0, . . . ,∆n P̀ 〈x = e1〉 : ♦(Γ . Γ<+{x : A})

Note that

δ(〈x = e1〉) = (λv.λy.〈letx = 8(v) in 8(y)〉) 〈δ(e1)〉

δ(♦(Γ . Γ<+{x : A})) = �(δ(Γ<+{x : A}) . B)→ �(δ(Γ) . B) for any B

We now proceed as follows:

1. δ(∆0), . . . , δ(∆n), δ(Γ) S̀ δ(e1) : δ(A) by I.H.

2. δ(∆0), . . . , δ(∆n) S̀ 〈δ(e1)〉 : �(δ(Γ) . δ(A)) by (1) and TSBOX

3. δ(∆0), . . . , δ(∆n) S̀ (λv.λy.〈letx = 8(v) in 8(y)〉) : �(δ(Γ) . δ(A))→ �(δ(Γ<+{x :
A}) . B)→ �(δ(Γ) . B) by a series of typing rules. Note that this judgment can
be derived for any B.

4. δ(∆0), . . . , δ(∆n) S̀ (λv.λy.〈letx = 8(v) in 8(y)〉) 〈δ(e1)〉 : �(δ(Γ<+{x : A}).B)→
�(δ(Γ) . B) by (2), (3), and TSAPP

154

• We have
∆0, . . . ,∆n P̀ e1 : ♦(Γ . Γ′) Γ ≺ ∆n+1

∆0, . . . ,∆n,Γ′ P̀ e2 : A

∆0, . . . ,∆n,∆n+1 P̀ let 8(e1) in e2 : A

Note that

δ(let 8(e1) in e2) = 8(δ(e1) 〈δ(e2)〉)

We now proceed as follows:

1. δ(♦(Γ . Γ′)) = �(δ(Γ′) . δ(A))→ �(δ(Γ) . δ(A)) by the definition of δ(·)

2. δ(∆0), . . . , δ(∆n) S̀ δ(e1) : �(δ(Γ′) . δ(A))→ �(δ(Γ) . δ(A)) by (1) and I.H.

3. δ(∆0), . . . , δ(∆n), δ(Γ′) S̀ δ(e2) : δ(A) by I.H.

4. δ(∆0), . . . , δ(∆n) S̀ 〈δ(e2)〉 : �(δ(Γ′) . δ(A)) by (3) and TSBOX

5. δ(∆0), . . . , δ(∆n) S̀ δ(e1) 〈δ(e2)〉 : �(δ(Γ) . δ(A)) by (2), (4) and TSAPP

6. δ(Γ) ≺ δ(∆n+1) by the premise of the assumption

7. δ(∆0), . . . , δ(∆n), δ(∆n+1) S̀

8(δ(e1) 〈δ(e2)〉) : δ(A) by (5), (6) and TSUBOX

Note that the extension with pluggable declarations to the translation preserves the
Lemmata A.2.7 and 5.6.3.

Proof of Theorem 5.8.5. By induction on the structure of e1, based on the last applied reduc-
tion rule. This proof is an extension of Theorem 5.6.1 with the pluggable declaration syn-
tax. The cases mostly follow from the I.H. We only show the most interesting case. Note
that the extension with pluggable declarations preserves Lemmata A.2.8, A.2.10, A.2.11,
and A.2.14, which are used in the proof of Theorem 5.6.1 (and here in this proof, too).

• Case LET2(3). We have

e3 ∈ V al1 e4 ∈ V al1

let 8(〈x = e3〉) in e4 −→1 letx = e3 in e4

155

Note that

Jlet 8(〈x = e3〉) in e4K{},R1

= (J〈x = e3〉K{})κ (λr.Je4K{},r)R1

= (J〈x = e3〉K{})κ (λr.Je4K{},r)R1

= (λκ.λy.λr. let z = Je3K{},r in y(rwith {x = z}))κ (λr.Je4K{},r)R1

−→β (λy.λr. let z = Je3K{},r in y(rwith {x = z}))(λr.Je4K{},r)R1

−→β (λr. let z = Je3K{},r in (λr.Je4K{},r)(rwith {x = z}))R1

−→β (let z = Je3K{},r[r\R1] in (λr.Je4K{},r)(R1 with {x = z}))

−→β let z = Je3K{},r[r\R1] in Je4K{},r[r\R1 with {x = z}]

−→∗β let z = Je3K{},R1
in Je4K{},R1 with {x=z} by Lemma A.2.14

= Jletx = e3 in e4K{},R1

Proof of Theorem 5.8.7. By structural induction on e1. The proof is the same as Theorem
5.6.4, except it is extended for the new syntax for pluggable declarations. The proof for the
new cases mostly follow easily from the I.H. We only show the most interesting case here.

Let e1 be the stage-n+ 1 expression let 8(e3) in e4. We have

∆ R̀ Jlet 8(e3) in e4K{},R1,...,Rn+1
: A

Note that

Jlet 8(e3) in e4K{},R1,...,Rn+1
= (Je3K{},R1,...,Rn

)κ (λr.Je4K{},R1,...,Rn,r)Rn+1

As the (sub)premises, we must have

∆ R̀ Rn+1 : Γ

∆ R̀ (λr.Je4K{},R1,...,Rn,r) : Γ′ → B

∆ R̀ Je3K{},R1,...,Rn
: κ→ (Γ′ → B)→ Γ→ A

for some Γ,Γ′, and B. As the premise of the second judgment above, we also must have

∆<+{r : Γ′} R̀ Je4K{},R1,...,Rn,r : B

By I.H. we have two subcases:

• ∃e′3 such that e3 −→n e
′
3. In this case, let 8(e3) in e4 −→n+1 let 8(e′3) in e4.

156

• e3 ∈ V aln. In this case, by I.H., we have two subcases:

– ∃e′4 such that e4 −→n+1 e
′
4. In this case, let 8(e3) in e4 −→n+1 let 8(e3) in e′4.

– e4 ∈ V aln. We again have two subcases:

(i) n > 0: In this case, let 8(e3) in e4 ∈ V aln+1.

(ii) n = 0: Recall that e3 ∈ V al0 and its translation types to κ → (Γ′ → B) →
Γ → A. The only stage-0 value whose translation can have such a type
is 〈x = e′′〉 for some x and e′′ ∈ V al1. Hence, let 8(e3) in e4 = let 8(〈x =
e′′〉) in e4, and by ESLET2, we have

let 8(〈x = e′′〉) in e4 −→1 letx = e′′ in e4

Proof of Theorem 5.8.9. By structural induction on e. The proof is the same as Theorem 5.6.6,
except being extended for the new syntax for pluggable declarations. The proof for the
new cases mostly follow easily from the I.H. We show the two interesting cases here. Note
that the extension with pluggable declarations preserves Lemma A.2.15, which is used in
the proof of Theorem 5.6.6 (and here in this proof, too).

• Case e = 〈x = e′〉 at stage n. Note that

J〈x = e′〉KR0,...,Rn = λκ.λy.λr. let z = Je′KR0,...,Rn,r in y(rwith {x = z})

where r, y, z are fresh.

1. We have ∆0, . . . ,∆n P̀ 〈x = e′〉 : ♦(Γ . Γ<+{x : A})

2. Note that J♦(Γ . Γ<+{x : A})K = κ → (JΓK<+{x : JAK} → B) → (JΓK → B) for
any B.

3. ∆0, . . . ,∆n,Γ P̀ e′ : A as a premise of (1)

4. J∆0, . . . ,∆n,ΓKR0,...,Rn,r R̀ Je′KR0,...,Rn,r : JAK by I.H. and (3)

5. J∆0, . . . ,∆n,ΓKR0,...,Rn,r R̀ r : JΓK by TRVAR

6. J∆0, . . . ,∆n,ΓKR0,...,Rn,r<+{z : GENJAK(. . .)} R̀ (rwith {x = z}) : JΓK<+{x : JAK}
by (4), (5), and TRUPD

7. J∆0, . . . ,∆n,ΓKR0,...,Rn,r<+{z : GENJAK(. . .)} R̀

λκ.λy.λr. let z = Je′KR0,...,Rn,r in y(rwith {x = z}) :
κ→ (JΓK<+{x : JAK} → B)→ (JΓK→ B)

by (6), TRLET, and multiple applications of TRABS

• Case e = let 8(e1) in e2 at stage n+ 1. Note that

Jlet 8(e1) in e2KR0,...,Rn+1 = (Je1KR0,...,Rn)κ (λr.Je2KR0,...,Rn,r)Rn+1

157

where r is fresh.

1. We have ∆0, . . . ,∆n+1 P̀ let 8(e1) in e2 : A

2. ∆0, . . . ,∆n P̀ e1 : ♦(Γ1 . Γ2) for some Γ1,Γ2, as a premise of (1)

3. Γ1 ≺ ∆n+1 as a premise of (1)

4. ∆0, . . . ,∆n,Γ2 P̀ e2 : A as a premise of (1)

5. J∆0, . . . ,∆nKR0,...,Rn R̀ Je1KR0,...,Rn : κ→ (JΓ2K→ JAK)→ JΓ1K→ JAK by I.H.
and (2)

6. J∆0, . . . ,∆n,Γ2KR0,...,Rn,r R̀ Je2KR0,...,Rn,r : JAK by I.H. and (4)

7. J∆0, . . . ,∆nKR0,...,Rn R̀ λr.Je2KR0,...,Rn,r : JΓ2K→ JAK by (6) and TRABS

8. JΓ1K ≺ J∆n+1K by (3) and Lemma A.2.6

9. J∆0, . . . ,∆n+1KR0,...,Rn+1 R̀ Rn+1 : JΓ1K
by (8) and multiple TRVAR (see Theorem 5.6.6, case e = 8(e1), (=⇒), items (6)

through (15) for a similar case)

10. J∆0, . . . ,∆n+1KR0,...,Rn+1 R̀ (Je1KR0,...,Rn)κ (λr.Je2KR0,...,Rn,r)Rn+1 : JAK
by (5), (7), (9) and TRAPP

A.2.5 Extension with References

Lemma A.2.17. If Σ′ ⊇ Σ, then Σ; ∆ R̀ e : A =⇒ Σ′; ∆ R̀ e : A.

Proof. This is a standard lemma.

Lemma A.2.18. Let JeKR0,...,Rn = (e0, {(~π1, ~e1)} :: . . . ::{(~πm, ~em)}) for some stage-n expression
e. Then,

FV (e0) ⊆ FV (Rn) ∪ { ~π1}

FV (~e1) ⊆ FV (Rn−1) ∪ { ~π2}

...

FV (~em−1) ⊆ FV (Rn−m+1){ ~πm}

FV (~em) ⊆ FV (Rn−m)

Proof. By structural induction on e. We show the quotation and antiquotation cases. Other
cases are straightforward from the I.H.

• Case e = 〈e′〉, stage n.

1. Suppose Je′KR0,...,Rn,r = (e′′, {(~π0, ~e0)} ::{(~π1, ~e1)} :: . . . ::{(~πm, ~em)})

158

2. By I.H.
FV (e′′) ⊆ {r} ∪ { ~π0}

FV (~e0) ⊆ FV (Rn) ∪ { ~π1}

FV (~e1) ⊆ FV (Rn−1) ∪ { ~π2}

...

FV (~em−1) ⊆ FV (Rn−m+1) ∪ { ~πm}

FV (~em) ⊆ FV (Rn−m}

3. By definition, J〈e′〉KR0,...,Rn = ((λ ~π0.λr. e
′′)~e0, {(~π1, ~e1)} :: . . . ::{(~πm, ~em)})

4. FV ((λ ~π0.λr. e
′′)~e0) ⊆ ({r} ∪ { ~π0} \ { ~π0, r}) ∪ FV (Rn) ∪ { ~π1} = FV (Rn) ∪ { ~π1}

5. Properties for FV (~e1), . . . , FV (~em) are immediate from the I.H.

• Case e = 8(e′), stage n+ 1.

1. Suppose Je′KR0,...,Rn = (e′′, {(~π1, ~e1)} :: . . . ::{(~πm, ~em)})

2. By I.H.
FV (e′′) ⊆ FV (Rn) ∪ { ~π1}

FV (~e1) ⊆ FV (Rn−1) ∪ { ~π2}

FV (~e2) ⊆ FV (Rn−2) ∪ { ~π3}

...

FV (~em−1) ⊆ FV (Rn−m+1) ∪ { ~πm}

FV (~em) ⊆ FV (Rn−m}

3. By definition, with a fresh π,
J 8(e′)KR0,...,Rn,Rn+1 = (π(Rn+1), {(π, e′′)} ::{(~π1, ~e1)} :: . . . ::{(~πm, ~em)})

4. FV (π(Rn+1)) ⊆ FV (Rn+1) ∪ {π}

5. Properties for FV (e′′), FV (~e1), . . . , FV (~em) are immediate from the I.H.

Lemma A.2.19. Let e be a stage-n λgenpoly expression with FV (e) = {x1, . . . , xm}. Then,

Close(JeKR0,R1,...,Rn) = Close(JeKR′0,R1,...,Rn
)

if R0(xi) = R′0(xi) for any i ∈ {1..m}.

Proof. This is an adaptation of Lemma A.2.8 for the improved translation and Close.

159

Lemma A.2.20. Let e be a λgenpoly expression such that e ∈ V aln+1. Then

Close(JeK{},R1,...,Rn+1
) = Close(JeKR1,...,Rn+1)

Proof. This is an adaptation of Lemma A.2.10 for the improved translation and Close.

Lemma A.2.21. Let e1 be a stage-n and e2 a stage-0 λgenpoly expression with no free variables. Then

Close(Je1KR0,R1,...,Rn)[z\Close(Je2K{})] = Close(Je1[x\e2]nKR0,R1,...,Rn)

where R0(x) = z.

Proof. This is an adaptation of Lemma A.2.11 for the improved translation and Close.

Lemma A.2.22. Let e be a stage-n λgenpoly expression. Then

Close(JeKR0,...,Rn)[rm\Rm] −→∗|β| Close(JeKR0[rm\Rm],...,Rn[rm\Rm])

Proof. This is an adaptation of Lemma A.2.14 for the improved translation and Close. By
structural induction on e.

Proof of Theorem 5.9.7. By induction on the structure of e1, based on the last applied reduc-
tion. We only show interesting cases.

• Case ESABS: S, λx.e−→n+1 S ′, λx.e′ with the premise S, e−→n+1 S ′, e′. Without loss
of generality, assume

JeK{},R1,...,Rn+1 with {x=z} = (e0, [{π1, e1}, . . . , {πp, ep}])

Je′K{},R1,...,Rn+1 with {x=z} = (e′0, [{π′1, e′1}, . . . , {π′q, e′q}])

So,
Close(JeK{},R1,...,Rn+1 with {x=z}) = (λπp. · · · ((λπ1.e0)e1) · · ·)ep

Close(Je′K{},R1,...,Rn+1 with {x=z}) = (λπ′q. · · · ((λπ′1.e′0)e′1) · · ·)e′q

and therefore

Close(Jλx.eK{},R1,...,Rn+1
) = (λπp. · · · ((λπ1.λz.e0)e1) · · ·)ep

Close(Jλx.e′K{},R1,...,Rn+1
) = (λπ′q. · · · ((λπ′1.λz.e′0)e′1) · · ·)e′q

By I.H. we have

JSK, Close(JeK{},R1,...,Rn+1 with {x=z}) −→R JS ′K, e′′ (A.7)

160

such that e′′ −→∗|β| Close(Je
′K{},R1,...,Rn+1 with {x=z}).

Recall that in staged semantics, evaluation occurs only at stage-0, or at stage-1 as
a hole fill-in. Because of this, it must be that p = n + 1 (otherwise λx.e would be
a stage-n + 1 value that cannot take a step of evaluation) and there are only two
possibilities:

1. A staged-0 reduction happens as part of e, meaning the premise of judgment
(A.7) above is JSK, ep −→R JS ′K, ep.
This makes e′′ equal to (λπp. · · · ((λπ1.e0)e1) · · ·)ep, giving

(λπp. · · · ((λπ1.e0)e1) · · ·)ep −→∗|β| ((λπ
′
q. · · · ((λπ′1.e′0)e′1) · · ·)e′q)

Let C[·] be the context (λπp. · · · ((λπ1.[])e1) · · ·)ep, and C ′[·] be the context
(λπ′q. · · · ((λπ′1.[])e′1) · · ·)e′q. Then the two terms above are, respectively, C[e0]
and C ′[e′0]; and C[e0] −→∗|β| C

′[e′0]. The reductions included can be outside of e0

in the context C[·], or directly inside e0:

In the former case, the context would change and become, say, C1[·], and some
substitutions1 may be performed on e0. Let us represent the effect of these sub-
stitutions as S. The term we obtain is then C1[Se0].

In the latter case, the context would have no change at all, but only e0 would
reduce to another term, say, e0. So the term we finally obtain is C1[Se0], giving
C1[Se0] = C ′[e′0]. So, C1[·] = C ′[·] and Se0 = e′0.

When it comes to Close(Jλx.eK{},R1,...,Rn+1
), because of the premise, we have

JSK, Close(Jλx.eK{},R1,...,Rn+1
) −→R JS ′K, C[K[e0]]

where K[·] is the context λz.[]. Also,

Close(Jλx.e′K{},R1,...,Rn+1
) = C ′[K[e′0]]

Applying the same safe reductions forC[·], and e0 above, we obtainC[K[e0]] −→∗|β|
C1[S(K[e0])]. Note that the context K[·] binds the fresh variable z, but this
variable does not exist free in C[·]. Hence, the substitution S does not con-
tain it, and we can safely say that S(K[e0]) = K[Se0]. Using the equalities
above, we obtain C1[K[Se0]] = C ′[K[e′0]], which means that C[K[e0]] −→∗|β|
Close(Jλx.e′K{},R1,...,Rn+1

).

2. No stage-0 evaluation occurs, but a stage-1 hole gets filled in. This means ep
is a value and S = S ′, because filling in a hole does not alter the store. So, by

1This would be the case, for instance, of expanding a function application or a let-expression.

161

TRAPP, we have

JSK, Close(JeK{},R1,...,Rn+1 with {x=z})

−→R JSK, ((λπp−1. · · · ((λπ1.e0)e1) · · ·)ep−1)[πp\ep]

and

JSK, Close(Jλx.eK{},R1,...,Rn+1
)

−→R JSK, ((λπp−1. · · · ((λπ1.λz.e0)e1) · · ·)ep−1)[πp\ep]

Note that by I.H.

((λπp−1. · · · ((λπ1.e0)e1) · · ·)ep−1)[πp\ep] −→∗|β| (λπ
′
q. · · · ((λπ′1.e′0)e′1) · · ·)e′q

We now need to show that

((λπp−1. · · · ((λπ1.λz.e0)e1) · · ·)ep−1)[πp\ep] −→∗|β| (λπ
′
q. · · · ((λπ′1.λz.e′0)e′1) · · ·)e′q

which can be done by reasoning about the contexts the same way we did above
for the first case.

• Cases ESSYM, ESFIX, ESAPP(1), ESAPP(2), ESLET(1), ESLET(2), ESRUN(1), ESLIFT(1),
ESREF(1), ESDEREF(1), ESASGN(1), and ESASGN(2) require using the I.H. the same
way as in the ESABS case.

• Case ESAPP(3): S, (λx.e1)e2 −→0 S, e1[x\e2]0 with the premise e2 ∈ V al0. Note that

Close(J(λx.e1)e2K{}) = (λz.e0)(Je′0K)

where Je1K{x=z} = (e0, nil) and Je2K{} = (e′0, nil). Because e2 ∈ V al0, we have
e′0 ∈ RV al. Hence, SEF (e′0). Then, at the record semantics side we have

JSK, (λz.e0)(e′0) −→R JSK, e0[z\e′0]

Note that e0[z\e′0] = Close(Je1K{x=z})[z\Close(Je2K{})], which is equal to
Close(Je1[x\e2]0K{x=z}) by A.2.21, and Close(Je1[x\e2]0K{x=z}) = Close(Je1[x\e2]0K{})
by Lemma A.2.19.

• Case ESAPP(4): S, (fix f(x). e1)e2 −→0 S, e1[f\fix f(x). e2]0[x\e2]0 with the premise
e2 ∈ V al0. This is a case that is very similar to ESAPP(3) above.

• Case ESLET(3): S, letx = e1 in e2 −→0 S, e2[x\e1]0 with the premise e1 ∈ V al0. This
is a case that is very similar to ESAPP(3).

162

• Case ESBOX: S, 〈e〉 −→n S ′, 〈e′〉 with the premise S, e −→n+1 S ′, e′. Without loss of
generality, assume

JeK{},R1,...,Rn,r = (e0, [{π1, e1}, . . . , {πp, ep}])

Je′K{},R1,...,Rn,r = (e′0, [{π′1, e′1}, . . . , {π′q, e′q}])

So,
Close(JeK{},R1,...,Rn,r) = (λπp. · · · ((λπ1.e0)e1) · · ·)ep

Close(Je′K{},R1,...,Rn,r) = (λπ′q. · · · ((λπ′1.e′0)e′1) · · ·)e′q

Hence,
Close(J〈e〉K{},R1,...,Rn

) = (λπp. · · · ((λπ1.λr.e0)e1) · · ·)ep

Close(J〈e′〉K{},R1,...,Rn
) = (λπ′q. · · · ((λπ′1.λr.e′0)e′1) · · ·)e′q

By I.H. we have
JSK, Close(JeK{},R1,...,Rn,r) −→R JS ′K, e′′

such that e′′ −→∗|β| Close(Je
′K{},R1,...,Rn,r). And the rest of the proof for this case goes

in the same style of the ESABS case using the I.H.

• Case ESUBOX(1): S, 8(e) −→n+1 S ′, 8(e′) with the premise S, e −→n S ′, e′. Without
loss of generality, assume

JeK{},R1,...,Rn
= (e0, [{π1, e1}, . . . , {πp, ep}])

Je′K{},R1,...,Rn
= (e′0, [{π′1, e′1}, . . . , {π′q, e′q}])

So,
Close(JeK{},R1,...,Rn

) = (λπp. · · · ((λπ1.e0)e1) · · ·)ep

Close(Je′K{},R1,...,Rn
) = (λπ′q. · · · ((λπ′1.e′0)e′1) · · ·)e′q

Hence,

Close(J 8(e)K{},R1,...,Rn,Rn+1
) = (λπp. · · · ((λπ1.((λπ0.π0(Rn+1))e0))e1) · · ·)ep

Close(J 8(e′)K{},R1,...,Rn,Rn+1
) = (λπ′q. · · · ((λπ′1.((λπ′0.π′0(Rn+1))e′0))e′1) · · ·)e′q

By I.H. we have
JSK, Close(JeK{},R1,...,Rn

) −→R JS ′K, e′′

such that e′′ −→∗|β| Close(Je
′K{},R1,...,Rn

). And the rest of the proof for this case goes
in the same style of the the ESABS case using the I.H.

163

• Case ESUBOX(2): S, 8(〈e〉) −→1 S, e with the premise e ∈ V al1. Because of the
premise, we have JeK{},r = (e0, nil).
Therefore, J〈e〉K{} = (λr.e0, nil) and Close(J 8(〈e〉)K{},R1

) = (λπ0.π0R1)(λr.e0). By
ERAPP, we have

JSK, (λπ0.π0R1)(λr.e0) −→R JSK, (λr.e0)R1

Note that (λr.e0)R1 −→|β| e0[r\R1]. Using the fact that e0 = Close(JeK{},r), we have
Close(JeK{},r)[r\R1] −→∗|β| Close(JeK{},R1

) by Lemma A.2.22.

• Case ESRUN(2): S, run(〈e〉) −→0 S, e with the premise e ∈ V al1. Because of the
premise, we have JeK{},r = (e0, nil).
Therefore, J〈e〉K{} = (λr.e0, nil) and Close(Jrun(〈e〉)K{}) = (λr.e0){}. By ERAPP, we
have

JSK, (λr.e0){} −→R JSK, e0[r\{}]

Using the fact that e0 = Close(JeK{},r), we haveClose(JeK{},r)[r\{}] −→∗|β| Close(JeK{},{})
by Lemma A.2.22. And finally Close(JeK{},{}) = Close(JeK{}) by Lemma A.2.20.

• Case ESLIFT(2): S, lift(e) −→0 S, 〈e〉 with the premise e ∈ V al0. Because of the
premise, we have JeK{} = (e0, nil). Therefore, Close(Jlift(e)K{}) = letπ = e0 inλr.π.
Since e ∈ V al0, we have e0 ∈ RV al. By ERLET we have

JSK, (letπ = e0 inλr.π) −→R JSK, λr.e0

Using the fact that e0 = Close(JeK{}), we have λr.e0 = Close(JeK{}). By Lemma
A.2.19, Close(JeK{}) = Close(JeKr). And by Lemma A.2.20, we get Close(JeKr) =
Close(JeK{},r) = (e0, nil). Hence, Close(J〈e〉K{}) = λr.e0.

• Case ESREF(2): S, ref e −→0 S<+{` : e}, ` with the premise e ∈ V al0 and ` 6∈ dom(S).

Note that, because e ∈ V al0, we have JeK{} = (e0, nil) and e0 ∈ RV al. Therefore,
Close(Jref eK{}) = ref e0, and by ERREF

JSK, ref e0 −→R JSK<+{` : e0}, `

Trivially, ` −→∗|β| `, and JS<+{` : e}K = JSK<+{` : e0} because Close(JeK{}) = e0.

• Case ESDEREF(2): S, !` −→0 S, v with the premise S(`) = v.

Note that Close(J!`K{}) = !` and Close(JvK{}) = (v0, nil) and JSK(`) = v0. Hence, by
ERDEREF

JSK, !` −→R JSK, v0

164

• Case ESASGN(3): S, `:=e2 −→0 S<+{` : e2}, e2 with the premise e2 ∈ V al0.

Note that, because e2 ∈ V al0, we have Je2K{} = (e0, nil) and e0 ∈ RV al. Therefore,
Close(J`:=e2K{}) = `:=e0, and by ERREF

JSK, `:=e0 −→R JSK<+{` : e0}, e0

Recall that e0 = Close(Je2K{}).

Proof of Theorem 5.9.10. By structural induction on e1. This proof is similar to Theorem
5.6.4 with additional use of the fact that the reduction does not alter the unmatched holes
inside expressions if the stage is greater than 0, and that there are no unmatched holes if
the stage is 0.

Proof of Theorem 5.9.13. By induction on the structure of e. The proof frequently uses Lemma
A.2.1 based on the fact obtained from Lemma A.2.18.

165

Bibliography

[AC96] Martı́n Abadi and Luca Cardelli. A theory of primitive objects: untyped and
first-order systems. Inf. Comput., 125(2):78–102, 1996.

[ACK03] Giuseppe Attardi, Antonio Cisternino, and Andrew Kennedy. Codebricks:
code fragments as building blocks. In PEPM ’03: Proceedings of the 2003 ACM
SIGPLAN workshop on Partial evaluation and semantics-based program manipu-
lation, pages 66–74. ACM Press, 2003.

[Adv] Advanced Programming for the Java 2 Platform: Ch. 8; Perfor-
mance Features and Tools. http://java.sun.com/developer/
onlineTraining/Programming/JDCBook/perf2.html.

[AJKC05] Baris Aktemur, Joel Jones, Sam Kamin, and Lars Clausen. Optimizing mar-
shalling by run-time program generation. In Robert Glück and Michael R.
Lowry, editors, GPCE ’05: Proceedings of the 4th international conference on Gen-
erative programming and component engineering, volume 3676 of Lecture Notes
in Computer Science, pages 221–236. Springer, 2005.

[AK05] Baris Aktemur and Sam Kamin. Mumbo: A rule-based implementation of a
run-time program generation language. In Proc. of the 6th Intl. Workshop on
Rule-Based Programming, April 2005. Nara, Japan.

[AK09] Baris Aktemur and Sam Kamin. Writing customizable libraries - a compara-
tive study. In The 24th Annual ACM Symposium on Applied Computing (SAC),
Honolulu, HI, USA, 2009.

[Akt05] Baris Aktemur. A rule-based model of a run-time program generation sys-
tem. Master’s thesis, University of Illinois at Urbana-Champaign, Urbana,
IL, USA, 2005.

[Asp] Aspectj web site. http://www.aspectj.org.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques and Tools. Addison-Wesley, 1986.

[Baw99] Alan Bawden. Quasiquotation in lisp. In Partial Evaluation and Semantic-based
Program Manipulation, pages 4–12, 1999.

[CE00] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming.
Addison-Wesley, 2000.

166

[Cha02] Craig Chambers. Staged compilation. In PEPM ’02: Proceedings of the 2002
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based Program
Manipulation, pages 1–8, New York, NY, USA, 2002. ACM.

[Cla04] Lars Clausen. Optimizations In Distributed Run-time Compilation. PhD thesis,
University of Illinois at Urbana-Champaign, 2004.

[CLM04] Charles Consel, Julia L. Lawall, and Anne-Françoise Le Meur. A tour of
tempo: a program specializer for the c language. Sci. Comput. Program., 52(1-
3):341–370, 2004.

[CMT00] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. Closed types as a sim-
ple approach to safe imperative multi-stage programming. In ICALP ’00:
Proceedings of the 27th International Colloquium on Automata, Languages and
Programming, pages 25–36, London, UK, 2000. Springer-Verlag.

[CMT04] C Calcagno, E Moggi, and W Taha. Ml-like inference for classifiers. Program-
ming Languages and Systems, 2986:79–93, 2004.

[COST04] Krzysztof Czarnecki, John T. O’Donnell, Jörg Striegnitz, and Walid Taha. Dsl
implementation in metaocaml, template haskell, and c++. In Domain-Specific
Program Generation, International Seminar, Dagstuhl Castle, volume 3016 of
Lecture Notes in Computer Science, pages 51–72, 2004.

[CX03] Chiyan Chen and Hongwei Xi. Meta-programming through typeful code
representation. In ICFP ’03: Proceedings of the eighth ACM SIGPLAN inter-
national conference on Functional programming, pages 275–286, New York, NY,
USA, 2003. ACM.

[Dav96] Rowan Davies. A temporal-logic approach to binding-time analysis. In LICS
’96: Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Sci-
ence, page 184, Washington, DC, USA, 1996. IEEE Computer Society.

[DF92] Olivier Danvy and Andrzej Filinski. Representing control: A study of the
cps transformation. Mathematical Structures in Computer Science, 2(4):361–
391, 1992.

[DP96] Rowan Davies and Frank Pfenning. A modal analysis of staged computa-
tion. In POPL ’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 258–270, New York, NY, USA,
1996. ACM.

[EHK96] Dawson R. Engler, Wilson C. Hsieh, and M. Frans Kaashoek. ’C: a language
for high-level, efficient, and machine-independent dynamic code genera-
tion. In POPL ’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 131–144. ACM Press, 1996.

[EST95] Jonathan Eifrig, Scott Smith, and Valery Trifonov. Type inference for recur-
sively constrained types and its application to OOP. In Proceedings of the 1995
Mathematical Foundations of Programming Semantics Conference, volume 1. El-
sevier, 1995.

167

[FCL06] Manuel Fähndrich, Michael Carbin, and James R. Larus. Reflective program
generation with patterns. In GPCE ’06: Proceedings of the 5th international
conference on Generative programming and component engineering, pages 275–
284, New York, NY, USA, 2006. ACM.

[Fre97] Alexandre Frey. Satisfying subtype inequalities in polynomial space. In SAS
’97: Proceedings of the 4th International Symposium on Static Analysis, pages
265–277, London, UK, 1997. Springer-Verlag.

[Fut99] Yoshihiko Futamura. Partial evaluation of computation process—
anapproach to a compiler-compiler. Higher Order Symbol. Comput., 12(4):381–
391, 1999. This is an updated and revised version of “Partial Evaluation
of Computation Process—an Approach to a Compiler-Compiler”, originally
published in “Systems Computers Controls”, Volume 2, Number 5, 1971,
pages 45–50.

[Gir72] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures dans
l’arithmétique d’ordre supérieur. PhD thesis, Université de Paris VII, 1972.

[GJ95] Robert Glück and Jesper Jørgensen. Efficient multi-level generating exten-
sions for program specialization. In PLILPS ’95: Proceedings of the 7th In-
ternational Symposium on Programming Languages: Implementations, Logics and
Programs, pages 259–278, London, UK, 1995. Springer-Verlag.

[GJ97] Robert Glück and Jesper Jørgensen. An automatic program generator for
multi-level specialization. Lisp Symb. Comput., 10(2):113–158, 1997.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The Java Language Definition.
Addison-Wesley, 1996.

[GMP+00] Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, and Susan J.
Eggers. Dyc: an expressive annotation-directed dynamic compiler for c. The-
oretical Computer Science, 248(1–2):147–199, 2000.

[Har94] Robert Harper. A simplified account of polymorphic references. Information
Processing Letters, 51(4):201–206, 1994.

[HZS05] Shan Shan Huang, David Zook, and Yannis Smaragdakis. Statically safe
program generation with safegen. In R. Glueck and M. Lowry, editors, Pro-
ceedings of the Fourth International Conference on Generative Programming and
Component Engineering (GPCE 2005), volume 3676 of Lecture Notes in Com-
puter Science, pages 309–326, Tallinn, Estonia, September 2005. Springer.

[HZS07a] Shan Shan Huang, David Zook, and Yannis Smaragdakis. cj: Enhancing java
with safe type conditions. In AOSD ’07: Proceedings of the 6th international
conference on Aspect-oriented software development, pages 185–198. ACM Press,
2007.

[HZS07b] Shan Shan Huang, David Zook, and Yannis Smaragdakis. Morphing: Safely
shaping a class in the image of others. In Proceedings of the European Con-
ference on Object-Oriented Programming (ECOOP), pages 399–424. Springer-
Verlag, 2007.

168

[IB99] Andrew Ireland and Alan Bundy. Automatic verification of functions with
accumulating parameters. J. Funct. Program., 9(2):225–245, 1999.

[IBM] IBM-JVM. http://www-106.ibm.com/developerworks/java/jdk/.

[Java] Java 1.4.2 API Documentation. http://java.sun.com/j2se/1.4.2/
docs/api/.

[Javb] Java hotspot virtual machine. http://java.sun.com/javase/
technologies/hotspot/.

[Javc] Java Object Serialization Specification. http://java.sun.com/j2se/1.
4.2/docs/guide/serialization/spec/serialTOC.html.

[JGS93] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial evaluation and
automatic program generation. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1993.

[Jim96] Trevor Jim. What are principal typings and what are they good for? In POPL
’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 42–53, St. Petersburg Beach, Florida, United
States, 1996.

[JSS85] Neil D. Jones, Peter Sestoft, and Harald Sondergaard. An experiment in
partial evaluation: the generation of a compiler generator. In Proc. of the first
international conference on Rewriting techniques and applications, pages 124–140,
New York, NY, USA, 1985. Springer-Verlag New York, Inc.

[Kaf] Kaffe JVM. http://www.kaffe.org.

[KAK06] Sam Kamin, Baris Aktemur, and Michael Katelman. Staging static analy-
ses for program generation. In GPCE ’06: Proceedings of the 5th international
conference on Generative programming and component engineering, pages 1–10,
New York, NY, USA, 2006. ACM.

[KAK08] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in soft-
ware product lines. In ICSE ’08: Proceedings of the 30th international conference
on Software engineering, pages 311–320, New York, NY, USA, 2008. ACM.

[Kam03] Sam Kamin. Routine run-time code generation. SIGPLAN Not., 38(12):44–56,
2003.

[Kam04] Sam Kamin. Program generation considered easy. In PEPM ’04: Proceedings
of the 2004 ACM SIGPLAN symposium on Partial evaluation and semantics-based
program manipulation, pages 68–79. ACM Press, 2004.

[KAM05] Sam Kamin, Baris Aktemur, and Philip Morton. Source-level optimization
of run-time program generators. In Robert Glück and Michael R. Lowry,
editors, GPCE ’05: Proceedings of the 4th international conference on Generative
programming and component engineering, volume 3676 of Lecture Notes in Com-
puter Science, pages 293–308. Springer, 2005.

169

[Kat06] Michael Katelman. Staged static analyses and run-time program genera-
tion. Master’s thesis, University of Illinois at Urbana-Champaign, Urbana,
IL, USA, 2006.

[KCC00a] Sam Kamin, Miranda Callahan, and Lars Clausen. Lightweight and gener-
ative components-1: Source-level components. In GCSE ’99: Proceedings of
the First International Symposium on Generative and Component-Based Software
Engineering, pages 49–64. Springer-Verlag, 2000.

[KCC00b] Sam Kamin, Miranda Callahan, and Lars Clausen. Lightweight and gen-
erative components-2: Binary-level components. In SAIG ’00: Proceedings
of the International Workshop on Semantics, Applications, and Implementation of
Program Generation, pages 28–50. Springer-Verlag, 2000.

[KCJ03] Sam Kamin, Lars Clausen, and Ava Jarvis. Jumbo: run-time code genera-
tion for java and its applications. In CGO ’03: Proceedings of the international
symposium on Code generation and optimization, pages 48–56. IEEE Computer
Society, 2003.

[KGS94] R. Kramer, R. Gupta, and M. L. Soffa. The combining dag: A technique for
parallel data flow analysis. IEEE Trans. Parallel Distrib. Syst., 5(8):805–813,
1994.

[KKcS08] Yukiyoshi Kameyama, Oleg Kiselyov, and Chung chieh Shan. Closing the
stage: from staged code to typed closures. In PEPM ’08: Proceedings of the
2008 ACM SIGPLAN symposium on Partial evaluation and semantics-based pro-
gram manipulation, pages 147–157, New York, NY, USA, 2008. ACM.

[KYC06] Ik-Soon Kim, Kwangkeun Yi, and Cristiano Calcagno. A polymorphic
modal type system for lisp-like multi-staged languages. In POPL ’06: Con-
ference record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 257–268. ACM Press, 2006.

[Lea06] Christopher League. Metaocaml server pages: web publishing as staged
computation. Sci. Comput. Program., 62(1):66–84, 2006.

[LR94] Yong-Fong Lee and Barbara G. Ryder. Effectively exploiting parallelism in
data flow analysis. J. Supercomput., 8(3):233–262, 1994.

[LRF95] Yong-Fong Lee, Barbara G. Ryder, and Marc E. Fiuczynski. Region analysis:
A parallel elimination method for data flow analysis. IEEE Trans. Softw. Eng.,
21(11):913–926, 1995.

[LRM91] Yong-Fong Lee, Barbara G. Ryder, and Thomas J. Marlowe. Experiences with
a parallel algorithm for data flow analysis. J. Supercomput., 5(2-3):163–188,
1991.

[Mor05] Philip Morton. Analyses and rewrites for optimizing jumbo. Master’s thesis,
University of Illinois at Urbana-Champaign, 2005.

170

[MR90] Thomas J. Marlowe and Barbara G. Ryder. An efficient hybrid algorithm for
incremental data flow analysis. In POPL ’90: Proceedings of the 17th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages
184–196, New York, NY, USA, 1990. ACM.

[MTBS99] Eugenio Moggi, Walid Taha, Zine-El-Abidine Benaissa, and Tim Sheard. An
idealized metaml: Simpler, and more expressive. In ESOP ’99: Proceedings
of the 8th European Symposium on Programming Languages and Systems, pages
193–207, London, UK, 1999. Springer-Verlag.

[Muc97] Steven Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

[MvNV+01] Jason Maassen, Rob van Nieuwpoort, Ronald Veldema, Henri E. Bal, Thilo
Kielmann, Ceriel Jacobs, and Rutger Hofman. Efficient Java RMI for Parallel
Programming. ACM Trans. Program. Lang. Syst., 23(6):747–775, 2001.

[Nan02] Aleksandar Nanevski. Meta-programming with names and necessity. In
ICFP ’02: Proceedings of the seventh ACM SIGPLAN international conference on
Functional programming, pages 206–217, New York, NY, USA, 2002. ACM.

[NN92] Flemming Nielson and Hanne Riis Nielson. Two-level functional languages.
Cambridge University Press, New York, NY, USA, 1992.

[NPH99] Christian Nester, Michael Philippsen, and Bernhard Haumacher. A more
efficient RMI for Java. In Proc. of the ACM 1999 Java Grande, pages 152–159,
New York, NY, USA, 1999. ACM Press.

[NR04] Gregory Neverov and Paul Roe. Metaphor: A multi-stage, object-oriented
programming language. In G. Karsai and E. Visser, editors, Proceedings of
the Third International Conference on Generative Programming and Component
Engineering (GPCE 2004), volume 3286 of Lecture Notes in Computer Science,
Vancouver, Canada, October 2004. Springer.

[OMY01] Yutaka Oiwa, Hidehiko Masuhara, and Akinori Yonezawa. Dynjava: Type
safe dynamic code generation in java. In The 3rd JSSST Workshop on Program-
ming and Programming Languages (PPL2001), March 2001.

[OSW99] Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with
constrained types. Theor. Pract. Object Syst., 5(1):35–55, 1999.

[Pal95] Jens Palsberg. Efficient inference of object types. Inf. Comput., 123(2):198–209,
1995.

[PHEK99] Massimiliano Poletto, Wilson C. Hsieh, Dawson R. Engler, and M. Frans
Kaashoek. ’C and tcc: a language and compiler for dynamic code genera-
tion. ACM Transactions on Programming Languages and Systems, 21(2):324–369,
1999.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

171

[Pot00a] François Pottier. Wallace: an efficient implementation of type inference
with subtyping, February 2000.

[Pot00b] François Pottier. A versatile constraint-based type inference system. Nordic
J. of Computing, 7(4):312–347, 2000.

[PWO97] Jens Palsberg, Mitchell Wand, and Patrick O’Keefe. Type inference with non-
structural subtyping. Formal Aspects of Computing, 9(1):49–67, 1997.

[PZ02] Jens Palsberg and Tian Zhao. Efficient type inference for record concatena-
tion and subtyping. lics, 00:125, 2002.

[Reh98] Jacop Rehof. The Complexity of Simple Subtyping Systems. PhD thesis, DIKU,
1998.

[Rém94] Didier Rémy. Type inference for records in natural extension of ml. Theoreti-
cal aspects of object-oriented programming: types, semantics, and language design,
pages 67–95, 1994.

[Rey74] John C. Reynolds. Towards a theory of type structure. In Programming Sym-
posium, Proceedings Colloque sur la Programmation, pages 408–423, London,
UK, 1974. Springer-Verlag.

[Rhi05] Morten Rhiger. First-class open and closed code fragments. In Proceedings
of the Sixth Symposium on Trends in Functional Programming, pages 127–144,
Tallinn, Estonia, 2005.

[RHS95] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In POPL ’95: Proceedings of the 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 49–61, New York, NY, USA, 1995. ACM.

[RKM06] Atanas Rountev, Scott Kagan, and Thomas Marlowe. Interprocedural
dataflow analysis in the presence of large libraries. In International Conference
on Compiler Construction, LNCS 3923, pages 2–16, 2006.

[SGM+03] Frederick Smith, Dan Grossman, Greg Morrisett, Luke Hornof, and Trevor
Jim. Compiling for template-based run-time code generation. Journal of
Functional Programming, 13(3):677–708, 2003.

[SP81] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow anal-
ysis. In S.S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory
and Applications, pages 189–233. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[SRH96] Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise interprocedural
dataflow analysis with applications to constant propagation. Theoretical
Computer Science, 167(1-2):131–170, 1996.

[Sto77] Joseph Stoy. Denotational Semantics: The Scott-Strachey Approach to Program-
ming Language Theory. The MIT Press, 1977.

[Tah03] Walid Taha. A gentle introduction to multi-stage programming. Domain-
Specific Program Generation, 3016:30–50, 2003.

172

[TCLP] Walid Taha, Cristiano Calcagno, Xavier Leroy, and Ed Pizzi. Metaocaml.
http://www.metaocaml.org/.

[TN03] Walid Taha and Michael Florentin Nielsen. Environment classifiers. In POPL
’03: Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 26–37, New York, NY, USA, 2003. ACM.

[TS97] Walid Taha and Tim Sheard. Multi-stage programming with explicit an-
notations. In PEPM ’97: Proceedings of the 1997 ACM SIGPLAN symposium
on Partial evaluation and semantics-based program manipulation, pages 203–217,
New York, NY, USA, 1997. ACM.

[TS00] Walid Taha and Tim Sheard. Metaml and multi-stage programming with
explicit annotations. Theoretical Computer Science, 248(1–2):211–242, 2000.

[vNMW+05] Rob V. van Nieuwpoort, Jason Maassen, Gosia Wrzesinska, Rutger F. H. Hof-
man, Ceriel J. H. Jacobs, Thilo Kielmann, and Henri E. Bal. Ibis: A Flexible
and Efficient Java-based Grid Programming Environment. Concurrency and
Computation: Practice and Experience, 17(7-8):1079–1107, 2005.

[VP03] Ronald Veldema and Michael Philippsen. Compiler Optimized Remote
Method Invocation. In IEEE International Conference on Cluster Computing
(CLUSTER’03), page 127, December 2003.

[Wan91] Mitchell Wand. Type inference for record concatenation and multiple inher-
itance. Inf. Comput., 93(1):1–15, 1991.

[Wel94] J. B. Wells. Typability and type-checking in the second-order lambda-
calculus are equivalent and undecidable. In Logic in Computer Science, pages
176–185, 1994.

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type
soundness. Inf. Comput., 115(1):38–94, 1994.

[Wri95] Andrew K. Wright. Simple imperative polymorphism. Lisp Symb. Comput.,
8(4):343–355, 1995.

[YI06] Yosihiro Yuse and Atsushi Igarashi. A modal type system for multi-level
generating extensions with persistent code. In PPDP ’06: Proceedings of the
8th ACM SIGPLAN international conference on Principles and practice of declara-
tive programming, pages 201–212, New York, NY, USA, 2006. ACM.

[ZHS04] David Zook, Shan Shan Huang, and Yannis Smaragdakis. Generating as-
pectj programs with meta-aspectj. In G. Karsai and E. Visser, editors, Proc.
of the Third Intl. Conf. on Generative Programming and Component Engineering
(GPCE 2004), volume 3286 of Lecture Notes in Computer Science, pages 1–18,
Vancouver, Canada, October 2004. Springer.

173

Author’s Biography

Tankut Barış Aktemur was born and raised in the city of Samsun, Turkey, at the south-
ern coast of the Black Sea, where he stayed until he moved to Ankara to study computer
science at Bilkent University. He then received a master’s degree from the University of
Illinois at Urbana-Champaign on the way to his Ph.D. Barış likes blue skies with scat-
tered clouds, snow-topped mountains, honey bunches of oats with almonds, sunset at
the Aegean sea, migrating geese, Coltrane’s version of “My Favorite Things”, and the
cinnamon-carrot-walnut cake his mother bakes.

174

