
A RULE-BASED MODEL OF A RUN-TIME PROGRAM GENERATION SYSTEM

BY

TANKUT BARIS AKTEMUR

B.S., Bilkent University, 2003

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2005

Urbana, Illinois

Abstract

In this work we present Mumbo, a simplified version of Jumbo. Jumbo is a staged

Java compiler supporting run-time program generation (RTPG). To incorporate RTPG,

Jumbo relies on the compositionality principle, by which the compiler written for static

compilation can also be used for RTPG. This property, however, makes run-time compi-

lation inefficient. Fortunately, it is possible to optimize the compiler by partially evalu-

ating it for each code piece, but because of Java’s syntactical details and the complexity

of Jumbo’s implementation, this transformation becomes difficult and time-consuming to

implement. Therefore we develop a simplified version of Jumbo, called Mumbo. Mumbo

implements a subset of Jumbo but keeps the crucial properties.

Mumbo is a typed, object-oriented language, supporting RTPG. Its implementation

is rule-based and done in Maude, a tool that provides executable rule-based program-

ming. In this thesis we explain details of the language and the compiler. We provide

optimizations to partially evaluate the Mumbo compiler to decrease run-time generation

cost. With Mumbo, we have been able to make rapid progress in implementing the op-

timizations and we obtained substantial speedup of run-time compilation. We propose

Mumbo as a suitable “testbed” of Jumbo. Mumbo can be used to try new ideas and

experiments first, to save time. We also discuss the lessons we have learned from Mumbo.

iii

Acknowledgments

I am thankful to my advisor, Prof. Samuel Kamin. This work wouldn’t have existed

without his supervision. He also provided my financial support.

Prof. Grigore Roşu’s classnotes of the Programming Language Design course were

very useful when implementing the syntax and semantics of Mumbo and LowLevel.

Paul Adamczyk made a detailed review of the thesis and provided very useful feed-

back. He also has been kind to listen to the progress of the work over countless meetings

for lunch and fish sandwiches on Fridays. I have had very helpful discussions on Jumbo

and Mumbo, with Philip Morton. He also suggested the name “Mumbo”. Thank you

guys!

Lastly, I would like to thank my family, for their love and support.

iv

Table of Contents

Chapter

List of Figures . vii

List of Tables . viii

1 Introduction . 1

1.1 Run-time Program Generation . 3

1.2 Jumbo . 4

2 Mumbo . 7

2.1 Syntax . 8

2.2 Preprocessing . 9

2.3 Semantics . 12

3 LowLevel Language . 19

3.1 Syntax . 19

3.2 Semantics . 20

3.3 A Simple Example . 22

4 The Mumbo Compiler . 24

4.1 Compositionality . 25

4.2 Side-Effect-Freeness . 29

4.3 How to use the compiler . 30

v

4.4 The compile operation . 32

5 Optimizations . 34

5.1 Code Visitors . 35

5.2 Analyses . 38

5.3 Auxiliary Functions . 39

5.4 Notation . 41

5.5 Transformations not requiring analyses 42

5.6 Transformations requiring analyses . 43

5.7 Putting the optimizers together . 47

5.8 Adequacy of Optimizations . 50

6 Performance . 51

6.1 The First Examples . 53

6.1.1 A Complete Class . 53

6.1.2 A Class with Holes . 55

6.1.3 A Binary Expression . 57

6.2 LoopUnrolling . 58

6.3 Exponentiation . 60

7 Further Discussions . 62

7.1 The Limit of Optimizations . 62

7.2 Adding Local Variable Declaration as an Expression 64

8 Conclusion . 67

8.1 Related Work . 68

Bibliography . 70

Appendix

A Source Code of Mumbo Compiler . 73

vi

List of Figures

2.1 Mumbo’s Grammar . 10

3.1 The grammar of LowLevel . 20

4.1 Passing Mumbo programs to the Mumbo compiler. 32

5.1 Specializing a duplicated class. 49

vii

List of Tables

6.1 The effect of optimization in the loop-unrolling example. 60

6.2 The effect of optimization in the exponentiation example. 61

6.3 The effect of optimization in the exponentiation example. Only the un-

folded exponentiation is optimized. 61

viii

Chapter 1

Introduction

In this work we present our efforts to model a run-time program generation (RTPG)

system, using rule-based programming. The RTPG system we are modeling is Jumbo

[17, 6, 13, 14]. It is developed in our research group.

Jumbo provides a high degree of programmer control, source-level specification, and

bytecode generation (see Section 1.2). It can compile all of Java 1.4. These properties

make Jumbo suitable to use in “real” applications. However, there is a trade-off. These

advantages come with the price of complexity in the implementation of Jumbo. In

Java, there is more than one way of expressing a computation. Jumbo has to handle

all of the different possibilities. This makes the implementation of Jumbo and program

transformation/analysis complicated and time-consuming. We experienced this fact while

working on optimization of the program generators written in Jumbo.

In RTPG, the user has to pay the initial cost of run-time generation. A generated

program is presumably faster than its static version, but as a general rule, it has to be

executed many times in order to compensate its run-time generation cost. It is desirable

that this cost be as low as possible, so that a generated program starts paying off as early

as possible. There are different approaches to decrease the cost of run-time generation.

Limiting the flexibility in declaring code fragments is one of them [22, 9]; we do not wish

to do this. In Jumbo, we partially evaluate the back-end of the compiler to specialize

it for each code piece declared. This method was developed by Lars Clausen as part of

1

his PhD thesis [6]. However, as we mentioned, because of the complexity of Java and

Jumbo’s implementation, experimenting with new ideas and writing new optimizations

are difficult and time-consuming. These reasons drove us to develop a simplified version of

Jumbo, which would become a model of it. In this thesis, we explain how we developed

this model, called Mumbo (“mini-Jumbo”). In Mumbo, we can successfully optimize

program generators and thus decrease run-time generation cost substantially. We have

learned several lessons from Mumbo, which we are planning to apply on Jumbo. Mumbo,

in the future, can be used as the first place to experiment with new ideas.

Mumbo’s implementation is rule-based and it is done in Maude [7]. Maude is a

powerful tool supporting rewriting logic. It provides two types of transitions: equations

and rewrite rules. Rewrite rules are used for modeling concurrency. In Mumbo we

do not have concurrency. All the rules we present in Mumbo are equational. Maude

makes these equations executable. This gives us the opportunity to actually run our

specifications. Furthermore, equational logic is, in terms of representation, closer to how

the optimizations are defined. This makes Maude very suitable to define transformations.

This thesis is structured as follows: In Section 1.1 we give an overview of run-time

program generation. In Section 1.2 we explain Jumbo. Chapter 2 gives details of the

syntax, preprocessing and semantics of Mumbo. We compile Mumbo programs to a

lower level language, called LowLevel, which is explained in Chapter 3. In Chapter 4

we discuss the structure of the Mumbo compiler. This is followed by the optimizations,

in Chapter 5. In Chapter 6 we give examples to illustrate how run-time generation can

be optimized. In the following chapter, we discuss the limits of our set of optimizations.

Finally, in Chapter 8, we discuss the lessons we have learned, and conclude.

All the files related to Mumbo are available at Mumbo’s webpage: http://pinatubo.

cs.uiuc.edu/~aktemur/mumbo. We also provide the source code of the compiler in the

appendix.

2

1.1 Run-time Program Generation

In this section we give an overview of run-time program generation (RTPG). We do not

attempt to present a complete survey here, but we outline the main ideas.

Run-time program generation, briefly, is the ability to define and combine program

pieces at run-time. The pieces, after forming a compilable unit1, can be compiled and

brought into execution. The basic idea is to compose these pieces in such a way that

the resulting program will be more efficient than the version that would be implemented

statically. The efficiency can be in terms of both time and space. At implementation

time, a program has to be written to handle every kind of input. The input that will

be received is not known at this time. However, at run-time, when the input becomes

available, a new program specialized for that input can be generated. This is the main

motivation behind RTPG.

RTPG is similar to partial evaluation [8], but there is an important diference. In

partial evaluation the specialization is done automatically or with little user support. On

the other hand, RTPG gives the programmer the power to specialize. This is mainly done

by extending a language with special quotation mechanism. There are various RTPG

systems existing in the literature, including Jumbo [17, 6, 13, 14], quasi-quotations in

Lisp [4], DynJava [22], ‘C [9, 26, 25], MetaML [30], Metaphor [21] and CodeBricks [3].

As we mentioned, lowering the run-time generation cost is desirable and one approach

is to limit the variability in the code pieces. Consider this code piece in Jumbo:

$< x + 1 >$

This can either be an addition or string concatenation, depending on the type of x.

If it is an addition, again depending on the type of x, it may be an integer, float or

double operation. A system like Jumbo should consider all these possibilities. However,

DynJava, for example, requires that the type of each free variable be given as part of the

defined code piece. The above fragment would then look similar to this, if x is an integer:

${x : int}< x + 1 >$

1In Jumbo, this unit is a list of classes, or interfaces.

3

This specification improves the speed of run-time generation by eliminating many cases

which the RTPG system has to handle. But it results in less flexibility. For instance,

consider a Point object with two fields, x and y, representing its location. In order to

write a piece of code which displays this point’s location, we would have to know the

type of x and y. Assume the type is int:

${x : int, y : int}< System.out.println("X:" + x + " Y:" + y); >$

This limits the usability of the fragment — we cannot use it if the type of the fields is

double or String.

In Jumbo, to increase the run-time generation performance while keeping generality,

we partially evaluate the back-end of the compiler, which produces the bytecode. The

compiler is generic and handles every type of program fragment without assuming any

specific property. However, it can execute faster if we make it aware of the properties

of the code fragments. For instance, from the compiler’s point of view, the code piece

$< x + 1 >$ is just a binary operation between some two operands. On the other hand,

by partial evaluation, the compiler can be specialized for this piece so that it knows that

the operation is actually a plus sign, the left operand is a variable named x and that the

right operand is an integer literal 1. This is the main motivation behind optimization of

program generators in Jumbo and Mumbo. We will return to this point in Chapter 6,

and discuss it in more detail with examples.

1.2 Jumbo

Jumbo [17, 6, 13, 14] is a staged compiler for Java. It allows run-time program genera-

tion. In Jumbo, similar to other RTPG systems, program pieces can be defined using a

quotation mechanism. The brackets Jumbo uses are $< and >$. Between these brackets,

almost any parsable code fragment can be defined. Those pieces are then put together

at run-time to form a complete program to generate. This way, Jumbo provides the

programmer with a high degree of control and source level specification. Jumbo does not

require the existence of a compiler at run-time. Having the Jumbo API is enough to be

4

able to generate programs at run-time. All these properties make Jumbo an easy-to-use

and powerful RTPG system.

From the point of view of a programmer, the code pieces declared between brackets

$< and >$ behave like strings. This makes it easy to reason about the programs that will

be generated. However, the code pieces cannot be arbitrary. They should be parsable

units and the values that the fragments represent are of type Code, not string. Regular

string operations cannot be applied on them.

One can also define holes in code pieces. A hole in a code fragment can be filled in

with other code fragments. The syntax used for a hole is back-quotation (‘). For parsing

concerns, in Jumbo, a back-quote should be followed by a syntactic category. Consider

the following code:

public Code loopGen(Code condition, Code body){
return $< while(‘Expr(condition)){

‘Stmt(param);
x++;

} >$;
}

In this method, the condition of the while-loop and part of the body are holes. The code

pieces which fill in these holes are received as parameters of the method. Finally, the

resulting code object is returned. An invocation of loopGen might be as follows:

loopGen($< x <= 5 >$, $< obj.foo(x); >$);

In this case, the returned Code value would represent the following code:

while(x <= 5){
obj.foo(x);
x++;

}

This code is now ready to fill in a hole in an enclosing code piece which defines x and

obj.

For expressions of primitive type, there is a second type of anti-quotation in addition

to ‘Expr. It evaluates the expression at program-generation time and then inserts the

5

value into the generated code as a constant. For example, ‘Int(x) means that x is an

int variable and its current value is to be inserted into the enclosing code.

Jumbo, as we mentioned at the beginning of this section, is a staged compiler. It is

a traditional compiler implemented compositionally, meaning that the compilation of a

code fragment is a function of the compilation of its subfragments. In Jumbo, every code

piece is of type Code. A Code value is the partially compiled version of the code that it

is representing. It is a function which produces the byte-level code corresponding to the

program fragment it represents. This function accepts an environment as its parameter,

which includes all the information necessary to calculate the byte-level code. The low

level code calculated is returned as the result of the function. In Java, functions are

not first class citizens, but objects are. Therefore, instead of a function, a Code value in

Jumbo is represented as a “function object”, which defines the function as its method.

Thus, the application of that function simply becomes the invocation of the object’s

method.

The compiler, because of its compositionality, does not have to know anything about

quotations or holes. In Jumbo, all the quotations and back-quotations are removed during

parsing. The quoted-codes are converted to their equivalent Code values representing

them. This conversion removes the necessity to define semantics for quotation/back-

quotation. Mumbo, as a model of Jumbo, also has a preprocessing phase to convert code

fragments to Code values, and the Mumbo compiler is written compositionally, like the

Jumbo compiler. The preprocessing phase is explained in Section 2.2, and the compiler

in Section 4.1.

More information on Jumbo can be found in [17, 6, 13, 14]. The foundational ideas

behind Jumbo-style RTPG are discussed in [15, 16]. Jumbo is downloadable at http:

//loome.cs.uiuc.edu/Jumbo.

6

Chapter 2

Mumbo

Mumbo is a simplified version of Jumbo. It is typed, object-oriented, and supports run-

time program generation. Mumbo consists of three main parts: Syntax, Preprocessing

and Semantics. Every part is written in Maude, using (conditional) equations. The

syntax consists of approximately 200 lines of code. The preprocessing part is in slightly

more than 300 lines, and the semantics is in 420 lines.

There are two ways of executing a Mumbo program. (1) Through the executable

semantics of Mumbo. (2) First compiling Mumbo to LowLevel and then executing the

resulting LowLevel program through the executable semantics of LowLevel. The syntax

and semantics of LowLevel are given in Chapter 3.

The first way, that is, the executable semantics of Mumbo, may be used to run a

regular Mumbo program. However, if a program is generating a program and bringing

it into execution at run-time, it does not make sense to use executable semantics. This

is because the code generated at run-time is in LowLevel, and the semantics of Mumbo

knows nothing about LowLevel code. We, in fact, do not use this execution method even

to run regular programs. We choose to run them after compiling them to LowLevel.

This is because only then does Mumbo become a true model of Jumbo, which compiles

programs to JVM bytecode. However, it should be noted that the Mumbo compiler

is implemented in Mumbo (see Chapter 4). In other words, the Mumbo compiler is a

Mumbo program. Therefore we need a mechanism to run the compiler to be able to

7

compile programs. The answer is the executable semantics. Since the Mumbo compiler

is a Mumbo program, this is the natural and easy way of compilation. We explain how

to pass Mumbo programs to the Mumbo compiler in Section 4.4.

In this chapter we first give the grammar of Mumbo, followed by the preprocessing

phase. Finally we give the semantics of the language. For defining the syntax and the

semantics in Maude, we follow the conventions of [27] and [19].

2.1 Syntax

Mumbo uses $< and >$ brackets, as in Jumbo, to define program fragments. Caret

(^(...)) is the anti-quotation character. ^I(...), ^B(...) and ^S(...) can be used

to lift integers, booleans and strings, respectively. ^F(...) and ^M(...) are the syn-

tactic categories to anti-quote a field and a method, respectively. The corresponding

anti-quotations in Jumbo are ‘Int, ‘Bool, ‘String, ‘Method and ‘Field. In Mumbo,

there is no distinction between expressions and statements. Therefore ‘Expr and ‘Stmt

anti-quotations of Jumbo are handled by the same anti-quotation in Mumbo, namely

(^(...)).

In Mumbo, strings are defined by placing built-in Strings of Maude or quoted iden-

tifiers (Qids) between square brackets, such as ["abc"] and [’xyz]. Qids are used as

names (e.g. ’aName). self is a special name, and it refers to the current object. NIL

is the null pointer. # is the string concatenation operator. There are four arithmetic

operations: ++, --, **, -:- for addition, subtraction, multiplication and division, re-

spectively. We do not use the usual operators like + and - because they are built-in

operators defined as commutative. This does not hold in Mumbo, because of side effects.

Consider the following code.

{ set ’a = 1 ; ’a ++ {set ’a = 10 ; 2} }

The result of the addition is 3. On the other hand, it would be 12 if the code was:

{ set ’a = 1 ; {set ’a = 10 ; 2} ++ ’a }

8

A field of an object can be accessed with ->, as in ’obj -> ’f. The local variables

used in the body of a method should be declared as part of the method header. If there

are no local variables, the user is free to omit the declaration, or simply enter [noVars].

A variable declaration list has the form [’a1 : ’t1, ..., ’an : ’tn], where ’ak is

the name and ’tk is the type of a variable. Following the variable declaration list comes

the return type of the method. An example method is shown below.

method ’foo(’x : ’string) [’a : ’int] ’int:
{ set ’a = send self ’bar(’x) ;

’a -:- 10
}

A program is an executable unit consisting of a list of classes and a main method.

main is similar to a method, but it does not have a parameter list and a return type.

We do not explain every detail of the syntax and believe that the remaining syn-

tactic issues will be clear from the grammar given in Figure 2.1 and from the examples

throughout the thesis.

The grammar is given in extended Backus Naur Form (EBNF). The reader will note

that it is ambigious. Ambiguities can easily be resolved by introducing new token types.

We do not do that here to keep it simple. In its implementation in Maude, the ambiguities

are solved by using precedence values. We also note that parameters in a parameter list,

and expressions in an argument list are separated by commas. This is not shown in the

figure to keep it shorter.

2.2 Preprocessing

In Mumbo, quotations and anti-quotations are not part of the kernel language. They are

used as syntactic sugar. A program is preprocessed to remove quotations. We define two

mutually recursive functions for this purpose: preprocess and code.

preprocess is the function we call first. It traverses a given program fragment and

converts quoted parts into code objects by calling code. The preprocess function does

9

PROGRAM ::= CLASS∗ main [V ARDECLS] EXP
CLASS ::= FINAL class NAME extends NAME FIELD∗ METHOD∗

FINAL ::= | final
FIELD ::= FINAL field NAME : NAME | ^F(EXP)
METHOD ::= FINAL method NAME PARAMLIST

[V ARDECLS] NAME : EXP
| FINAL method NAME PARAMLIST NAME : EXP
| ^M(EXP)

PARAMLIST ::= () | (NAME : NAME)+

V ARDECLS ::= noVars | (NAME : NAME)+

EXP ::= NAME | anInteger | STRING | BOOLEXP | BINEXP
| self | NIL | if EXP then EXP else EXP
| EXP -> NAME | set LHS = EXP
| while EXP EXP | do EXP while EXP
| new NAME EXPLIST | send EXP EXPLIST
| cast EXP to NAME | BLOCK | QUOTE | LIFT

STRING ::= [aString] | [aQuotedIdentifier]
NAME ::= aQuotedIdentifier
EXPLIST ::= () | EXP+

BINEXP ::= EXP # EXP | EXP ++ EXP | EXP -- EXP
| EXP ** EXP | EXP -:- EXP

BOOLEXP ::= EXP equals EXP | not EXP
| EXP and EXP | True | False

LHS ::= NAME | EXP -> NAME | ^ EXP
BLOCK ::= { BLOCKEXPS}
BLOCKEXPS ::= EXP | EXP ; BLOCKEXPS
LIFT ::= ^I(EXP) |^B(EXP) |^S(EXP)
QUOTE ::= $< EXP >$ | $< FIELD >$ | $< METHOD >$ | $< CLASS+ >$

Figure 2.1: Mumbo’s Grammar

not change pieces occurring out of quotations. Below is its definition for addition and if

expressions.

eq preprocess(E1 ++ E2) = preprocess(E1) ++ preprocess(E2) .

eq preprocess(if E then E1 else E2) =
if preprocess(E) then preprocess(E1) else preprocess(E2) .

preprocess behaves like the identity function except for quoted parts. It just applies

itself recursively on the subfragments of the code it is applied on, as seen above. When

it detects a quotation, it invokes the code function as shown below.

eq preprocess($< E >$) = code(E) .

10

We do not define preprocess on anti-quotations. This ensures that backquotes occuring

out of quotations will raise an error.

code replaces fragments with code objects which represent those fragments. When

it detects an anti-quotation, it invokes the preprocess function because anti-quoted

parts belong to the outer scope. To put it differently, preprocess operates on the first

stage, and code operates on the second stage. In the equations below, code replaces a

summation with a code object representing the binary operation "add", and replaces the

if-expression with an instance of ’ifThenElseCode. It calls preprocess on anti-quoted

code.

eq code(E1 ++ E2) = new ’binOpCode(["add"], code(E1), code(E2)) .
eq code(if E then E1 else E2) =

new ’ifThenElseCode(code(E), code(E1), code(E2)) .
eq code(^(E)) = preprocess(E) .

Mumbo generates code which is again in Mumbo. Therefore, it allows generation of

program generators, i.e. programs having more than two stages can be written in Mumbo.

We simply define the following equation to convert quotations occurring inside quotations.

This makes it possible to preprocess programs which generate program generators.

eq code($< E >$) = code(code(E)) .

In RTPG terminology, anti-quoting immutable types is called lifting. In Mumbo, as

in Jumbo, primitive types and strings can be lifted. This is provided by the following

equations defined for integer, boolean and string lifting, respectively.

eq code(^I(E)) = new ’integerConstantCode(preprocess(E)) .
eq code(^B(E)) = new ’booleanConstantCode(preprocess(E)) .
eq code(^S(E)) = new ’stringConstantCode(preprocess(E)) .

Finally, we give some examples of the result of preprocessing. In these examples the

code piece to the left of⇒ is the original code, and the code to the right is its preprocessed

version.

• $< 1 >$ ⇒ new ’integerConstantCode(1)

• $< ’x >$ ⇒ new ’getNameCode([’x])

11

• $< set ’x = ^(’c) >$ ⇒ new ’assignmentCode(new ’getNameCode([’x]), ’c)

• { set ’x = 2 ;
$< ’x ** ^I(’x) >$

}⇒
{ set ’x = 2 ;

new ’binOpCode(["mul"],
new ’getNameCode([’x]), ---left operand
new ’integerConstantCode(’x)) ---right operand

}

If a program fragment has a variable number of elements (e.g. an argument list), it is

converted to a linked list. For instance:

$< send ’obj ’foo(^(c)) >$

becomes

new ’invocationCode(new ’getNameCode([’obj]), ---target of invocation
["foo"], ---name of the method
send (new ’LinkedList(NIL, NIL)) ’add(’c)) ---arguments

Here, the argument list consists only of ’c. We first create an instance of a linked-list,

which is initially empty, and then add ’c to the list. The list is then passed to the

constructor of ’invocationCode.

2.3 Semantics

In this section we give the semantics of Mumbo. We give the rules in Structural Oper-

ational Semantics (SOS) [24], in order to make it more readable for those who are not

familiar with Maude syntax and to abstract out details. The Maude implementation of

the semantics, however, closely follows the SOS style. For details, the source code is

provided on Mumbo’s webpage.

The semantics we give here mostly follows Java. Before presenting it in SOS, we

explain some important points informally. Mumbo applies dynamic dispatching when

calling a method of an object. That is, the search for the method starts from the run-time

class of the object. When an object is created with the new command, its ’initialize

12

method is called automatically. Explicit invocation of the ’initialize method is not

allowed. (This method is similar to the constructors in Java.) Subclasses can override

methods of their superclasses. Method overloading is not supported. The interpretation

of the final flag for classes, methods and fields follows that of Java: final classes cannot

be subclassed, final methods cannot be overridden and final fields’ values can be set

only in the ’initialize method. Every variable should have a declaration, either as a

field, a parameter or a local variable. Parameters and local variables can shadow fields.

Parameters and local variables of a method should have distinct names.

In Mumbo there is no distinction between statements and expressions. A block’s

value is the value of its last expression. Variable assignments and loops evaluate to 0. In

method invocations, the target of the invocation is evaluated first, followed by evaluation

of the arguments. The arguments are evaluated in left-to-right order. A method returns

what its body evaluates to. The new command returns a reference to the object it

instantiated.

Generation of new numbers could be easily done in Mumbo if we had static (i.e.

global) variables or methods. But to keep the language simple, we do not support static

members in Mumbo. This creates difficulty in generating unique names/numbers in a

program. We overcome this problem by introducing special expressions into the language:

GENSYM returns a new name in the form ("% ’symX") 1, where X is a unique number.

Similarly, GENLABEL returns a new label in the form ("’labX"), where X is a unique

number. These two special expression are handled as part of the semantics.

As noted in Section 2.2, the preprocessing stage removes all the quotations. Hence,

quotation and anti-quotation are not part of the kernel language, and we do not define

their semantics.

Below we give the semantics of Mumbo in the SOS style. In the semantics, a state

σ keeps the information necessary to evaluate a program. It includes an evironment, a

store, and the current object. The environment maps names to locations, that is, it is

1In the target low-level code, quoted identifiers are used as labels, and quoted identifiers prefixed

with a percent sign are used as names. This is explained in Chapter 3.

13

a set of pairs of name and location. Similarly, the store maps locations to values. An

object is a tuple of its run-time type (i.e. the name of its class) and its own environment

(i.e. the fields).

State = (Environment× Store×Object)

Environment = {(n, l) | n ∈ Name, l ∈ Location}

Store = {(l, v) | l ∈ Location, v ∈ V alue}

Object = (Name× Environment)

V alue = Object | String | Integer | Boolean | ∅

We use env(σ), store(σ) and obj(σ) to refer to the elements of σ. env(o) refers to the

environment kept in object o.

The variables used are listed below:

σ, σ′, σ′′, σ′′′ ∈ State

st ∈ String. e.g: "abc"

qid ∈ Quoted identifier. e.g: ’abc

e, ek, be ∈ Expression

el ∈ List of expressions (i.e. an argument list)

eb ∈ List of block-expressions (i.e. a single expression or a

semi-colon separated list of expressions.)

x, c, rt ∈ Name

i, ik ∈ Integer

v, vk ∈ Value

vl ∈ List of values

o ∈ Object

pl ∈ List of parameters

vd ∈ List of variable declarations

The operations used have the following interpretations:

string(v) : Converts the value v to a string. e.g: string(’a)="’a", string(1)="1".

14

σ CO(o) : Replaces the current object of σ with o, where o ∈ Object.

σ C E(ε) : Replaces the environment of σ with ε, where ε ∈ Environment.

σ C S(ψ) : Replaces the store of σ with ψ, where ψ ∈ Store.

σ[x] : Returns the value of x. It first checks env(σ) to find x. This lookup succeeds
if x is a variable. If it fails, that is, if x is a field, this function looks up x in
env(obj(σ)). Recall that x maps to a value via a location.

σ[x← v] : Sets the value of x to v.

create(c) : Creates an object of class c.

meth(m,σ) : Returns the syntactic representation of the method with name m,
defined in obj(σ).

st1||st2 : Concatenates st2 to st1.

Below we give the full list of semantic rules of Mumbo. A rule like

C
〈e, σ〉 → 〈v, σ′〉

should read as: “The expression e, when evaluated in state σ, gives the value v and

changes the state to σ′, if C holds.”

Str :
.

〈[st], σ〉 → 〈st, σ〉
Self :

.

〈self, σ〉 → 〈obj(σ), σ〉

Qid :
.

〈[qid], σ〉 → 〈string(qid), σ〉
Nil :

.

〈NIL, σ〉 → 〈nil, σ〉

Name :
.

〈x, σ〉 → 〈σ[x], σ〉
Int :

.

〈i, σ〉 → 〈i, σ〉

Void :
.

〈(), σ〉 → 〈void, σ〉
EList :

〈e1, σ〉 → 〈v1, σ
′′〉 〈(e2, el), σ′′〉 → 〈vl, σ′〉

〈(e1, el), σ〉 → 〈(v1, vl), σ′〉

Cons :
〈e1, σ〉 → 〈v1, σ

′′〉 〈e2, σ
′′〉 → 〈v2, σ

′〉
〈(e1 # e2), σ〉 → 〈st, σ′〉

, where st is string(v1)||string(v2).

15

Sum :
〈e1, σ〉 → 〈i1, σ′′〉 〈e2, σ

′′〉 → 〈i2, σ′〉
〈(e1 ++ e2), σ〉 → 〈i, σ′〉

, where i is the sum of i1 and i2.

Sub :
〈e1, σ〉 → 〈i1, σ′′〉 〈e2, σ

′′〉 → 〈i2, σ′〉
〈(e1 −− e2), σ〉 → 〈i, σ′〉

, where i is the difference of i1 from i2.

Mul :
〈e1, σ〉 → 〈i1, σ′′〉 〈e2, σ

′′〉 → 〈i2, σ′〉
〈(e1 ∗∗ e2), σ〉 → 〈i, σ′〉

, where i is the multiplication of i1 and i2.

Div :
〈e1, σ〉 → 〈i1, σ′′〉 〈e2, σ

′′〉 → 〈i2, σ′〉
〈(e1 −:− e2), σ〉 → 〈i, σ′〉

, where i is i1 divided by i2.

Eqt :
〈e1, σ〉 → 〈v, σ′′〉 〈e2, σ

′′〉 → 〈v, σ′〉
〈(e1 equals e2), σ〉 → 〈true, σ′〉

Eqf :
〈e1, σ〉 → 〈v1, σ

′′〉 〈e2, σ
′′〉 → 〈v2, σ

′〉
〈(e1 equals e2), σ〉 → 〈false, σ′〉

, where v1 is not equal to v2.

Andt :
〈e1, σ〉 → 〈true, σ′′〉 〈e2, σ

′′〉 → 〈true, σ′〉
〈(e1 and e2), σ〉 → 〈true, σ′〉

Andf :
〈e1, σ〉 → 〈t1, σ′′〉 〈e2, σ

′′〉 → 〈t2, σ′〉
〈(e1 and e2), σ〉 → 〈false, σ′〉

, where t1 and/or t2 is false.

Notf :
〈e, σ〉 → 〈true, σ′〉

〈not(e), σ〉 → 〈false, σ′〉
Nott :

〈e, σ〉 → 〈false, σ′〉
〈not(e), σ〉 → 〈true, σ′〉

Tru :
.

〈True, σ〉 → 〈true, σ〉
Fal :

.

〈False, σ〉 → 〈false, σ〉

Ift :
〈e, σ〉 → 〈true, σ′′〉 〈e1, σ

′′〉 → 〈v1, σ
′〉

〈if e then e1 else e2, σ〉 → 〈v1, σ′〉

Iff :
〈e, σ〉 → 〈false, σ′′〉 〈e2, σ

′′〉 → 〈v2, σ
′〉

〈if e then e1 else e2, σ〉 → 〈v2, σ′〉

FA :
〈e, σ〉 → 〈o, σ′〉

〈e −> x, σ〉 → 〈(σ′ C E(∅) CO(o))[x], σ′〉

16

Setx :
〈e, σ〉 → 〈v, σ′〉

〈set x = e, σ〉 → 〈0, σ′[x← v]〉

Setf :
〈e2, σ〉 → 〈v, σ′′〉 〈e1, σ

′′〉 → 〈o, σ′〉
〈set e1−> x = e2, σ〉 → 〈0, σ′ C S(store((σ′ C E(∅) CO(o))[x← v]))〉

Blks :
〈e, σ〉 → 〈v, σ′〉
〈{ e }, σ〉 → 〈v, σ′〉

Blkl :
〈e, σ〉 → 〈v1, σ

′′〉 〈{ eb }, σ′′〉 → 〈v, σ′〉
〈{ e ; eb }, σ〉 → 〈v, σ′〉

Loopt :
〈e, σ〉 → 〈v, σ′′〉 〈be, σ′′〉 → 〈true, σ′′′〉 〈do e while be, σ′′′〉 → 〈0, σ′〉

〈do e while be, σ〉 → 〈0, σ′〉

Loopf :
〈e, σ〉 → 〈v, σ′′〉 〈be, σ′′〉 → 〈false, σ′〉

〈do e while be, σ〉 → 〈0, σ′〉

New :
〈el, σ〉 → 〈vl, σ′′〉 〈invoke(‘initialize, vl), σ′′ CO(o)〉 → 〈v, σ′〉

〈new c el, σ〉 → 〈o, σ′ CO(obj(σ))〉
, where o is create(c).

Sym :
.

〈GENSYM, σ〉 → 〈st, σ〉
, where st is unique.

Lab :
.

〈GENLABEL, σ〉 → 〈st, σ〉
, where st is unique.

Send :
〈e, σ〉 → 〈o, σ′′〉 〈el, σ′′〉 → 〈vl, σ′′′〉 〈invoke(x, vl), σ′′′ CO(o)〉 → 〈v, σ′〉

〈send e x el, σ〉 → 〈v, σ′ CO(obj(σ))〉

Inv :
meth(x, σ)→ (method x(pl)[vd] rt : e) 〈e, (σ C E(∅))[pl← vl][vd← ∅]〉 → 〈v, σ′〉

〈invoke(x, vl), σ〉 → 〈v, σ′ C E(env(σ))〉

Cast :
〈e, σ〉 → 〈v, σ′〉

〈cast e to x, σ〉 → 〈v, σ′〉

Although Mumbo is a typed language, we do not implement a type-checker, for the

reason that it is not the focus of this thesis. We assume that all programs we receive

17

are well-formed. For this reason, the Cast rule in the semantics simply evaluates the

expression-to-be-casted. Casting is especially useful in the context of program analysis.

It allows us to propagate type information through the expressions. Analysis of Mumbo

programs is explained in Chapter 5.

18

Chapter 3

LowLevel Language

We compile Mumbo to a toy virtual machine language, called LowLevel. The compilation

is explained in Chapter 4; in this chapter we present LowLevel.

LowLevel is again implemented in Maude by us, in approximately 400 lines of code.

It is a 3-address code language inspired by LLVM (Low Level Virtual Machine) [18]. In

LowLevel, one can define functions and structs. It allows allocating new structs, accessing

struct elements, and dynamic decision of the name of the function-to-be-called. These

features make it a suitable target language for an object oriented language like Mumbo.

LowLevel is a toy language providing basic features, and it shouldn’t be compared to a

real target language. In this chapter we explain the syntax and semantics of LowLevel.

We then give a simple example.

3.1 Syntax

We give the syntax of LowLevel in extended BNF, in Figure 3.1.

We would like to note that operands in an operand list are comma-separated. We do

not give this in the grammar to keep it shorter.

19

PROGRAM ::= DEFS V TABLE+ IMPL FUN+

V TABLE ::= { NAME : { NAME , NAME }+ }
FUN ::= NAME V ARLIST { BBLOCK+ }
BBLOCK ::= NAME : STMT+

STMT ::= V AR = EXP ;
| br NAME ;
| br OPRND ? NAME : NAME ;
| return OPRND ;
| store(OPRND , OPRND) ;

EXP ::= BINOP (OPRND , OPRND) | UNOP (OPRND)
| malloc | NULL | NEWSYM | NEWLABEL | S(aString)
| malloc(STRUCT) | call(OPRND+)

BINOP ::= add | sub | mul | div | and | concat | seteq | setlt
| setle | getelementptr | getfunctionname.

UNOP ::= not | load | copy
STRUCT ::= { { NAME , V AL }+ }
V AR ::= % NAME
V ARLIST ::= () | V AR+

OPRND ::= V ARLIST | true | false | NAME | anInteger
NAME ::= aQuotedIdentifier | NAME $ NAME
V AL ::= STRUCT | NAME | loc(anInteger) | int(anInteger)

| str(aString) | bool(aBool) | nil

Figure 3.1: The grammar of LowLevel

3.2 Semantics

We give the semantics of LowLevel informally.

The executable unit in LowLevel is a program. A program consists of a list of struct

definitions and a list of functions. Every LowLevel program has to have a main function,

which takes no parameters. The execution of the program starts from the main function,

and the execution of a function starts from the ’entry basic-block. We return from

a function after executing the basic-block named ’end. This basic-block should have

only one statement: return. The operand to return is then evaluated and its value is

returned. Other basic-blocks should end with a branch-statement. store and load are

used to mimic writing to/reading from the memory.

Below we give the meaning of the expressions:

20

• The arithmetic operators are add, sub, mul and div. They take two operands

and stand for addition, subtraction, multiplication and division, respectively.

• The logic operators and and not work as their names imply.

• concat takes two operands, which should result in string values, and returns the

concatenation of these two strings.

• seteq, setlt, setle are comparison operations, which stand for “set if equal

to”, “set if less than” and “set if less than or equal to”, respectively. They accept

two parameters, and return boolean values.

• load expects one parameter, a pointer to a location. It returns the value of that

location.

• call is used for function invocation. It takes variable number of parameters. The

first parameter should be the name of the function to be invoked, and the rest are

the arguments to the function.

• copy returns the value its argument evaluates to.

• getelementptr accepts two arguments: (1) A pointer to a struct. (2) A name. It

returns a pointer to the element of the struct, whose name is the second argument.

• getfunctionname accepts two arguments. It expects the first one to be a struct,

say s, and the second one to be a name, say n. The struct s keeps a name of a

vtable, v. This name is used to retrieve v and find the function name, kept in v,

that corresponds to n. The function name is returned. In other words, it finds the

name of the function in order for dynamic dispatch to work correctly.

• malloc, when given a struct as the argument, puts the struct into the memory, and

returns a pointer to it. If not given an argument, it allocates a space whose value

is undefined, and returns the pointer to that space.

21

• store takes two arguments. The first is a value, and the second is a pointer. It

stores the value in the location pointed by the pointer.

• (br l) branches unconditionally to the basic block named l. (br c ? l1 : l2)

first evaluates c. If it is true, then it jumps to the basic-block named l1, otherwise

it jumps to the basic-block named l2.

3.3 A Simple Example

In this section we give a simple example to illustrate how a Mumbo program would be

written in LowLevel. Below is a Mumbo program.

class ’A extends ’object
field ’x : ’int
method ’initialize() ’int : --- this is the constructor

set ’x = 1
method ’getX() ’int :

’x
main [noVars]

send (new ’A()) ’getX()

In the main method of this program, which is the starting point for execution, first a

new object of type ’A is created. This object has a field named ’x. In the constructor,

’x is set to 1. Then the ’getX() method of the object is invoked. This method returns

the value of ’x. Below is the corresponding LowLevel program.

DEFS --- Definition of ’object is put automatically by the compiler
{’object : {’initialize, ’object}}
--- Definition for class ’A
{’A : --- Method ’getX is defined in class ’A

{’getX,’A}
--- Method ’initialize is defined in class ’A
{’initialize,’A} }

IMPL
--- ’initialize method of ’object is automatically put by the compiler
’object $ ’initialize (% ’self)
{ ’entry : br ’end ;

’end : return 0 ;
}

22

--- ’getX method of class ’A
’A $ ’getX (% ’self)
{ ’entry : % ’s2 = getelementptr(% ’self, ’x) ;

% ’s1 = load(% ’s2) ;
br ’end ;

’end : return % ’s1 ;
}

--- ’initialize method of class ’A
’A $ ’initialize (% ’self)
{ ’entry : % ’s4 = add(0,1) ;

% ’s5 = getelementptr(% ’self, ’x) ;
store(% ’s4, % ’s5) ;
% ’s3 = add(1,0) ;
br ’end ;

’end : return % ’s3 ;
}

--- the main method
’main()
{ ’entry : --- first allocate an object, whose vtable points to

--- ’A (i.e. the object is of type class ’A)
--- and it has a field named ’x
% ’s10 = malloc({{’VTABLE, name(’A)}{’x, nil}}) ;

--- Get the pointer to the ’initialize method and invoke it
% ’s12 = getelementptr(% ’s10, ’VTABLE) ;
% ’s13 = load(% ’s12) ;
% ’s14 = getfunctionname(% ’s13, ’initialize) ;
% ’s11 = call (% ’s14, % ’s10) ;

--- Get the pointer to the ’getX method and invoke it
% ’s7 = getelementptr(% ’s10, ’VTABLE) ;
% ’s8 = load(% ’s7) ;
% ’s9 = getfunctionname(% ’s8, ’getX) ;
% ’s6 = call (% ’s9, % ’s10) ;
br ’end ;

’end : --- return the result of the call to ’getX
return % ’s6 ;

}

23

Chapter 4

The Mumbo Compiler

In order to compile Mumbo programs to LowLevel code, we implemented a compiler. In

this chapter we explain this compiler in detail.

The compiler is implemented in Mumbo and we use the executable semantics of

Mumbo to run it. This way, the compiler can compile Mumbo programs. This method

was introduced in Chapter 2. The compiler doesn’t have a separate scanner or parser.

Since we defined the syntax of the language in Maude, we can pass Mumbo programs to

the compiler very easily, without the need to write a parser or an explicit AST. This is

explained in Section 4.4.

The Mumbo compiler is a traditional compiler. It does not know anything about

run-time generation. (Recall that the quoted expressions were converted to expressions

in the kernel language in the preprocessing stage; see section 2.2). However, the Mumbo

compiler, like the Jumbo compiler, has a very important property: compositionality.

Compositionality states that the compilation of a program fragment is a function of the

compilation of its sub-fragments. By means of compositionality the capability of run-

time program generation comes for free. In other words, the static compiler can be used

for runtime compilation.

Another property of the compiler — which, we think, is crucial for better optimiz-

ability — is side-effect-freeness. The compiler is written in functional style, which makes

24

it side-effect-free. We claim that this property makes it more suitable for optimizations.

We discuss the optimizations in Chapter 5.

The compiler has one-and-a-half passes over a program. At the program level, we

have a shallow pass over the classes, and at the class level, we have another shallow pass

over the members of the class to collect information about them. Other than these, the

compiler has only one pass over the program that is being compiled. This can be seen

in the source code pieces we provide in this section and in the whole source code of the

compiler given in the appendix.

In this chapter we first explain compositionality and then the side-effect-free structure

of the compiler by analyzing the source code. This gives a detailed presentation of the

internals of the compiler. In Section 4.3, we explain how to do runtime generation. Lastly,

Section 4.4 shows how to pass Mumbo programs to the Mumbo compiler.

4.1 Compositionality

In Jumbo-style run-time program generation, a quoted program fragment is represented

as a function, which represents the partially compiled version of the quoted-code. How-

ever, functions in Mumbo and Jumbo are not first-class citizens. Therefore, we use

“function objects”, which provide the method representing the quoted code. Then the

application of that function simply becomes the invocation of the method. This method

is named eval, and we refer to the objects generally as “code objects”. All these objects

have a base type: Code. In Mumbo, names are quoted identifiers. For this reason, from

now on, we’ll use ’eval and ’Code when we are referring to the eval method and the

base code type in Mumbo.

We have stated that compositionality means the compilation of a code fragment is

a function of the compilation of its sub-fragments. The compositionality occurs in the

’eval method. The basic behavior is as follows: When a ’Code object receives the

’eval message, it invokes the ’eval method of its sub-fragments. These invocations

return the result of compilation of the sub-fragments — which is a LowLevel code in

25

Mumbo. Then the object combines these results properly and returns the combined

result. The ’eval method receives an environment as a parameter. The environment

includes all the information necessary for the code fragment to be compiled down to

low-level code.

In Mumbo, the environment that is passed to the ’eval method is an instance of

the ’Env class and contains the following information: (1) The list of local variables

and parameters of the enclosing method. (2) The list of fields of the enclosing class

(including the fields of its super classes). (3) The name of that class. (4) The name of

that class’s superclass. (5) The list of all classes in the current program. The return value

of the ’eval method is a ’ClosedCode object, which is a tuple consisting of two elements:

’lowlevelCode, which is the virtual machine code produced, and ’lowlevelName, which

is the name of the register that keeps the result ’lowlevelCode evaluates1. There are

two methods in ’ClosedCode. ’getCode() returns ’lowlevelCode, and ’getName()

returns ’lowlevelName.

The compiler consists of a ’Code class for each syntactic element. In addition to these,

there is ’ClosedCode, ’Env and ’LinkedList, and several auxiliary classes. Below is the

’Code class representing an integer constant:

final class ’integerConstantCode extends ’Code

final field ’value : ’int

method ’initialize(’v : ’int) ’int :
set ’value = ’v

method ’eval(’env : ’Env)
[’sym : ’string, ’lowlevel : ’string] ’ClosedCode :
{

set ’sym = GENSYM ;
set ’lowlevel = ’sym # [" = add(0,"] # ’value # [")"] # [" ; "] ;
new ’ClosedCode(’lowlevel, ’sym)

}

1Recall that LowLevel is a 3-address code. We would not need ’lowlevelName if it were stack code.

26

In the ’eval method of the class above, we first get a new LowLevel name and then assign

the value represented by this code object, to this new name. ’integerConstantCode is

one of the base cases of compositionality — it does not have sub-fragments.

Another base case is a variable expression, that is, an occurrence of a name. Compared

to an integer constant, it is more complicated to compile a name, because the name may

be a local variable or a field — or an error if it is free. We need to use the information

stored in the environment to find out where the name is defined. We produce different

LowLevel code depending on whether the variable is a local variable or a field. The

’eval method of ’getNameCode is given below.

method ’eval(’env : ’Env)
[’sym : ’string, ’lowlevel : ’string, ’temp : ’ClosedCode] ’ClosedCode :

{
if (send ’env ’isLocal(’name)) then
{ --- either a local var or a method parameter

set ’sym = ["% "] # ’name ;
set ’lowlevel = [""]

}
else if (send ’env ’isField(’name)) then

{ set ’sym = GENSYM ;
set ’temp = send self ’getPtr() ;
set ’lowlevel = send ’temp ’getCode()

’sym # [" = load("] # (send ’temp ’getName())
[")"] # [" ; "]

}
else
{ set ’sym = [" CANNOT RESOLVE: "] # ’name ;
set ’lowlevel = [""]

} ;
new ’ClosedCode(’lowlevel, ’sym)

}

The ’getPtr method which is called if the name is a field, has the following implemen-

tation:

method ’getPtr() [’temp : ’string, ’tempSym : ’string] ’ClosedCode :
{

set ’tempSym = GENSYM ;
set ’temp = ’tempSym # [" = getelementptr(% ’self, "]

’name # [")"] # [" ; "] ;
new ’ClosedCode(’temp, ’tempSym)

27

}

We now show the code of the class which represents a binary operation. It sends the

’eval message to its operands, puts their results together and uses them to compute its

own value.

final class ’binOpCode extends ’Code
final field ’op : ’string
final field ’left : ’Code
final field ’right : ’Code
method ’initialize(’o : ’string, ’l : ’Code, ’r : ’Code) ’int :
{

set ’op = ’o ;
set ’left = ’l ;
set ’right = ’r

}
method ’eval(’env : ’Env)

[’sym : ’string, ’lowlevel : ’string,
’lval : ’ClosedCode, ’rval : ’ClosedCode] ’ClosedCode :

{
set ’sym = GENSYM ;
set ’lval = send ’left ’eval(’env) ;
set ’rval = send ’right ’eval(’env) ;
set ’lowlevel = (send ’lval ’getCode())

(send ’rval ’getCode())
’sym # [" = "] # ’op # ["("]
(send ’lval ’getName()) # [", "]
(send ’rval ’getName()) # [")"] # [" ; "] ;

new ’ClosedCode(’lowlevel, ’sym)
}

We finally show the ’eval method of the ’Code class representing a class. In this

method, the environment is defined by setting the class name and the superclass name

kept in it. The method then adds all the fields defined in the class and its superclasses

to the environment. The environment is then ready to be passed to the ’eval of the

sub-fragments, which are the code objects representing the methods of the class. Lastly,

the method list is iterated and the ’eval method of each method is called. The Low-

Level code obtained from these calls are put together and the result is returned.

method ’eval(’env : ’Env)
[’lowlevel : ’string, ’meth : ’List, ’methVal : ’ClosedCode,

28

’sname : ’string, ’spr : ’defineClassCode] ’ClosedCode :
{

--- defining the environment
set ’env = send (send ’env ’resetForNewClass(’name, ’superName))

’addList(’fieldList) ;
set ’sname = ’superName ;
while not(’sname equals [’object])
{

set ’spr = send ’env ’getClassInfo(’sname) ;
set ’env = send ’env ’addList(’spr -> ’fieldList) ;
set ’sname = send ’spr ’getSuperName()

} ;
--- defined the environment

set ’lowlevel = [""] ;
set ’meth = ’methodList ;
--- send ’eval message to all the methods defined in the class
while (send ’meth ’hasNext()) {

set ’methVal = cast send ’meth ’value() to ’Code ;
set ’lowlevel = ’lowlevel

(send (send ’methVal ’eval(’env)) ’getCode()) ;
set ’meth = send ’meth ’next()

} ;
new ’ClosedCode(’lowlevel, [" $NONAME-FOR-CLASSES$ "])

}

With the source codes given above, we show the compositionality of the compiler.

The classes representing other syntactical units are written in the same style. We do not

show them here. Their code can be found at Mumbo’s webpage: http://pinatubo.cs.

uiuc.edu/~aktemur/mumbo and in the appendix.

4.2 Side-Effect-Freeness

The Mumbo compiler is written in functional style. We see this as a crucial property

because it makes the compiler side-effect-free. This property makes the compiler more

amenable to optimizations. We discuss the optimizations in Chapter 5. In this section

we explain how to write the compiler in functional style.

We achieve side-effect-freeness by defining every field in the compiler as final. We

are able to do this mainly because the ’Code objects do not change their state after they

29

are created. ’ClosedCode is simply a tuple, so its fields can easily be declared final. For

the other classes, such as ’Env and ’LinkedList, we do the following: When there is

need to change the state of an object, we return a new object with the new state. For

instance an ’Env object returns a new ’Env when a new field is added to the field-list.

--- ’varList, ’fieldList, ’currClass, ’superClass, ’classInfos
--- are data members of Env
method ’addField(’name : ’string) ’Env :

new ’Env(’varList,
send ’fieldList ’add(’name),
’currClass,
’superClass,
’classInfos)

Similarly, a ’LinkedList object returns a new ’LinkedList object when we add a

new element to the list. This style potentially has negative effect in the performance

compared to non-functional version, but as we show in this thesis, it brings advantages

in optimization. It also causes creation of many intermediate objects with short life-time.

These objects can be garbage collected. However, we do not have a garbage collector in

Mumbo, because it is not in the scope of this work.

4.3 How to use the compiler

In the previous sections we explained the internals of the compiler. In this section we

look at it from the user’s point of view and explain how to use it to compile Mumbo

programs.

We distinguish two types of compilations: static time and run-time. Static time

compilation happens when we write a program and compile it to get LowLevel code.

Run-time compilation happens when a compiled program generates code during its exe-

cution. In the latter case, we send the ’generate message to the ’Code object which is

representing a full program or class. This returns the corresponding LowLevel code.

The source code of ’generate is given below. This method is defined in the ’Code class,

which is the base of all ’Code objects.

30

final method ’generate() ’string :
send (send self ’eval(new ’Env(new ’LinkedList(NIL, NIL), ---var. list

new ’LinkedList(NIL, NIL), ---field list
[""], ---enclosing class name
[""], ---superclass name
new ’LinkedList(NIL, NIL)) ---list of classes
)) ’getCode()

Below is a simple example showing how to generate a class.

class ’Gen extends ’object
method ’getCode() ’Code :

$< class ’Temp extends ’object
method ’getId() ’int :

123
>$

main [noVars]
send (send (new ’Gen()) ’getCode()) ’generate()

The compilation starts with an empty environment. Mumbo does not have a state-

ment like import to include other classes. When it is desired to start code generation

with some classes in the initial environment, ’generateWithClasses should be used in-

stead of ’generate. This method accepts a list of classes. Each element of the list is

expected to be a ’Code object representing a class, that is, a ’defineClassCode object

(’defineClassCode is a subclass of ’Code).

final method ’generateWithClasses(’lib : ’List) [’env : ’Env] ’string :
{ set ’env = new ’Env(new ’LinkedList(NIL, NIL),

new ’LinkedList(NIL, NIL),
[""],
[""],
new ’LinkedList(NIL, NIL)) ;

set ’env = send ’env ’addList(’lib) ;
send (send self ’eval(’env)) ’getCode()

}

For static time compilation, one can use the compile operation. When given a pro-

gram, this operation can be reduced to give LowLevel code. It is explained in the next

section.

31

4.4 The compile operation

We define an operation, called compile, to get the LowLevel code for programs. The

equation is defined as follows and illustrated in Figure 4.1.

eq compile(P) = run((MCompiler
main [noVars]
send ($< P >$) ’generateWithClasses(

preprocess($< MCompiler >$)))) .

method m ...

class C
field f:int

method m ...

class C
field f:int

new defineClass("c", ...
 new defineField("f", "int"),
 new defineMethod("m", ...))

preprocess

Compiler Classes

send

brackets
enclose in

generate()

eval
LowLevel

compose with compiler classes

$<

>$

Figure 4.1: Passing Mumbo programs to the Mumbo compiler.

In this equation, P is a Mumbo program, MCompiler is the constant which holds all

the classes of the compiler, and run is an operation which first preprocesses its input

program, and then evaluates it using the executable semantics. The compile operation

first encloses the given program between brackets. This makes it a code object. We then

generate the LowLevel code of this program by sending to it the ’generateWithClasses

message. (We do not use the ’generate method because the program may be program-

generating. In that case we need to have the compiler classes present in the environment.)

As mentioned above, the list of classes that is passed to the ’generateWithClasses

method should be a ’LinkedList object consisting of code objects representing the

classes. This is trivially achievable by enclosing the classes inside brackets and then

32

preprocessing the resulting expression. Finally, this expression becomes the body of

a main method and we run it as a program. Remember that the compiler is itself a

Mumbo program. Therefore, we can compile the compiler by just passing it to the

compile operation. We define the following equation to make it easy. (We add the

"main [noVars] 1" part to make it a full program.)

eq compileLibrary = compile((MCompiler main [noVars] 1)) .

We use the compiled compiler when executing program generating programs, which

are compiled to LowLevel.

33

Chapter 5

Optimizations

A specialized program normally runs faster than a generic program. However, run-time

generation has a considerable cost. Because of this cost, the generated program does not

pay off immediately; it first amortizes its generation cost. The moment when it catches

up with the non-generative version of the program is called the crossover point. We,

naturally, would like to have a low crossover point so that run-time program generation

compansates its cost earlier.

In this chapter we define optimizations to rewrite program generators at source level,

so that they will generate code faster at run-time. In this chapter we first explain how to

write traversers easily. We then explain the program analyses. These analyses will be used

by optimizations. Afterwards we give the notation we use to explain the optimizations.

We choose a different and more abstract notation than Maude source code, in order to

make it more readable for those who are not very familiar with Maude syntax. This will

be followed by the description of the auxiliary functions and the optimizations we define.

We finally discuss the adequacy of these optimizations. Our claim is that the side-effect-

freeness of the compiler makes our set of optimizations adequate for substantial efficiency

gain. However, there are cases where the code could be optimized further, but the set of

optimizations is not capable of doing that. We discuss these cases and the limits of the

optimizations in Chapter 7.

34

5.1 Code Visitors

To do source-level optimizations, one should traverse over the program, first collecting

some information (i.e. analyzing the code), and then transforming the code so that it is

(or at least expected to be) faster than the original code. In this sense, we distinguish

two types of code traversers: analyzers and transformers.1 In this section we explain how

to write code traversers (i.e. visitors [10]) for Mumbo. As always, the implementation is

done in Maude.

By means of equational logic and matching, Maude makes it easy to traverse the

syntax tree of a program. To define these traversals easily, we first define an operation

called visit:

op visit : MRewRule MExp MRewData -> MExpListDataPair .

Given an expression, which is actually a tree, we define this operation to traverse over

every node of the expression. The first argument to this operation is the name of the

traversal. e.g: inline, unroll, genKill, etc. The second argument is the expression

we want to traverse. In other words, it is the root of the (sub)tree. The last argument is

data. We use this argument to pass any information between nodes.

The visit operation returns a pair of an expression and data as its result. In the

case of transforming visitors, the returned expression can be used to replace the original

expression. The analyzers use the data part to report the information collected over the

code. For this reason, the visit operation is generic enough to be used both to transform

the tree, and to analyze it. It works as the skeleton for analyzers and transformers.

We define the default behaviour of traversal in the IDENTITY module. For each

syntactic component we define visit to apply recursively on the sub-components of the

node. By default it traverses the tree in a top-down, left-to-right order without changing

anything in the tree (hence the name IDENTITY). For instance, below is the equational

definition for addition:

1In [31], three types are identified: accumulators, transformers and accumulating transformers. We

view accumulating transformers as transformers.

35

var R : MRewRule . vars E E’ E1 E2 : MExp . vars D D1 D2 : MRewData .
ceq visit(R, E ++ E’, D) = {E1 ++ E2, D2}

if {E1, D1} := visit(R, E, D)
/\ {E2, D2} := visit(R, E’, D1) [otherwise] .

In this conditional equation, R is a variable of sort MRewRule; E, E’, E1, E2 are of sort

MExp, and D, D1, D2 are of sort MRewData. We would like to note that they are variables

in the mathematical sense, not like the variables in an imperative programming language.

The conditional equation states that for any visitor R, traversing a summation, we first

visit the left operand with the same visitor, R. We pass this traversal the incoming data.

We then traverse the right operand, but this time we pass the information we obtained

from the visit to the left operand. This data may be different from the original. Visiting

the right operand returns us a possibly different expression and data. We return the final

data obtained from this traversal and return the summation of two new operands, as the

result of the traversal. The default behaviour of visit is defined in the same manner for

other syntactic units.

Since we implemented the default traversal behaviour on nodes, when we want to have

a visitor doing some particular work on the tree, we just need to define its behaviour

for the nodes we are interested in. This is similar to the traversal functions of [31] and

the Visitor pattern of [10]. The default behaviour has the attribute [otherwise], which

ensures that it will be applied only if no other equation matches.

We now give a simple example illustrating how to define a visitor. Consider a traverser

whose task is to replace a specified expression with another expression. Let’s call this

traverser as replace. We also define replaceData, which contains two expressions. The

first is the expression that is to be replaced, and the second is the expression that will

replace the original one. We only need to define the equation below, for this traverser to

work.

eq visit(replace, E, replaceData(E, E’)) = {E’, replaceData(E, E’)} .

So when we’re traversing the expression we would like to replace, Maude matches it

and applies the equation above. For other expressions, the identity function is applied.

Consider this expression e:

36

if ’x equals 0 then set ’x = 10 else send self ’foo(’x)

We may call the replace traverser on this expression as follows:

visit(replace,
if ’x equals 0 then set ’x = 10 else send self ’foo(’x),
replaceData(’x, ’y))

It reduces to the following tuple, replacing all the occurrences of ’x with ’y.

{if ’y equals 0 then set ’y = 10 else send self ’foo(’y),
replaceData(’x, ’y)}

The transformed expression returned in this tuple can then be used instead of the old

expression.

Storing information about nodes

The optimizers require information about the program to be able to transform it. For

example, use-def analysis is required to propagate constants. This makes it necessary to

store information on nodes. If we were doing the implementation in an object-oriented

language, we could easily add new fields to the classes representing nodes, and those

fields could store the information for us. But in Maude, we cannot do that. For this

reason we define a new syntax tree node:

op info : JExp JInfoData -> JExp .

info can be seen as a closure, which contains an expression and some information about

the expression. It is used to replace the expression it contains. This way, we are able

store information along with the expressions. Various types of information, such as use-

def, gen-kill and type information, can be stored in info. An analyzer, when traversing

the tree, simply updates the information on the visited node, and continues its traversal.

Another visitor, later on, can use or change this information. For instance, the tag

analyzer assigns unique numbers to the loops in the program. We then use these tags

to distinguish loops when unrolling. We define the following conditional equation in the

TAG module:

37

var InfD : JInfoData . var N : Nat .
vars E BE E’ BE’ : JExp . vars D1 D2 : JRewData .
ceq visit(tag, info(do E while BE, InfD), tagData(N)) =

{info(do E’ while BE’, InfD tag(N)), D2}
if {E’, D1} := visit(tag, E, tagData(N + 1))
/\ {BE’, D2} := visit(tag, BE, D1) .

This equation matches a loop, takes the current tag from the incoming data, increments

the tag and recursively traverses the body and the condition, and finally leaves the tag

as part of the stored information.

5.2 Analyses

We implement several analyzers which are necessary to do optimizations. These analyzers

are defined using the visit operation as explained in Section 5.1. These are well-known

and well-documented source-level analyses ([1, 20]). For this reason, we simply give the

list of analyses without going into details.

• INFO: Encapsulates expressions in info packages, as explained in Section 5.1.

• TAG: Assigns unique numbers to names, loops and method calls. The tags are used

for identification when unrolling loops, inlining methods and in use-def analysis.

• UNTAG: Removes tags.

• TYPE: Propagates type information over expressions. Narrows types when possi-

ble.

• ISLOCAL: Determines if a variable is local to the enclosing method, or a field.

• ISFINAL: Determines if the accessed field is final.

• GEN-KILL: Computes gen-kill sets of expressions. See [1] for a detailed explana-

tion of gen-kill sets, why they are useful, and for the algorithm to compute them.

• UD: Computes use-def chains. It can do may or must analysis. See [1] for a more

detailed discussion of use-def chains.

38

5.3 Auxiliary Functions

In this section we give the list of auxiliary functions, which are used in the optimizations

described in Sections 5.5 and 5.6.

• getMustDef(v): Finds the dominating definition of the variable v.

• definable(e): An expression e is said to be definable if all the subexpressions it

contains are definable. A variable is definable if its definition can be found in

the method we are working on and if the right-hand-side of this definition is also

definable. An instance creation, a literal, self, NIL, GENSYM and GENLABEL are

always said to be definable.

Example: Think of a variable, which is a parameter of the current method. Unless

this variable has a definable definition in the method, it is non-definable because

its definition is not accessible from inside the method.

• mayMove(v, e): Returns true if the variable v can safely be moved to the place of

the expression e.

• mayHaveUse(v): Determines if the variable v may have a use in the program.

• isLiteral(e): Returns true if the expression e is literal.

• findF ieldV alue(x, c, el): Given a field name, x, a class name, c, and a list of

arguments, el, which is passed to the instantiation of an object of c, this function

looks into the ‘initialize method of the class and tries to find the value assigned

to the field x. This value is expected to be a parameter of the method, which

corresponds to an expression e in el. This function then assigns e to a fresh variable

s, passes it to the new instance creation instead of e, and returns it so that accesses

to the field x can now be replaced by s.

• replace(e1, e2): Replaces the expression e1 with the expression e2. This is useful

especially in α-conversion.

39

• freeV ars(e): Finds the free variables in the method body e. These free variables

are the fields of the class the method is defined in.

• vars(e): Finds all the variables occurring in the expression e.

• collectDefs(e): Collects all the definitions (i.e. variable assignments) found in e.

• sideEffectFree(e): Returns true if the expression e is known to have no side-

effects. Literals, names, self, NIL, arithmetic, boolean operations and concatena-

tion of side-effect-free operands are all side-effect-free. (cast f to x) and (f->x)

are side-effect free if f is side-effect free. sideEffectFree is conservative, because,

without analyzing the method, every method invocation is considered side-effectful.

• findF ieldType(x, c): Returns the declared type of the field x of class c.

• isF inal(m): Returns true if the method m is final, false otherwise.

• recursive(m): Returns true if the method m is directly recursive, otherwise returns

false.

• getMethod(m, c): Given a method name, m, and a class name, c, returns the code

of the method.

• isSafe(m, c): Returns true if the method m of the class c does not change the

state of its parameters. The method is said to be unsafe if it invokes a method or

accesses a field of a parameter.

• flatten(el): Given el, a comma-separated list of expressions (i.e. an argument

list), converts it to a semi-colon-separated list of block-expressions; e.g. (1, ’x)

becomes {1 ; ’x}.

• typeof(e): Returns the static type of the expression e. This type is found as a

result of TYPE analysis, and it may be narrower than the declared type.

40

5.4 Notation

All the optimization-related transformations we give in this chapter are implemented in

Maude. This may make them hard to read if one is not very familiar with Maude syntax.

We also want to abstract out some details. For these reasons, we use another notation

to explain them. A transformation like

[[x]] ⇒ [[y]]

if τ = copyAssignment∧
isLocal(x)∧
y ← getMustDef(x)∧
isLocal(y)∧
mayMove(x, y)

should read:

A variable x is replaced by a variable y, if the visitor τ is copyAssignment and

x is local and the dominating definition of x is the variable y and y is local

and y may be moved to the place of x.

We use ← as the matching operator in the sense that lhs ← rhs requires rhs to be

matched to lhs. The variables we use are listed below:

x, y, target, rt, f, c ∈ Name

i, ik ∈ Integer

e, e′, ek, be, body, er, eα, ef ∈ Expression

eb, e
′
b, e

′′
b ∈ Block-expression (i.e. a single expression or a semicolon-separated list

of expressions)

el ∈ Expression list (comma-separated)

lhs ∈ Left-hand-side (i.e. a name or a field access)

m ∈ Syntactic representation of a method

pl, pl′ ∈ Parameter list

vd, vd′ ∈ Variable declaration list

41

5.5 Transformations not requiring analyses

In this section we define optimizations which do not need analysis results. These opti-

mizations can take place without any out-of-context information. Because of its built-in

matching features, it is trivial to define these in Maude.

• Remove useless braces:

[[{e}]] ⇒ [[e]]

[[{eb ; {e′b}}]] ⇒ [[{eb ; e′b}]]

[[{{eb} ; e′b}]] ⇒ [[{eb ; e′b}]]

[[{eb ; {e′b} ; e′′b}]] ⇒ [[{eb ; e′b ; e′′b}]]

• Reduce useless statements:

[[if be then e else e′ ; eb]] ⇒ [[be ; eb]]

if sideEffectFree(e)
∧
sideEffectFree(e′)

[[e ; eb]] ⇒ [[eb]]

if sideEffectFree(e)

[[cast e to x]] ⇒ [[e]] 2

if typeof(e) = x

[[if True then e1 else e2]] ⇒ [[e1]]

[[if False then e1 else e2]] ⇒ [[e2]]

[[if be then e else e]] ⇒ [[{be ; e}]]

2Note that this reduction requires type information. Since TYPE analysis computes this information

and stores it as part of the info expression, it can be directly accessed. Hence, we give this reduction

among the transformations which do not require out-of-context information.

42

[[do e while False]] ⇒ [[e]]

• Constant reduction:

[[i1++i2]] ⇒ [[i]], where i is the sum of i1 and i2

[[not(True)]] ⇒ [[False]]

etc.

• Simplify expressions with blocks:

[[set lhs = {eb ; e}]] ⇒ [[{eb ; set lhs = e}]]

[[send {eb ; e} x el]] ⇒ [[{eb ; send e x el}]]

[[send (if be then e else e′) x el]]

⇒ [[if be then (send e x el) else (send e′ x el)]]

5.6 Transformations requiring analyses

In this section we give more complicated optimizations. These transformations need

analysis results, such as use-def information, in order to function. Therefore we first pass

analysis traversers over the code, accumulate information, and then run these optimiza-

tions.

• Inline: It inlines a method if it is guaranteed that it is the particular method being

invoked. We do not inline non-final methods because polymorphism may change the

exact method being called. We also do not inline a method if it is recursive and the

target or at least one of the arguments is not definable (as defined in Section 5.3).

This heuristic prevents us from falling into infinite loops when inlining methods

automatically as part of the Auto optimizer (discussed in Section 5.7).

In order to avoid name capture, we rename local variables and parameters of the

method we are inlining.

43

[[send e x el]] ⇒ [[e′]]

if τ = Inline∧
m← getMethod(x, typeof(e))∧
isF inal(m)∧
(definable(e, el)

∨
¬recursive(m))∧

e′ ← performInlining(e, el,m)

where performInlining is defined as follows:

performInlining(e, el,m) ⇒ {set target = e ; e′ }

if target← freshSym()∧
m = method x(pl)[vd] rt : body∧
er ← replace(self, target) in body∧
〈eα : pl′〉 ← do α conversion for pl and vd in er∧
ef ← for each variable f in freeV ars(eα), replace(f, target−>f)∧
e′ ← { argAssignments(pl′, el) ; ef }

where argAssigments is the following recursive function:

argAssignments((p, pl), (e, el)) ⇒ { set p = e ; argAssignments(pl, el) }

argAssignments((), ()) ⇒ {}

• Unroll: It unfolds a do-while loop once. The loop becomes nested in an if-

statement.

[[do e while be]] ⇒ [[{e ; if be then do e while be else 0}]]

if τ = Unroll

• Copy Assignment: If a variable is assigned to another variable, as in set x = y,

this optimization replaces uses of x with y, if they are dominated by this definition

and if it is safe to move y.

[[x]] ⇒ [[y]]

if τ = CopyAssignment

44

∧
isLocal(x)∧
y ← getMustDef(x)∧
isLocal(y)∧
mayMove(x, y)

• Constant Propagation: If a variable is assigned a literal, this optimization re-

places the uses of that variable with the assigned literal.

[[x]] ⇒ [[e]]

if τ = ConstantPropagation∧
isLocal(x)∧
e← getMustDef(x)∧
isLiteral(e)

• Nil-Check: It reduces expressions of the form (e equals NIL) to (False), if it

can prove that e is not NIL.

[[e equals NIL]] ⇒ [[False]]

if τ = NilCheck∧
new x el = getMustDef(e)

• Useless Definition: It removes a definition if it has no use. The assigned expres-

sion is not removed because it may have side-effects. If not, it will be removed by

other optimizations.

[[set lhs = e]] ⇒ [[e]]

if τ = UselessDef∧
¬(mayHaveUse(lhs))

• Useless Declaration: It removes a variable declaration from the method header

if that variable is never used in the method body.

[[method x(pl)[vd] rt : e]] ⇒ [[method x(pl)[vd′] rt : e]]

if τ = UselessDecl∧
vd′ ← (vd ∩ vars(e))

45

• Useless New: It removes an instance creation if it is useless and side-effect-free.

It leaves the arguments of the instantiation because they may have side-effects. If

not, they will be removed by other optimizations.

[[new x el ; eb]] ⇒ [[flatten(el) ; eb]]

if τ = UselessNew∧
isSafe(‘initialize, x)

Note that we remove an instance creation only if there exist other statements after

that. Otherwise we could be, for instance, changing the return value of a method,

which would invalidate our program.

• Field-value: It extracts the value of a final field from an object and replaces

accesses to that field by that value. For instance, suppose we have a piece of code

like

set ’a = new ’A(3) ; ’a -> ’f

where class ’A is defined as follows:

class ’A extends ’object
final field ’f : ’int
method ’initialize(’i : ’int) ’int : set ’f = ’i

This optimization then transforms the code piece above to the following:

set ’a = new ’A({ set ’sym = 3 ; ’sym}) ; ’sym

If there are no more accesses to the field, then CopyAssignment and UselessDef will

further optimize this code, giving

set ’a = new ’A(3) ; 3

This transformation is defined as follows:

[[x−>f]] ⇒ [[e′]]

if τ = FieldValue

46

∧
isF inal(f)∧
new c el = getMustDef(x)∧
e′ ← findF ieldV alue(f, c, el)

5.7 Putting the optimizers together

We define operations, which put the optimizations given above together, in order to make

it easier and faster for the user to apply them on the program. In other words, these

operations automate the optimization process. There are three of them:

Cleanup

This is a fixed-point iteration. It applies constantPropagation, copyAssignment, nilCheck,

fieldValue, uselessDef, uselessNew and uselessDecl until the code does not change anymore.

Since none of these optimizers is code-expanding, the cleanup loop is guaranteed to

terminate.

Auto

This is another fixed-point iteration. It applies Inline, Unroll and Cleanup, until the code

doesn’t change. Since inlining and unrolling are code-expanding optimizations, there is

the danger of non-termination. This is avoided by two heuristics: (1) Once a do-while

loop is unfolded, it becomes nested in an if-statement. We do not further unroll loops

which are nested in if-statements. (2) We do not inline a method if it is recursive and

its target or at least one of the arguments is not definable. (This heuristic was explained

in Section 5.3 and used in the Inline optimizer.) This heuristic may still cause infinite

inlining in the general case, but it helps us avoid it because of the structure of the

compiler.

47

Specialize Class

This is the most complicated optimizer. The need for SpecializeClass comes from the

fact that Mumbo does not have anonymous classes. We first explain with an example

the problem introduced by the lack of anonymous classes, and then give the solution.

Consider the single code expression

$< 1 >$

The preprocessing phase converts the above code to the following expression:

new ’integerConstantCode(1)

If we had anonymous classes, we might have the following expression instead.

{ set ’value = 1 ; --- assuming that ’value is a fresh variable
new ’Code(){ --- instantiating an anonymous class

method ’eval(’env : ’Env) [’sym : ’string, ’ll : ’string] ’ClosedCode :
{ set ’sym = GENSYM ;

set ’ll = ’sym # [" = add(0,"] # ’value # [") ; "] ;
new ’ClosedCode(’ll, ’sym)

}
}

}

In the body of the ’eval method, we are referring to the variable ’value, which keeps

the value of the integer the code object is representing. We can propagate this value

for optimization, having the following expression as the result. This new instance now

specifically represents the integer 1. Note that ’value is removed as it becomes useless.

new ’Code(){
method ’eval(’env : ’Env) [’sym : ’string, ’ll : ’string] ’ClosedCode :
{ set ’sym = GENSYM ;

set ’ll = ’sym # [" = add(0,1) ; "] ;
new ’ClosedCode(’ll, ’sym)

}
}

This way we can optimize the ’eval method of every code object.

On the other hand, we cannot do the same with named classes because they are

generic and it is not possible to define a named class at the place where a code object is

48

created. The obvious solution is to duplicate the class, specialize it and then create an

instance of that new class instead of the original generic one.

method ’temp

body of method 1

body of method n

body of ’initialize

method ’temp

new body of method 1

new body of method n

new body of ’initialize

body

’initialize

body

method 1

body

method n

optimize
new body

method 1

new body

method n

new body

’initialize

unpackpack

Figure 5.1: Specializing a duplicated class.

In Figure 5.1 we illustrate how to specialize a duplicated class. First, a temporary

method is created. Then the bodies of the methods of the duplicated class are extracted,

and these bodies — each of which is an expression — are composed such that the body

of the ’initialize method will precede the others. This is required because it will be

invoked before all the other methods. The order in which the bodies of the other methods

is composed does not matter, because the compiler is written in functional-style — all

the fields of an object are final. This means that the methods cannot change the state

of the object.

While putting the method bodies together, we perform α-conversion on them to

avoid incorrect name capture. We use markers to distinguish method bodies from each

other. At this stage, the method is ready to optimize. The Auto optimizer is run

for optimization. The optimized temporary method is then decomposed to get the new

method bodies. The new body of the ’initialize method is examined to see if there is

any need to add new fields or remove old fields that became useless. Finally, a new name

for the duplicated class is generated and the instantiation of the code object is changed

so that it will be an object of the new specialized class. Examples of the result of this

process are given in Chapter 6.

49

5.8 Adequacy of Optimizations

The set of optimizations we presented in this chapter are adequate to achieve substan-

tial optimization. The adequacy is due to the fact that the compiler is side-effect-free.

Consider this: Inside the ’eval method of a ’Code class, there is a call to the ’eval

method of a subfragment (compositionality!). The subfragment’s exact type cannot be

known at this time, but when we are given the source code of a program generator, we

can reason about the exact type of a fragment, unless it is a hole. Using this information,

we inline the invoked ’eval. In the inlined code, there will possibly be references to the

fields of the subfragment. At this point we take advantage of the side-effect-freeness of

the compiler: The accessed fields are all final. We can easily reason about their values,

using the field-value transformer, because the instantiation of the subfragment occurs

within the code. We use FieldValue optimization to extract values of the fields. Once

this is done, the subfragment becomes useless — because all the information it would

carry is inlined — and we can safely remove its creation via UselessNew transformation.

If we didn’t have the side-effect-free property, we would need more complicated analyses

to reason about the values of fields, such as escape analysis or alias-analysis.

In Chapter 6, we give examples illustrating the level of optimization we can achieve.

These examples support our claim of adequacy. However, in some cases, we cannot

obtain the optimal code. We discuss the limitations of our transformations and analyses

in Chapter 7.

50

Chapter 6

Performance

One of the strongest ideas behind using run-time program generation is that more effi-

cient programs can be generated according to the information obtained at run-time. In

other words, we use RTPG to specialize a program depending on the run-time properties.

The efficiency of the overall program depends on the efficiency of the generated program

compared to the static program, and the time spent during generation. The latter con-

straint, that is, the run-time generation cost, is paid off as the generated program, which

is presumably faster, is used. If the generated program will be used just once, it is very

likely that it will not pay off. We typically need to use the generated program several

times in order for it to compensate its run-time generation cost, and to start bringing

advantage in the overall execution time. The time where the generating program starts

to be faster than the original, non-program generating version, is called the crossover

point.

We would like to have a low crossover point to get more advantage of RTPG. There

are mainly two ways to do that. First is to increase the efficiency of the generated

program. This mostly depends on the character of the program being specialized and

the experience of the programmer. We will not discuss this issue in the thesis. The

second way is to generate the program more efficiently, in order to decrease the run-time

generation cost. This is the focus of this chapter.

51

We have explained the Mumbo compiler in Chapter 4. Recall that it is a compositional

compiler written in a traditional way. It does not know anything about RTPG. It is

generic, in the sense that, given the environment, it compiles any program fragment

without making any assumptions on the specifics of the fragment. To make it more

concrete, think of the following code piece:

’x ++ 2

From the compiler’s point of view, this is a binary operation of two operands. It does

not know that the left operand is a variable expression, and that the right operand is an

integer constant. On the other hand, by using the information that this code fragment

gives us, we could directly produce LowLevel code like (in pseudo code):

if(’x is local)
’left = emit code to get local variable ’x

else if(’x is a field)
’left = emit code to access field ’x

else
error

’right = emit code for constant 2
’result = emit code to add ’left to ’right

It is possible to produce this code for the program fragment given, by partially evaluating

the back-end of the Mumbo compiler. Our ability to obtain this kind of a code depends

on how much information we have on the piece of code we are working on. We would

like the fragment to be as complete as possible. Free-variables and holes occurring in

a fragment increase its incompleteness, and make it more difficult to reason about the

fragment. For instance, consider the example above again. If we knew that ’x was a

local variable, we could get rid of the (if...else if...else...) part, and directly emit

code to access local variable ’x. So, having more information gives more opportunity for

optimization. However, for a quoted-code like $<^(c)>$, we cannot do anything, because

no information is available at this level.

To partially evaluate the compiler for certain code fragments, we apply the opti-

mizations from Chapter 5. We use SpecializeClass to produce special versions of code

52

classes for those fragments. In the examples we provide, there are pieces of quoted code.

For the optimized versions, we have optimized all these pieces separately, while for the

unoptimized version, we have optimized none of them. We then compiled these versions

using the Mumbo compiler. This gives us two programs in LowLevel code. We then exe-

cuted the two versions, using the executable semantics of the LowLevel language. Maude

automatically reports the number of rewrites it applied. We report this number as the

performance of a program. That is, the comparison of the efficiency of two programs is

based on the number of rewrites applied to execute the programs.

In this chapter we first give some simple examples to see if we can get code that looks

like the one we discussed above. We then give two classic run-time program generation

examples: loop unrolling and exponentiation. There also are some cases in which we

cannot obtain the ideal result. We discuss them in Chapter 7.

6.1 The First Examples

In this section we provide some simple examples to understand what the result of opti-

mization looks like, and what we can expect to see. The examples include optimization of

a complete class definition, classes with holes, methods with holes and simple expressions.

6.1.1 A Complete Class

As the first example, we optimize the following Mumbo program. It has the definition of

a complete class between brackets. This can be seen as the ideal case, because we have

the whole information for the class. This is probably a non-realistic example —one would

not compile a class at run-time if all the information of the class exists before execution

— but it is a good point to start with. Since the class is complete, we would expect to

optimize the ’eval method of the object representing the class code, so that it would

directly return the LowLevel code.

final class ’ClassGen extends ’object
method ’completeClass() ’Code :

53

$< class ’Gen extends ’object
field ’x : ’int
method ’bar() ’int :
{ set ’x = 12 ;

’x ** 2
}

>$
method ’test() ’string :

send (send self ’completeClass()) ’generate()
main [noVars]

send (new ’ClassGen()) ’test()

After applying the SpecializeClass optimization, we get the following program:

final class ’ClassGen extends ’object
method ’completeClass() [noVars] ’Code :

send new ’LinkedList(NIL,NIL) ’add(new ’defineClassCode-15())
method ’test() [noVars] ’string :

send send self ’completeClass() ’generate()
main [noVars]

send (new ’ClassGen()) ’test()

The ’eval method of ’defineClassCode-15, which is a new, specialized class, is below:

method ’eval(’env_18 : ’Env)
[’sym_6661 : ’string, ’sym_12911 : ’string, ’sym_14091 : ’string,
’lowlevel_14090 : ’string, ’tempSym_15757 : ’string, ’temp_15756 : ’string,
’lowlevel_14095 : ’string, ’lowlevel_12908 : ’string, ’sym_15765 : ’string,
’sym_16955 : ’string, ’tempSym_18812 : ’string, ’temp_18811 : ’string,
’lowlevel_16954 : ’string, ’sym_16960 : ’string, ’lowlevel_16959 : ’string,
’lowlevel_15762 : ’string, ’lowlevel_6659 : ’string,
’lowlevel_4739 : ’string

] ’ClosedCode :
{

set ’sym_6661 = GENSYM ;
set ’sym_12911 = GENSYM ;
set ’sym_14091 = GENSYM ;
set ’lowlevel_14090 = ’sym_14091 # [" = add(0,12) ; "] ;
set ’tempSym_15757 = GENSYM ;
set ’temp_15756 = ’tempSym_15757 # [" = getelementptr(% ’self, ’x) ; "] ;
set ’lowlevel_14095 = ’temp_15756 # ["store("] # ’sym_14091 # [", "]

’tempSym_15757 # [") ; "] ;
set ’lowlevel_12908 = ’lowlevel_14090 # ’lowlevel_14095 ;
set ’lowlevel_12908 = ’lowlevel_12908 # ’sym_12911 # [" = add(1,0) ; "] ;
set ’sym_15765 = GENSYM ;

54

set ’sym_16955 = GENSYM ;
set ’tempSym_18812 = GENSYM ;
set ’temp_18811 = ’tempSym_18812 # [" = getelementptr(% ’self, ’x) ; "] ;
set ’lowlevel_16954 = ’temp_18811 # ’sym_16955

[" = load("] # ’tempSym_18812 # [") ; "] ;
set ’sym_16960 = GENSYM ;
set ’lowlevel_16959 = ’sym_16960 # [" = add(0,2) ; "] ;
set ’lowlevel_15762 = ’lowlevel_16954 # ’lowlevel_16959

’sym_15765 # [" = mul("] # ’sym_16955
[", "] # ’sym_16960 # [") ; "] ;

set ’lowlevel_6659 = ’lowlevel_12908 # ’lowlevel_15762 ;
set ’lowlevel_6659 = ’lowlevel_6659 # ’sym_6661

[" = copy("] # ’sym_15765 # [") ; "] ;
set ’lowlevel_4739 = ["’Gen $ ’bar (% ’self) { ’entry : "]

’lowlevel_6659 # [" br ’end ; ’end : return "]
’sym_6661 # [" ; } "] ;

new ’ClosedCode(’lowlevel_4739, [" $NONAME-FOR-CLASSES$ "])
}

This method directly produces the LowLevel code. This is exactly what we were expect-

ing. (We cannot do anything about GENSYM expressions at the source-level, because they

return a unique string at each evaluation.)

The original program is executed in 26351 rewrites, and the optimized version in 7737.

This is a 70% speedup in run-time generation.

6.1.2 A Class with Holes

In the second test we have a class with two holes. The first hole is in place of a field, and

the second is in place of a method body. The code is given below.

final class ’ClassGen extends ’object
method ’incompleteClass(’body : ’Code, ’f : ’Code) ’Code :

$< class ’Gen extends ’object
^F(’f)
method ’bar() ’int :

^(’body)
>$

method ’field() ’Code :
$< field ’x : ’int >$

method ’methodBody() ’Code :
$< { set ’x = 3 ; ’x ** 2 } >$

55

method ’test() ’string :
send (send self ’incompleteClass(send self ’methodBody(),

send self ’field())) ’generate()
main [noVars]

send (new ’ClassGen()) ’test()

As mentioned earlier, the code objects are optimized separately. This gives us the fol-

lowing version of the program:

final class ’ClassGen extends ’object
method ’field() [noVars] ’Code :

new ’defineFieldCode-10280()
method ’incompleteClass(’body : ’Code,’f : ’Code) [noVars] ’Code :

send new ’LinkedList(NIL,NIL) ’add(new ’defineClassCode-15(’f,’body))
method ’methodBody() [noVars] ’Code :

new ’statementsCode-10523()
method ’test() [noVars] ’string :

send send self ’incompleteClass(send self ’methodBody(),
send self ’field()) ’generate()

The ’eval method of defineClassCode-15 now looks like

method ’eval(’env_20 : ’Env)
[’bval_4600 : ’ClosedCode, ’lowlevel_4602 : ’string, ’sym6443 : ’Env,
’sym853 : ’Env, ’sym858 : ’Env, ’sym8968 : ’string, ’tempEnv_856 : ’Env]
’ClosedCode :

{ set ’sym858 = ’env_20 ;
set ’sym853 = new ’Env(new ’LinkedList(NIL,NIL),

new ’LinkedList(NIL,NIL),
[’Gen],
[’object],
’sym858 -> ’classInfos) ;

--- add the field to the environment
set ’tempEnv_856 = send ’v_846 ’addToEnv(’sym853) ;
set ’sym6443 = new ’Env(new ’LinkedList(NIL,NIL),

’tempEnv_856 -> ’fieldList,
{ set ’sym8968 = ’tempEnv_856 -> ’currClass ;
’sym8968 },

’tempEnv_856 -> ’superClass,
’tempEnv_856 -> ’classInfos) ;

set ’lowlevel_4602 = ’sym8968 # [" $ ’bar (% ’self"] ;
set ’lowlevel_4602 = ’lowlevel_4602 # [") { ’entry : "] ;
--- evaluate body of the method
set ’bval_4600 = send ’sym4791 ’eval(’sym6443) ;
set ’lowlevel_4602 = ’lowlevel_4602 # ’bval_4600 -> ’lowlevelcode

56

[" br ’end ; ’end : return "]
’bval_4600 -> ’name # [" ; } "] ;

new ’ClosedCode(’lowlevel_4602, [" $NONAME-FOR-CLASSES$ "])
}

In this case, we do not know the field of the class and the body of the method. Therefore

we cannot inline the methods which add the field to the environment and evaluate the

body. This optimized version runs in 12486 rewrites, whereas the original program runs

in 26525. (Recall that, we are also separately optimizing the quoted-codes representing

the method body and the field.) This makes a 53% speedup. Since we have holes in this

case, it was expectable that we get less speedup than the previous test with a complete

class.

6.1.3 A Binary Expression

This time, we have a binary expression, multiplication, inside brackets. One of the

operands of the operation is a hole, while the other one is a constant.

final class ’ClassGen extends ’object
method ’stmtWrapper(’x : ’Code) ’Code :

$< ^(’x) ** 10 >$
method ’test() ’Code :

send (send self ’stmtWrapper($< ’x >$)) ’generate()

main [noVars]
send (new ’ClassGen()) ’test()

Sending the ’generate message to a code object which is not a program or class doesn’t

normally make sense. But this time it is helpful to measure how much we optimize the

’eval method of the code object representing the binary expression. We do not produce

a specialized class for $< ’x >$ appearing in the ’test method, just to see the effect of

optimization on the binary-expression code.

final class ’ClassGen extends ’object
method ’stmtWrapper(’x : ’Code) [noVars] ’Code :

new ’binOpCode-3(’x)
method ’test() [noVars] ’Code :

57

send send self ’stmtWrapper(new ’getNameCode([’x])) ’generate()

final class ’binOpCode-3 extends ’Code
final field ’l : ’Code
method ’eval(’env_5 : ’Env)
[’lowlevel_226 : ’string,’lowlevel_6 : ’string,’lval_7 : ’ClosedCode,
’sym_227 : ’string,’sym_9 : ’string] ’ClosedCode :
{ set ’sym_9 = GENSYM ;

set ’lval_7 = send ’l ’eval(’env_5) ;
set ’sym_227 = GENSYM ;
set ’lowlevel_226 = ’sym_227 # [" = add(0,10) ; "] ;
set ’lowlevel_6 = ’lval_7 -> ’lowlevelcode # ’lowlevel_226 # ’sym_9

[" = mul("] # ’lval_7 -> ’name
[", "] # ’sym_227 # [") ; "] ;

new ’ClosedCode(’lowlevel_6,’sym_9)
}
method ’initialize(’x_4 : ’Code) [noVars] ’int :

set ’l = ’x_4

main [noVars]
send (new ’ClassGen()) ’test()

Above is the code we get after optimization. In the original code of the ’binaryOpCode

class, we have fields to hold the left operand, the right operand and the name of the binary

operation. In the optimized version note that we no longer have the latter two fields.

This is because we propagated the information that the right operand of the operation

was an integer constant, 10, and that the operation was multiplication. However, we

cannot do anything about the left operand. We just keep the field and the call to its

’eval method. This optimization brings 23% speedup (5307 rewrites for the original

program and 4090 for the optimized version).

6.2 LoopUnrolling

After testing relatively simple cases, we now test a classical example of run-time program

generation: loop unrolling. We have implemented three slightly different versions of

unrolling. They are adapted from [13].

final class ’LoopUnroll extends ’object

58

method ’context(’b : ’Code) ’Code :
$< class ’Printer extends ’object

field ’x : ’int
method ’initialize () ’int :
^(’b)

>$

--- Unroll 1
method ’test1(’n : ’int) ’string :

send (send self ’context(send self ’unroll1(’n, $< 99 >$))) ’generate()
method ’unroll1(’n : ’int, ’c : ’Code) ’Code :

if(’n equals 0) then
$< 0 >$

else
$< { ^(’c) ; ^(send self ’unroll1(’n -- 1, ’c)) } >$

--- Unroll 2
method ’test2(’n : ’int) ’string :

send (send self ’context(
send self ’unroll2(’n, new ’CodeFun()))) ’generate()

method ’unroll2 (’n : ’int, ’F : ’CodeFun) ’Code :
if (’n equals 0) then

$< 0 >$
else

$< { ^(send self ’unroll2(’n -- 1, ’F)) ;
^(send ’F ’iteration(’n))

} >$

--- Unroll 3
method ’test3(’n : ’int) ’string :

send (send self ’context(
send self ’unroll3(’n, $< 99 >$, $< ’x >$))) ’generate()

method ’unroll3 (’n : ’int, ’c : ’Code, ’itervar : ’Code) ’Code :
if (’n equals 0) then

$< set ^(’itervar) = 0 >$
else

$< { ^(send self ’unroll3(’n -- 1, ’c, ’itervar)) ;
set ^(’itervar) = ^(’itervar) ++ 1 ;
^(’c) } >$

class ’CodeFun extends ’object
method ’iteration(’n : ’int) ’Code :

$< ^I(’n) >$

main [noVars]
send (new ’LoopUnroll()) ’test1(1)

59

Recall that the compilation of every quoted-code in this program is optimized. We do

not give those versions here and only provide the performance comparison. We execute

’testX methods, with different numbers of iterations. The results are in Table 6.1. They

show that even when the iteration number is 1, we get a speedup of 47% in the worst

case.

Test n Original Optimized Speedup(%)

1 1 19639 10151 48
1 10 54784 24029 56
1 100 406234 162809 60
1 200 796734 317009 60
2 1 19805 10476 47
2 10 57020 27405 52
2 100 429170 196695 54
2 200 842670 384795 54
3 1 31509 16405 48
3 10 142938 67939 53
3 100 1257228 583279 54
3 200 2495328 1155879 54

Table 6.1: The effect of optimization in the loop-unrolling example.

6.3 Exponentiation

Another classical example of RTPG is exponentiation. A power function, which is spe-

cialized to a fixed exponent can be generated at run-time for better performance.

class ’ExpTest extends ’object
method ’getExp(’n : ’int) [’r : ’Code, ’i : ’int] ’Code :
{ set ’r = $< 1 >$;

set ’i = 0 ;
while(not(’i equals ’n)) {

set ’r = $< ^(’r) ** ’x >$;
set ’i = ’i ++ 1

} ;

$< class ’MyPower extends ’object
method ’power(’x : ’int) ’int :

60

^(’r)
>$

}
method ’test(’k : ’int) ’string :

send (send self ’getExp(’k)) ’generate()

main [noVars]
send (new ’ExpTest()) ’test(1)

Similar to the loop-unrolling example, we again run the program with several different

values as the exponent. The results are given in Table 6.2.

Exponent Original Optimized Speedup(%)

1 18649 9183 51
10 41086 20901 49
100 265456 138081 48

Table 6.2: The effect of optimization in the exponentiation example.

In this benchmark, a significant portion of the speedup may be obtained from the op-

timization of the quoted-code representing the generated class. To see how much speedup

we can get, we ran another test, in which, only the code for the unfolded exponentiation

is optimized and the enclosing class is not present. In this test, we call the ’eval method

of the optimized code. The results are given in Table 6.3. When the power is 1, we do

not get as good performance as we obtained in the previous version, but the performance

increases as the value of exponentiation increases.

Exponent Original Optimized Speedup(%)

1 5031 3692 27
10 27468 15410 44
100 251838 132590 47

Table 6.3: The effect of optimization in the exponentiation example. Only the unfolded
exponentiation is optimized.

61

Chapter 7

Further Discussions

In Chapter 6 we were able to get code which is specialized for a specific quoted-code.

The resulting code we obtained looked like exactly what we would like to see. However,

there are cases in which we cannot get the ideal code out of optimization. In this chapter

we discuss such cases. We give two examples to illustrate them. In this chapter, when

providing source code, we use pseudo code because it is sufficient for our purposes and

it is more readable.

7.1 The Limit of Optimizations

In this section we work on an example for which the existing set of optimizations fails to

produce the ideal code. Consider the following code:

$< ’x ** ’x >$

The ideal back-end for this code would be

if(’x is local)
’left = emit code to get local variable ’x
’right = emit code to get local variable ’x
’result = emit code to multiply ’left and ’right

else if(’x is a field)
’left = emit code to access the field ’x
’right = emit code to access the field ’x
’result = emit code to multiply ’left and ’right

62

else
error

However, the code we produce looks like this:

if(’x is local)
’left = emit code to get local variable ’x

else if(’x is a field)
’left = emit code to access the field ’x

else
error

if(’x is local)
’right = emit code to get local variable ’x

else if(’x is a field)
’right = emit code to access the field ’x

else
error

’result = emit code to multiply ’left and ’right

This shows that, with the current set of optimizations, for instance, we cannot use the

information that if ’x is a local variable on the left side, then it is a local variable on the

right side, too. With a transformation like the following, we would be able to achieve the

ideal code.

[[if be then e1 else e2 ; eb ; if be then e3 else e4]]

⇒ [[if be then {e1 ; eb ; e3} else {e2 ; eb ; e4}]]

if sideEffectFree(be)∧
sideEffectFree(e)∧
sideEffectFree(e1)∧
sideEffectFree(e2)

This may seem easy at the first sight, but the situations we end up with usually require

that we check method calls to see whether they are side-effect-free. This necessitates

a difficult analysis of the program. This transformation also causes code explosion,

especially if the duplicated code eb is large. We do not anticipate that the speed-up

we would achieve with this kind of a transformation would be worth implementing it.

Therefore we do not include it in our set of optimizations.

63

7.2 Adding Local Variable Declaration as an Expres-

sion

In Mumbo, all the local variables of a method are declared as part of the method header.

Once we start evaluating the body the method, nothing can change the environment.

Recall that in the compositional compiler, a fragment passes the environment when

invoking the ’eval method of its subfragment(s), but does not receive any environment

as part of the tuple returned from the invocations. Consider the following code piece:

$< method ’m(’a : ’int) [’b : ’int] ’int :
{ set ’b = ’f -- ’a ;

^(’hole) ;
’f ** ’b

}
>$

The variables local to the method defined in this quoted-code are ’a and ’b. We know

that ’f is either a field or it is undeclared. (It is an error in the latter case. This is

detected when we receive the environment to generate the LowLevel code.) No value of

’hole can change this fact. However, in Jumbo, variable declarations can be passed as

code pieces. Now assume that we have the ability of declaring variables in Mumbo, in

any part of the method. This would make it possible that ’hole declares ’f as a local

variable. In this case, we have a different situation: The first occurrence of ’f is either

a field, or it is undeclared. The second occurrence of ’f is either a local variable, or a

field, or it is undeclared. This limits our chances for optimization by introducing one

more condition which we were able to eliminate previously.

If we introduce the ability to declare variables in the method body, Mumbo mod-

els Jumbo more closely. For this reason we rewrote the compiler. In the new version,

’ClosedCode has an additional field, ’env, to keep an environment. When a program

fragment passes the received environment to one of its sub-fragments, it will get a (pos-

sibly) new environment back. This new environment is passed to the next sub-fragment.

Thus, a code object representing a local variable declaration would add itself to the en-

vironment, and return the changed environment to its parent fragment. Actually, every

64

code object now has the chance to change the environment. This modification to the

compiler makes it possible to introduce to the language not only variable declarations,

but also anonymous classes (Mumbo does not have them). We, however, did not syn-

tactically extend Mumbo with these features. Our purpose is to see how optimized code

looks like when we give the code pieces the ability to change the environment.

With the new compiler, we have a situation similar to that presented in Section 7.1.

The ideal optimized version of the compilation of the method body above would look like

this:

--- the first line: set ’b = ’f --- ’a
if(’f is a field in ’env)

’left-1 = emit code to access the field ’f
else

error

’right-1 = emit code to get local variable ’a
’sub = emit code to subtract ’right-1 from ’left-1
’lhs-1 = emit code to get pointer to local ’b
store ’sub to ’lhs-1

--- the second line: ^(’hole)
’holeValue = send ’hole ’eval(’env)
emit code of ’holeValue

--- the last line: ’f ** ’b
’newEnv = ’env of ’holeValue
if(’f is local in ’newEnv)

’left-2 = emit code to get local variable ’f
else if(’f is a field in ’newEnv)

’left-2 = emit code to access the field ’f
else

error

’right-2 = emit code to get local variable ’b
’mul = emit code to multiply ’left-2 and ’right-2

In the multiplication, we can conclude that ’b is a local variable, and emit code accord-

ingly. This is valid because it was declared as a local variable, and by the semantics of

local variable declaration, it will stay so. (If the ’hole tries to declare it, it is an error,

65

and this will be detected inside the call to ’hole’s eval method.) However, the optimized

code looks like the following:

--- ... same as above ...
’newEnv = ’env of ’holeValue
if(’f is local in ’newEnv)

’left-2 = emit code to get local variable ’f
else if(’f is a field in ’newEnv)

’left-2 = emit code to access the field ’f
else

error

if(’b is local in ’newEnv)
’right-2 = emit code to get local variable ’b

else if(’f is a field in ’newEnv)
’right-2 = emit code to access the field ’b

else
error

’mul = emit code to multiply ’left-2 and ’right-2

With the current set of optimizations we cannot conclude that ’b is still a local variable.

The reason is that we need to check the scope of ’b in the new environment returned from

the evaluation of the hole. We do not know the dynamic type of ’hole. Therefore its

’eval method is virtual. At this level, we have no knowledge of what this method looks

like. Hence, we cannot reason about the new environment returned, and the optimizers

cannot reduce the expressions checking if ’b is local or a field.

This limitation is more complicated than the one given in Section 7.1. In order to

overcome it, the optimizers have to have knowledge of what the holes are capable of doing.

There may also be other interesting situations. This is a subject of further research.

66

Chapter 8

Conclusion

In this thesis we have presented Mumbo, a model of Jumbo. Mumbo is a typed, object-

oriented language supporting run-time program generation. It is a subset of Jumbo, which

is an extension of Java featuring RTPG. Mumbo’s implementation is based on equational

logic. This is done in Maude, making it possible to execute Mumbo programs. Being a

simplified version of Jumbo, Mumbo makes it easier to experiment with new ideas.

We have presented a set of optimizations and we have showed that by these optimiza-

tions, run-time generation can be optimized substantially. By developing heuristics based

on the structure of the compiler, we have been able to automate the optimization process.

These facts lead to some results that we are planning to apply to Jumbo. One of the

most important properties of Mumbo compiler is its side-effect-freeness. We have shown

that this property makes it more suitable to get higher speedups in run-time generation,

and to achieve this more easily. It is often argued that functional programming is less

efficient than imperative programming. This may be a case where it is more efficient.

The optimizations we presented are pretty standard and they have been adequate

to obtain substantial amount of optimization. However, there exist some limitations of

them. In some cases, we were close to, but could not reach optimal optimization. We

discussed some of these cases in Chapter 7. Studying this issue remains as a subject to

future research.

67

In Jumbo, anonymous classes are used extensively to instantiate Code objects. Anony-

mous classes may bring difficulties in some cases of program analysis and transformation.

In Mumbo, we do not have anonymous classes. However, we were able to produce spe-

cialized versions of generic classes, as if they were anonymous. While doing that, we

benefited from the fact that the compiler is implemented in side-effect-free style.

The consequences we have listed above motivate us to refactor Jumbo and convert

it to side-effect-free style. This way we may be able to obtain high speedup in run-time

generation, and whenever we have difficulties in analyzing anonymous classes, we can use

methods similar to SpecializeClass.

Finally, defining Mumbo in Maude brought convenience especially in implementing

the optimizations. We believe that this work can also be considered as an effective

application of rule-based programming.

8.1 Related Work

In Section 5.1, we explained the visit operation, which, by defining the default traversal

behaviour, allows us to introduce traversers easily; we need to give the visitor behaviour

only for the nodes we are interested in. In object-oriented programming this can be done

with Visitors [10]. For rule-based programming, traversal functions are introduced into

the ASF+SDF system [31]. With a traversal function, the programmer selects a tree

traversal behaviour for a function, and the default behaviour is provided automatically.

In strategic programming, same result can be achieved via strategies [32].

In [23, 5] scoped dynamic rules are discussed. With these, it is possible to add and

remove rules dynamically. The authors demonstrate how some optimizations like con-

stant propagation, copy assignment can be defined using scoped dynamic rules. This

is a powerful approach, and in some cases it reduces the number passes that should be

done on the program being optimized. Furthermore, some analysis results (e.g: dom-

inance) can be implicitly expressed by scoped dynamic rules, eroding the necessity to

keep that analysis information. This decreases the load of the programmer implementing

68

the optimizations. The disadvantage of this approach is that scoped dynamic rules are

more difficult to control and to reason about than usual equations. Therefore it is more

difficult to design them.

69

Bibliography

[1] Aho, A. V., Sethi, R., and Ullman, J. D. Compilers: Principles, Techniques
and Tools. Addison-Wesley, 1986.

[2] Aktemur, B., and Kamin, S. Mumbo: A Rule-based Implementation of a Run-
time Program Generation Language. In Proc. of the 6th Intl. Workshop on Rule-
Based Programming (April 2005). Nara, Japan.

[3] Attardi, G., Cisternino, A., and Kennedy, A. Codebricks: Code Fragments
as Building Blocks. In PEPM ’03: Proc. of the 2003 ACM SIGPLAN Workshop on
Partial Evaluation and Semantics-based Program Manipulation (2003), ACM Press,
pp. 66–74.

[4] Bawden, A. Quasiquotation in Lisp. In Partial Evaluation and Semantic-based
Program Manipulation (1999), pp. 4–12.

[5] Bravenboer, M., van Dam, A., Olmos, K., and Visser, E. Program Trans-
formation with Scoped Dynamic Rewrite Rules. Fundamenta Informaticae (2005).

[6] Clausen, L. Optimizations In Distributed Run-time Compilation. PhD thesis,
University of Illinois at Urbana-Champaign, 2004.

[7] Clavel, M., Durán, F., Eker, S., Lincoln, P., Marti-Oliet, N.,
Meseguer, J., and Talcott, C. Maude Manual, 2.1 ed. http://maude.cs.

uiuc.edu, March 2004.

[8] Consel, C., Lawall, J. L., and Meur, A.-F. L. A Tour of Tempo: A Program
Specializer for the C Language. Sci. Comput. Program. 52, 1-3 (2004), 341–370.

[9] Engler, D. R., Hsieh, W. C., and Kaashoek, M. F. ’C: A Language for High-
level, Efficient, and Machine-independent Dynamic Code Generation. In Proc. of
the 23rd ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages
(POPL ’96) (1996), ACM Press, pp. 131–144.

[10] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley Longman Publishing,
1995.

70

[11] Gosling, J., Joy, B., and Steele, G. The Java Language Definition. Addison-
Wesley, 1996.

[12] Grant, B., Mock, M., Philipose, M., Chambers, C., and Eggers, S. J.
DyC: an expressive annotation-directed dynamic compiler for C. Theoretical Com-
puter Science 248, 1–2 (2000), 147–199.

[13] Kamin, S. Routine Run-time Code Generation. In Companion of the 18th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA ’03) (2003), ACM Press, pp. 208–220. Also appeared
in: SIGPLAN Notices, vol. 38 (2003), pp. 44-56.

[14] Kamin, S. Program Generation Considered Easy. In Proc. of the 2004 ACM
SIGPLAN Symp. on Partial Evaluation and Semantics-based Program Manipulation
(PEPM ’04) (2004), ACM Press, pp. 68–79.

[15] Kamin, S., Callahan, M., and Clausen, L. Lightweight and Generative
Components-1: Source-Level Components. In Proc. of the First Intl. Symp. on Gen-
erative and Component-Based Software Engineering (GCSE ’99) (2000), Springer-
Verlag, pp. 49–64.

[16] Kamin, S., Callahan, M., and Clausen, L. Lightweight and Generative
Components-2: Binary-Level Components. In Proc. of the Intl. Workshop on Seman-
tics, Applications, and Implementation of Program Generation (SAIG ’00) (2000),
Springer-Verlag, pp. 28–50.

[17] Kamin, S., Clausen, L., and Jarvis, A. Jumbo: Run-time Code Generation
for Java and its Applications. In Proc. of the Intl. Symp. on Code Generation and
Optimization (CGO ’03) (2003), IEEE Computer Society, pp. 48–56.

[18] Low Level Virtual Machine. http://llvm.cs.uiuc.edu.

[19] Meseguer, J., and Roşu, G. Rewriting Logic Semantics: From Language Speci-
fications to Formal Analysis Tools. In Lecture Notes in Computer Science vol. 3097
(June 2004), Springer, pp. 1–44.

[20] Muchnick, S. Advanced Compiler Design and Implementation. Morgan Kaufmann,
1997.

[21] Neverov, G., and Roe, P. Metaphor: A Multi-stage, Object-Oriented Program-
ming Language. In Proceedings of the Third International Conference on Generative
Programming and Component Engineering (GPCE 2004) (Vancouver, Canada, Oc-
tober 2004), G. Karsai and E. Visser, Eds., vol. 3286 of Lecture Notes in Computer
Science, Springer.

[22] Oiwa, Y., Masuhara, H., and Yonezawa, A. DynJava: Type Safe Dynamic
Code Generation in Java. In The 3rd JSSST Workshop on Programming and Pro-
gramming Languages (PPL2001) (March 2001).

71

[23] Olmos, K., and Visser, E. Composing Source-to-Source Data-Flow Transfor-
mations with Rewriting Strategies and Dependent Dynamic Rewrite Rules. In 14th
Intl. Conf. on Compiler Construction (CC’05) (Edinburgh, April 2005), R. Bodik,
Ed.

[24] Plotkin, G. D. A Structural Approach to Operational Semantics. Tech. Rep.
DAIMI FN-19, University of Aarhus, 1981.

[25] Poletto, M., Engler, D. R., and Kaashoek, M. F. tcc: A System for Fast,
Flexible, and High-level Dynamic Code Generation. In Proc. of the ACM SIGPLAN
1997 Conference on Programming Language Design and Implementation (PLDI ’97)
(1997), ACM Press, pp. 109–121.

[26] Poletto, M., Hsieh, W. C., Engler, D. R., and Kaashoek, M. F. ’C and
tcc: A Language and Compiler for Dynamic Code Generation. ACM Transactions
on Programming Languages and Systems 21, 2 (1999), 324–369.

[27] Roşu, G. CS422 Class Notes. http://fsl.cs.uiuc.edu/~grosu/classes/2004/
fall/cs422/, 2004.

[28] Rountev, A. Precise Identification of Side-effect-free Methods in Java. In IEEE
International Conference on Software Maintenance (2004), pp. 82–91.

[29] Taha, W., Calcagno, C., Leroy, X., and Pizzi, E. MetaOCaml. http:

//www.metaocaml.org/.

[30] Taha, W., and Sheard, T. MetaML and Multi-stage Programming with Explicit
Annotations. Theoretical Computer Science 248, 1–2 (2000), 211–242.

[31] van den Brand, M. G. J., Klint, P., and Vinju, J. J. Term Rewriting with
Traversal Functions. ACM Trans. Softw. Eng. Methodol. 12, 2 (2003), 152–190.

[32] Visser, E. A Survey of Rewriting Strategies in Program Transformation Systems.
In Workshop on Reduction Strategies in Rewriting and Programming (WRS’01)
(Utrecht, The Netherlands, May 2001), B. Gramlich and S. Lucas, Eds., vol. 57
of Electronic Notes in Theoretical Computer Science, Elsevier Science Publishers.

[33] Zook, D., Huang, S. S., and Smaragdakis, Y. Generating AspectJ Programs
with Meta-AspectJ. In Proc. of the Third Intl. Conf. on Generative Programming
and Component Engineering (GPCE 2004) (Vancouver, Canada, October 2004),
G. Karsai and E. Visser, Eds., vol. 3286 of Lecture Notes in Computer Science,
Springer, pp. 1–18.

72

Appendix A

Source Code of Mumbo Compiler

fmod M-COMPILER is extending MUMBO-SYNTAX .
op MCompiler : -> MClasses .
eq MCompiler = (

final class ’getNameCode extends ’Code
final field ’name : ’string

method ’initialize(’n : ’string) ’int : set ’name = ’n

method ’eval(’env : ’Env)
[’sym : ’string, ’lowlevel : ’string, ’temp : ’ClosedCode] ’ClosedCode :
{
if (send ’env ’isLocal(’name)) --- either a local var or method parameter
then
{
set ’sym = ["% "] # ’name ;
set ’lowlevel = [""]

}
else if (send ’env ’isField(’name)) then

{ set ’sym = (GENSYM) ;
set ’temp = send self ’getPtr() ;
set ’lowlevel = send ’temp ’getCode()

’sym # [" = load("] # (send ’temp ’getName())
[")"] # [" ; "]

}
else
{ set ’sym = [" $CANNOT RESOLVE:$ "] # ’name ;
set ’lowlevel = [""]

} ;
new ’ClosedCode(’lowlevel, ’sym)

}

method ’evalLHS(’env : ’Env, ’rhs : ’string)

73

[’lowlevel : ’string, ’temp : ’ClosedCode] ’ClosedCode :
{
if (send ’env ’isLocal(’name)) --- either a local var or method parameter
then
{
set ’lowlevel = ["% "] # ’name # [" = copy("] # ’rhs # [") ; "]

}
else if (send ’env ’isField(’name)) then

{ set ’temp = send self ’getPtr() ;
set ’lowlevel = send ’temp ’getCode()

["store("] # ’rhs # [", "]
(send ’temp ’getName()) # [")"] # [" ; "]

}
else
set ’lowlevel = [" $CANNOT RESOLVE LHS:$ "] # ’name

;
new ’ClosedCode(’lowlevel, ["dummy"])

}

method ’addToEnv(’env : ’Env) ’Env :
send ’env ’addVar(’name)

method ’getPtr() [’temp : ’string, ’tempSym : ’string] ’ClosedCode :
{
set ’tempSym = GENSYM ;
set ’temp = ’tempSym # [" = getelementptr(% ’self, "] # ’name # [")"] # [" ; "] ;
new ’ClosedCode(’temp, ’tempSym)

}

final class ’getNILCode extends ’Code
method ’eval(’env : ’Env) [’sym : ’string, ’lowlevel : ’string] ’ClosedCode :
{
set ’sym = (GENSYM) ;
set ’lowlevel = ’sym # [" = NULL ; "] ;
new ’ClosedCode(’lowlevel, ’sym)

}

final class ’genSymCode extends ’Code
method ’eval(’env : ’Env) [’sym : ’string, ’lowlevel : ’string] ’ClosedCode :
{
set ’sym = (GENSYM) ;
set ’lowlevel = ’sym # [" = NEWSYM ; "] ;
new ’ClosedCode(’lowlevel, ’sym)

}

final class ’genLabelCode extends ’Code
method ’eval(’env : ’Env) [’sym : ’string, ’lowlevel : ’string] ’ClosedCode :
{
set ’sym = (GENSYM) ;
set ’lowlevel = ’sym # [" = NEWLABEL ; "] ;
new ’ClosedCode(’lowlevel, ’sym)

}

74

final class ’getSelfCode extends ’Code
method ’eval(’env : ’Env) ’ClosedCode :
new ’ClosedCode([""], ["% ’self"])

final class ’integerConstantCode extends ’Code
final field ’value : ’int

method ’initialize(’v : ’int) ’int :
set ’value = ’v

method ’eval(’env : ’Env) [’sym : ’string, ’lowlevel : ’string] ’ClosedCode :
{
set ’sym = (GENSYM) ;
set ’lowlevel = ’sym # [" = add(0,"] # ’value # [")"] # [" ; "] ;
new ’ClosedCode(’lowlevel, ’sym)

}

final class ’stringConstantCode extends ’Code
final field ’value : ’string

method ’initialize(’v : ’string) ’int :
set ’value = ’v

method ’eval(’env : ’Env) [’sym : ’string, ’lowlevel : ’string] ’ClosedCode :
{
set ’sym = (GENSYM) ;
set ’lowlevel = ’sym # [" = S(\""] # ’value # ["\")"] # [" ; "] ;
new ’ClosedCode(’lowlevel, ’sym)

}

final class ’booleanConstantCode extends ’Code
final field ’value : ’string

method ’initialize(’v : ’string) ’int :
set ’value = ’v

method ’eval(’env : ’Env) [’sym : ’string, ’lowlevel : ’string] ’ClosedCode :
{
set ’sym = (GENSYM) ;
set ’lowlevel = ’sym # [" = and(true,"] # ’value # [")"] # [" ; "] ;
new ’ClosedCode(’lowlevel, ’sym)

}

final class ’binOpCode extends ’Code
final field ’op : ’string
final field ’left : ’Code
final field ’right : ’Code

method ’initialize(’o : ’string, ’l : ’Code, ’r : ’Code) ’int :
{
set ’op = ’o ;

75

set ’left = ’l ;
set ’right = ’r

}

method ’eval(’env : ’Env)
[’sym : ’string, ’lowlevel : ’string,
’lval : ’ClosedCode, ’rval : ’ClosedCode] ’ClosedCode :
{
set ’sym = (GENSYM) ;
set ’lval = send ’left ’eval(’env) ;
set ’rval = send ’right ’eval(’env) ;
set ’lowlevel = (send ’lval ’getCode())

(send ’rval ’getCode())
’sym # [" = "] # ’op # ["("]
(send ’lval ’getName()) # [", "]
(send ’rval ’getName()) # [")"] # [" ; "] ;

new ’ClosedCode(’lowlevel, ’sym)
}

final class ’booleanNotCode extends ’Code
final field ’value : ’Code

method ’initialize(’v : ’Code) ’int : set ’value = ’v

method ’eval(’env : ’Env)
[’sym : ’string, ’lowlevel : ’string, ’val : ’ClosedCode] ’ClosedCode :
{
set ’sym = (GENSYM) ;
set ’val = send ’value ’eval(’env) ;
set ’lowlevel = (send ’val ’getCode())

’sym # [" = not("] # (send ’val ’getName()) # [")"] # [" ; "] ;
new ’ClosedCode(’lowlevel, ’sym)

}

final class ’ifThenElseCode extends ’Code
final field ’test : ’Code
final field ’thenb : ’Code
final field ’elseb : ’Code

method ’initialize(’t : ’Code, ’b1 : ’Code, ’b2 : ’Code) ’int :
{
set ’test = ’t ;
set ’thenb = ’b1 ;
set ’elseb = ’b2

}

method ’eval(’env : ’Env)
[’sym : ’string, ’lowlevel : ’string, ’cval : ’ClosedCode,
’tval : ’ClosedCode, ’fval : ’ClosedCode, ’tlabel : ’string,
’flabel : ’string, ’nlabel : ’string] ’ClosedCode :
{
set ’sym = (GENSYM) ;

76

set ’cval = send ’test ’eval(’env) ;
set ’tval = send ’thenb ’eval(’env) ;
set ’fval = send ’elseb ’eval(’env) ;
set ’tlabel = (GENLABEL) ;
set ’flabel = (GENLABEL) ;
set ’nlabel = (GENLABEL) ;

set ’lowlevel = (send ’cval ’getCode())
["br "] # (send ’cval ’getName()) # [" ? "]
’tlabel # [" : "] # ’flabel # [" ; "] ;

set ’lowlevel = ’lowlevel # ’tlabel # [" : "]
(send ’tval ’getCode())
’sym # [" = copy("] # (send ’tval ’getName()) # [")"] # [" ; "]
[" br "] # ’nlabel # [" ; "] ;

set ’lowlevel = ’lowlevel # ’flabel # [" : "]
(send ’fval ’getCode())
’sym # [" = copy("] # (send ’fval ’getName()) # [")"] # [" ; "]
[" br "] # ’nlabel # [" ; "] ;

set ’lowlevel = ’lowlevel # ’nlabel # [" : "] ;

new ’ClosedCode(’lowlevel, ’sym)
}

final class ’fieldAccessCode extends ’Code
final field ’target : ’Code
final field ’field : ’string

method ’initialize(’t : ’Code, ’f : ’string) ’int :
{
set ’target = ’t ;
set ’field = ’f

}

method ’eval(’env : ’Env)
[’sym : ’string, ’lowlevel : ’string, ’temp : ’ClosedCode] ’ClosedCode :
{
set ’sym = GENSYM ;
set ’temp = send self ’getPtr(’env) ;
set ’lowlevel = (send ’temp ’getCode()) # ’sym # [" = load("]

(send ’temp ’getName()) # [")"] # [" ; "] ;
new ’ClosedCode(’lowlevel, ’sym)

}

method ’evalLHS(’env : ’Env, ’rhs : ’string)
[’lowlevel : ’string, ’temp : ’ClosedCode] ’ClosedCode :
{
set ’temp = send self ’getPtr(’env) ;
set ’lowlevel = (send ’temp ’getCode())

["store("] # ’rhs # [", "]
(send ’temp ’getName()) # [")"] # [" ; "] ;

new ’ClosedCode(’lowlevel, ["dummy"])
}

77

method ’getPtr(’env : ’Env)
[’temp : ’string, ’tempSym : ’string, ’tarVal : ’ClosedCode] ’ClosedCode :
{
set ’tempSym = GENSYM ;
set ’tarVal = send ’target ’eval(’env) ;
set ’temp = (send ’tarVal ’getCode()) # ’tempSym # [" = getelementptr("]

(send ’tarVal ’getName()) # [", "] # ’field # [")"] #[" ; "] ;
new ’ClosedCode(’temp, ’tempSym)

}

final class ’assignmentCode extends ’Code
final field ’lhs : ’Code
final field ’rhs : ’Code

method ’initialize(’l : ’Code, ’r : ’Code) ’int :
{
set ’lhs = ’l ;
set ’rhs = ’r

}

method ’eval(’env : ’Env)
[’sym : ’string, ’lowlevel : ’string,
’rval : ’ClosedCode, ’lval : ’ClosedCode] ’ClosedCode :
{
set ’sym = (GENSYM) ;
set ’rval = send ’rhs ’eval(’env) ;
set ’lval = send ’lhs ’evalLHS(’env, (send ’rval ’getName())) ;
set ’lowlevel = (send ’rval ’getCode()) # (send ’lval ’getCode()) ;
set ’lowlevel = ’lowlevel # ’sym # [" = add(1,0)"] # [" ; "] ;
new ’ClosedCode(’lowlevel, ’sym)

}

final class ’statementsCode extends ’Code
final field ’stmts : ’List

method ’initialize(’l : ’List) ’int :
set ’stmts = ’l

method ’eval(’env : ’Env)
[’sym : ’string, ’lowlevel : ’string, ’stmt : ’List,
’lastName : ’string, ’val : ’ClosedCode] ’ClosedCode :
{
set ’sym = (GENSYM) ;
set ’stmt = ’stmts ;
set ’lowlevel = [""] ;
while(send ’stmt ’hasNext()) {
set ’val = send (cast send ’stmt ’value() to ’Code) ’eval(’env) ;
set ’lowlevel = ’lowlevel # (send ’val ’getCode()) ;
set ’lastName = send ’val ’getName() ;
set ’stmt = send ’stmt ’next()

} ;

78

set ’lowlevel = ’lowlevel # ’sym # [" = copy("] # ’lastName # [")"] # [" ; "] ;
new ’ClosedCode(’lowlevel, ’sym)

}

final class ’doWhileLoopCode extends ’Code
final field ’test : ’Code
final field ’body : ’Code

method ’initialize(’t : ’Code, ’b : ’Code) ’int :
{
set ’test = ’t ;
set ’body = ’b

}

method ’eval(’env : ’Env)
[’sym : ’string, ’lowlevel : ’string, ’tval : ’ClosedCode, ’bval : ’ClosedCode,
’yeslabel : ’string, ’nolabel : ’string] ’ClosedCode :
{
set ’sym = (GENSYM) ;
set ’tval = send ’test ’eval(’env) ;
set ’bval = send ’body ’eval(’env) ;
set ’yeslabel = (GENLABEL) ;
set ’nolabel = (GENLABEL) ;

set ’lowlevel = ["br "] # ’yeslabel # [" ; "]
’yeslabel # [" : "]
(send ’bval ’getCode())
(send ’tval ’getCode())
["br "] # (send ’tval ’getName()) # [" ? "]
’yeslabel # [" : "] # ’nolabel # [" ; "] ;

set ’lowlevel = ’lowlevel # ’nolabel # [" : "]
’sym # [" = add(0, 1) ; "] ;

new ’ClosedCode(’lowlevel, ’sym)
}

final class ’tempNameCode extends ’Code --- this is an auxiliary class
final field ’name : ’string

method ’initialize(’n : ’string) ’int : set ’name = ’n

method ’eval(’env : ’Env) ’ClosedCode :
new ’ClosedCode([""], ’name)

final class ’newInstanceCode extends ’Code
final field ’klasName : ’string
final field ’argList : ’List

method ’initialize(’n : ’string, ’a : ’List) ’int :
{
set ’klasName = ’n ;
set ’argList = ’a

}

79

method ’eval(’env : ’Env)
[’sym : ’string, ’lowlevel : ’string, ’initVal : ’ClosedCode] ’ClosedCode :
{
set ’sym = (GENSYM) ;
set ’lowlevel = ’sym # [" = malloc("]

(send ’env ’objectLayout(’klasName)) # [")"] # [" ; "] ;
set ’initVal = send (new ’invokeCode(new ’tempNameCode(’sym),

[’initialize],
’argList)) ’eval(’env) ;

set ’lowlevel = ’lowlevel # (send ’initVal ’getCode()) ;
new ’ClosedCode(’lowlevel, ’sym)

}

final class ’invokeCode extends ’Code
final field ’methodName : ’string
final field ’argList : ’List
final field ’target : ’Code

method ’initialize(’t : ’Code, ’n : ’string, ’a : ’List) ’int :
{
set ’target = ’t ;
set ’methodName = ’n ;
set ’argList = ’a

}

method ’eval(’env : ’Env)
[’sym : ’string, ’lowlevel : ’string, ’arg : ’List, ’params : ’string,
’argVal : ’ClosedCode, ’vtabptr : ’string, ’vtab : ’string,
’funName : ’string, ’targetVal : ’ClosedCode] ’ClosedCode :
{
set ’sym = (GENSYM) ;
set ’params = [""] ;
set ’arg = ’argList ;
set ’vtabptr = GENSYM ;
set ’vtab = GENSYM ;
set ’funName = GENSYM ;

set ’targetVal = send ’target ’eval(’env) ;
set ’lowlevel = (send ’targetVal ’getCode()) ;

while (send ’arg ’hasNext()) {
set ’argVal = (send (cast send ’arg ’value()to ’Code)’eval(’env)) ;
set ’lowlevel = ’lowlevel # (send ’argVal ’getCode()) ;
set ’params = ’params # [", "] # (send ’argVal ’getName()) ;
set ’arg = send ’arg ’next()

} ;
set ’params = [", "] # (send ’targetVal ’getName()) # ’params ;

---dynamic dispatching
set ’lowlevel = ’lowlevel

’vtabptr # [" = getelementptr("] # (send ’targetVal ’getName())

80

[", ’VTABLE)"] # [" ; "]
’vtab # [" = load("] # ’vtabptr # [")"] # [" ; "]
’funName # [" = getfunctionname("] # ’vtab # [", "]
’methodName # [")"] # [" ; "]
’sym # [" = call ("] # ’funName # ’params # [")"] # [" ; "] ;

new ’ClosedCode(’lowlevel, ’sym)
}

final class ’superCallCode extends ’Code
final field ’methodName : ’string
final field ’argList : ’List

method ’initialize(’n : ’string, ’a : ’List) ’int :
{
set ’methodName = ’n ;
set ’argList = ’a

}

method ’eval(’env : ’Env)
[’sym : ’string, ’lowlevel : ’string, ’arg : ’List, ’params : ’string,
’argVal : ’ClosedCode, ’funName : ’string] ’ClosedCode :
{
set ’sym = (GENSYM) ;
set ’lowlevel = [""] ;
set ’params = [""] ;
set ’arg = ’argList ;
set ’funName = GENSYM ;

while (send ’arg ’hasNext()) {
set ’argVal = (send (cast send ’arg ’value() to ’Code)’eval(’env)) ;
set ’lowlevel = ’lowlevel # (send ’argVal ’getCode()) ;
set ’params = ’params # [", "] # (send ’argVal ’getName()) ;
set ’arg = send ’arg ’next()

} ;
set ’params = [", % ’self"] # ’params ;

set ’lowlevel = ’lowlevel
’funName # [" = getfunctionname("] # (send ’env ’superClassName())
[", "] # ’methodName # [")"] # [" ; "]
’sym # [" = call ("] # ’funName # ’params # [")"] # [" ; "] ;

new ’ClosedCode(’lowlevel, ’sym)
}

final class ’castCode extends ’Code
final field ’castTo : ’string
final field ’exp : ’Code

method ’initialize(’c : ’string, ’e : ’Code) ’int :
{
set ’castTo = ’c ;
set ’exp = ’e

}

81

method ’eval(’env : ’Env)
[’sym : ’string, ’lowlevel : ’string, ’val : ’ClosedCode] ’ClosedCode :
{
set ’sym = (GENSYM) ;
set ’val = send ’exp ’eval(’env) ;
set ’lowlevel = (send ’val ’getCode()) # ’sym # [" = copy("]

(send ’val ’getName()) # [")"] # [" ; "] ;
new ’ClosedCode(’lowlevel, ’sym)

}

final class ’defineFieldCode extends ’Code
final field ’final : ’bool
final field ’name : ’string
final field ’type : ’string

method ’initialize(’f : ’bool, ’n : ’string, ’t : ’string) ’int :
{
set ’final = ’f ;
set ’name = ’n ;
set ’type = ’t

}

method ’eval(’env : ’Env) ’ClosedCode :
new ’ClosedCode([""],[" $NONAME-FOR-FIELDS$ "])

method ’addToEnv(’env : ’Env) ’Env :
send ’env ’addField(’name)

method ’getName() ’string :
’name

final class ’defineVarCode extends ’Code
final field ’name : ’string
final field ’type : ’string

method ’initialize(’n : ’string, ’t : ’string) ’int :
{
set ’name = ’n ;
set ’type = ’t

}

method ’eval(’env : ’Env) ’ClosedCode :
new ’ClosedCode([""], ’name)

method ’addToEnv(’env : ’Env) ’Env :
send ’env ’addVar(’name)

method ’getName() ’string :
’name

final class ’defineMethodCode extends ’Code

82

final field ’final : ’bool
final field ’name : ’string
final field ’paramList : ’List
final field ’varList : ’List
final field ’retType : ’string
final field ’body : ’Code

method ’initialize(’f : ’bool, ’n : ’string, ’p : ’List,
’v : ’List, ’r : ’string, ’b : ’Code) ’int :

{
set ’final = ’f ;
set ’name = ’n ;
set ’paramList = ’p ;
set ’varList = ’v ;
set ’retType = ’r ;
set ’body = ’b

}

method ’eval(’env : ’Env) [’lowlevel : ’string, ’klasName : ’string, ’param : ’List,
’bval : ’ClosedCode, ’paramName : ’string] ’ClosedCode :

{
*** define environment
set ’env = send (send (send ’env ’resetForNewMethod())

’addList(’paramList)) ’addList(’varList) ;

set ’klasName = send ’env ’currentClassName() ;
set ’lowlevel = ’klasName # [" $ "] # ’name # [" (% ’self"] ;
set ’param = ’paramList ;
while (send ’param ’hasNext()) {
set ’paramName = (send (cast send ’param ’value() to ’Code) ’getName()) ;
set ’lowlevel = ’lowlevel # [", % "] # ’paramName ;
set ’param = send ’param ’next()

} ;
set ’lowlevel = ’lowlevel # [") { ’entry : "] ;
set ’bval = send ’body ’eval(’env) ;
set ’lowlevel = ’lowlevel # (send ’bval ’getCode()) # [" br ’end ; "]

["’end : return "] # (send ’bval ’getName())
[" ; } "] ;

new ’ClosedCode(’lowlevel, [" $NONAME-FOR-METHOD$ "])
}

method ’getName() ’string :
’name

final class ’VtablePair extends ’object
final field ’vtab : ’string
final field ’overriddens : ’List

method ’initialize(’v : ’string, ’o : ’List) ’int :
{ set ’vtab = ’v ;

set ’overriddens = ’o
}

83

final class ’defineClassCode extends ’Code
final field ’final : ’bool
final field ’name : ’string
final field ’superName : ’string
final field ’fieldList : ’List
final field ’methodList : ’List

method ’initialize(’fin : ’bool, ’n : ’string,
’s : ’string, ’f : ’List, ’m : ’List) ’int :

{
set ’final = ’fin ;
set ’name = ’n ;
set ’superName = ’s ;
set ’fieldList = ’f ;
set ’methodList = ’m

}

method ’eval(’env : ’Env)
[’lowlevel : ’string, ’meth : ’List, ’methVal : ’ClosedCode,
’sname : ’string, ’spr : ’defineClassCode] ’ClosedCode :
{
*** define environment
set ’env = send (send ’env ’resetForNewClass(’name, ’superName))

’addList(’fieldList) ;
set ’sname = ’superName ;
while not(’sname equals [’object])
{
set ’spr = send ’env ’getClassInfo(’sname) ;
set ’env = send ’env ’addList(send ’spr ’getFieldList()) ;
set ’sname = send ’spr ’getSuperName()

} ;
*** define environment

set ’lowlevel = [""] ;
set ’meth = ’methodList ;
while (send ’meth ’hasNext()) {
set ’methVal = cast send ’meth ’value() to ’Code ;
set ’lowlevel = ’lowlevel # (send (send ’methVal ’eval(’env)) ’getCode()) ;
set ’meth = send ’meth ’next()

} ;
new ’ClosedCode(’lowlevel, [" $NONAME-FOR-CLASSES$ "])

}

method ’classVTable(’env : ’Env) ’string :
send ’env ’classVTable(’name)

method ’vtable(’overriddens : ’List)
[’vtab : ’string, ’methNode : ’List, ’meth : ’defineMethodCode] ’VTablePair :
{
set ’vtab = [""] ;
set ’methNode = ’methodList ;

84

while (send ’methNode ’hasNext()) {
set ’meth = cast send ’methNode ’value() to ’Code ;
if (send ’overriddens ’has(send ’meth ’getName())) then
0

else {
set ’vtab = ’vtab # [" {"] # (send ’meth ’getName())

[","] # ’name # ["} "] ;
set ’overriddens = send ’overriddens ’add(send ’meth ’getName())

} ;
set ’methNode = send ’methNode ’next()

} ;
new ’VtablePair(’vtab, ’overriddens)

}

method ’getSuperName() ’string :
’superName

method ’getFieldList() ’List :
’fieldList

method ’getName() ’string :
’name

method ’getLayout()
[’fNode : ’List, ’f : ’defineFieldCode, ’layout : ’string] ’string :
{
set ’layout = [""] ;
set ’fNode = ’fieldList ;
while (send ’fNode ’hasNext()) {
set ’f = cast send ’fNode ’value() to ’Code ;
set ’layout = ’layout # ["{"] # (send ’f ’getName()) # [", nil}"] ;
set ’fNode = send ’fNode ’next()

} ;
’layout

}

method ’addToEnv(’env : ’Env) ’Env :
send ’env ’addClass(self)

final class ’defineProgramCode extends ’Code
final field ’classes : ’List
final field ’varDecls : ’List
final field ’mainBody : ’Code

method ’initialize(’c : ’List, ’v : ’List, ’m : ’Code) ’int :
{
set ’classes = ’c ;
set ’varDecls = ’v ;
set ’mainBody = ’m

}

method ’addToEnv(’env : ’Env) ’Env :

85

send ’env ’addList(’classes)

method ’eval(’env : ’Env)
[’lowlevel : ’string, ’klas : ’string,
’klasVal : ’defineClassCode, ’bval : ’ClosedCode] ’ClosedCode :
{
set ’env = send self ’addToEnv(’env) ;
set ’lowlevel = ["DEFS {’object : {’initialize, ’object}}"]

(send self ’vTables(’env))
[" IMPL ’object $ ’initialize (% ’self) { ’entry : "]
["br ’end ; ’end : return 0 ; } "] ;

set ’klas = ’classes ;
while (send ’klas ’hasNext()) {
set ’klasVal = cast send ’klas ’value() to ’Code ;
set ’lowlevel = ’lowlevel # (send (send ’klasVal ’eval(’env)) ’getCode());
set ’klas = send ’klas ’next()

} ;

set ’env = send ’env ’addList(’varDecls) ;
set ’lowlevel = ’lowlevel # [" ’main() { ’entry : "] ;
set ’bval = send ’mainBody ’eval(’env) ;
set ’lowlevel = ’lowlevel # (send ’bval ’getCode()) # [" br ’end ; "]

["’end : return "] # (send ’bval ’getName())
[" ; } "] ;

new ’ClosedCode(’lowlevel, [" $NONAME-FOR-PROGRAM$ "])
}

method ’vTables(’env : ’Env)
[’lowlevel : ’string, ’klas : ’List, ’klasVal : ’defineClassCode] ’string :
{
set ’lowlevel = [""] ;
set ’klas = ’classes ;
while (send ’klas ’hasNext()) {
set ’klasVal = cast send ’klas ’value() to ’Code ;
set ’lowlevel = ’lowlevel # [" "] # (send ’klasVal ’classVTable(’env)) ;
set ’klas = send ’klas ’next()

} ;
’lowlevel

}

--- Code Base -----

class ’Code extends ’object
method ’eval(’env : ’Env) ’ClosedCode :
new ’ClosedCode([""], [""])

method ’evalLHS(’env : ’Env, ’rhs : ’string) ’ClosedCode :
new ’ClosedCode([""], [""])

method ’addToEnv(’env : ’Env) ’Env :
’env

86

final method ’generate() ’string :
send (send self ’eval(send self ’freshEnv())) ’getCode()

final method ’generateWithClasses(’lib : ’List) [’env : ’Env] ’string :
{
set ’env = send self ’freshEnv() ;
set ’env = send ’env ’addList(’lib) ;
send (send self ’eval(’env)) ’getCode()

}

method ’getName() ’string :
[""]

final method ’freshEnv() ’Env :
new ’Env(new ’LinkedList(NIL, NIL), new ’LinkedList(NIL, NIL),

[""], [""], new ’LinkedList(NIL, NIL))

method ’classVTable(’env : ’Env) ’string :
[" $NO-CLASS-VTABLE-FOR-THIS-CODE$ "]

method ’dummy(’a : ’string, ’b : ’object) ’int :
1

final class ’ClosedCode extends ’object
final field ’name : ’string
final field ’lowlevelcode : ’string

method ’initialize(’l : ’string, ’n : ’string) ’int :
{
set ’lowlevelcode = ’l ;
set ’name = ’n

}

method ’getName() ’string :
’name

method ’getCode() ’string :
’lowlevelcode

final class ’Env extends ’object
final field ’varList : ’List
final field ’fieldList : ’List
final field ’currClass : ’string
final field ’superClass : ’string
final field ’classInfos : ’List

method ’initialize(’v : ’List, ’f : ’List, ’k : ’string,
’s : ’string, ’i : ’List) ’int :

{
set ’varList = ’v ;
set ’fieldList = ’f ;

87

set ’currClass = ’k ;
set ’superClass = ’s ;
set ’classInfos = ’i

}

method ’isLocal(’name : ’string) ’bool :
send ’varList ’has(’name)

method ’isField(’name : ’string) ’bool :
send ’fieldList ’has(’name)

method ’resetForNewMethod() ’Env :
new ’Env(new ’LinkedList(NIL, NIL), ’fieldList,

’currClass, ’superClass, ’classInfos)

method ’resetForNewClass(’cc : ’string, ’sc : ’string) ’Env :
new ’Env(new ’LinkedList(NIL, NIL), new ’LinkedList(NIL, NIL),

’cc, ’sc, ’classInfos)

method ’superClassName() ’string :
’superClass

method ’currentClassName() ’string :
’currClass

method ’addField(’n : ’string) ’Env :
new ’Env(’varList, send ’fieldList ’add(’n),

’currClass, ’superClass, ’classInfos)

method ’addVar(’n : ’string) ’Env :
new ’Env(send ’varList ’add(’n), ’fieldList, ’currClass, ’superClass, ’classInfos)

method ’addClass(’c : ’defineClassCode) ’Env :
new ’Env(’varList, ’fieldList, ’currClass, ’superClass, send ’classInfos ’add(’c))

method ’addList(’list : ’List)
[’lNode : ’List, ’val : ’Code, ’tempEnv : ’Env] ’Env :
{
set ’lNode = ’list ;
set ’tempEnv = self ;
while(send ’lNode ’hasNext()) {
set ’val = cast send ’lNode ’value() to ’Code ;
set ’tempEnv = send ’val ’addToEnv(’tempEnv) ;
set ’lNode = send ’lNode ’next()

} ;
’tempEnv

}

method ’layout(’name : ’string)
[’info : ’defineClassCode, ’superKlas : ’string, ’layout : ’string] ’string :
{
if ’name equals [’object] then

88

[""]
else {
set ’info = send self ’getClassInfo(’name) ;
if ’info equals NIL then
[" $NO-CLASS-INFO-FOR "] # ’name # ["$ "]

else {
set ’superKlas = send ’info ’getSuperName() ;
set ’layout = send ’info ’getLayout() ;
’layout # (send self ’layout(’superKlas))

}
}

}

method ’vtable(’name : ’string, ’methList : ’List)
[’info : ’defineClassCode, ’layout : ’string, ’vtabPair : ’VtablePair] ’string :
{
if ’name equals [’object] then {
if (send ’methList ’has([’initialize])) then
[""]

else
[" {’initialize, ’object} "]

}
else {
set ’info = send self ’getClassInfo(’name) ;
if ’info equals NIL then
[" $NO-CLASS-INFO-FOR "] # ’name # ["$ "]

else {
set ’vtabPair = send ’info ’vtable(’methList) ;
set ’layout = ’vtabPair -> ’vtab ;
set ’methList = ’vtabPair -> ’overriddens ;
’layout # (send self ’vtable(send ’info ’getSuperName(), ’methList))

}
}

}

method ’objectLayout(’name : ’string) ’string :
["{{’VTABLE, name("] # ’name # [")}"]
(send self ’layout(’name)) # ["}"]

method ’classVTable(’name : ’string) ’string :
["{"] # ’name # [" : "]
(send self ’vtable(’name, new ’LinkedList(NIL, NIL))) # ["}"]

method ’getClassInfo(’name : ’string)
[’infoNode : ’List, ’info : ’defineClassCode,
’res : ’defineClassCode] ’defineClassCode :
{
set ’infoNode = ’classInfos ;
set ’res = NIL ;
while (send ’infoNode ’hasNext()) {
set ’info = cast send ’infoNode ’value() to ’Code ;
if ((send ’info ’getName()) equals ’name) then

89

set ’res = ’info
else
0 ;

set ’infoNode = send ’infoNode ’next()
} ;
’res

}

--- UTIL -----

final class ’LinkedList extends ’List
method ’eval(’env : ’Env)
[’lowlevel : ’string, ’node : ’LinkedList, ’nodeVal : ’Code] ’ClosedCode :
{
*** define env
set ’env = send ’env ’addList(self) ;
set ’lowlevel = [""] ;
set ’node = self ;
while (send ’node ’hasNext()) {
set ’nodeVal = cast send ’node ’value() to ’Code ;
set ’lowlevel = ’lowlevel # (send (send ’nodeVal ’eval(’env)) ’getCode());
set ’node = send ’node ’next()

} ;
new ’ClosedCode(’lowlevel, [" $NONAME-FOR-LIST$ "])

}
method ’add(’v : ’object) ’List : new ’LinkedList(’v, self)

class ’List extends ’Code
final field ’value : ’object
final field ’next : ’List

method ’initialize(’v : ’object, ’n : ’List) ’int :
{ set ’value = ’v ;
set ’next = ’n

}
method ’add(’v : ’object) ’List : NIL

final method ’hasNext() ’bool :
if ’next equals NIL then False else True

final method ’next() ’List :
’next

final method ’value() ’object :
’value

final method ’has(’v : ’object) ’bool :
{
if (’v equals ’value)
then True

else if (send self ’hasNext())

90

then send ’next ’has(’v)
else False

}

final method ’addToEnv(’env : ’Env) ’Env :
send ’env ’addList(self)

) .

endfm

91

