
Effort Estimation for Architectural Refactoring
to Introduce Module Isolation

Fatih Öztürk1, Erdem Sarılı1, Hasan Sözer2, and Barış Aktemur2

1 Vestel Electronics, Manisa, Turkey
{fatih.ozturk, erdem.sarili}@vestel.com.tr

2 Department of Computer Science, Ozyegin University, Istanbul, Turkey
{hasan.sozer, baris.aktemur}@ozyegin.edu.tr

Abstract. The decomposition of software architecture into modular
units is driven by both functional and quality concerns. Dependabil-
ity and security are among quality concerns that require a software to
be decomposed into separate units isolated from each other. However, it
appears that this decomposition is usually not aligned with the decom-
position based on functional concerns. As a result, introducing module
isolation forced by quality attributes, while preserving the existing de-
composition, is not trivial and requires a substantial refactoring effort. In
this work, we introduce an approach and a toolset to predict this effort
prior to refactoring activities. As such, a selection can be made among
potential decomposition alternatives based on quantitative estimations.
These estimations are obtained from scalable analysis of module depen-
dencies based on a graph database and reusable query templates. We
discuss our experiences and evaluate our approach on a code base used
in a commercial Digital TV and Set-top Box software.

Keywords: software architecture; reverse engineering; refactoring; module iso-
lation; effort estimation; dependability; security.

1 Introduction

Modularity is a key principle in software architecture design [12]. Decomposing
the system into separate, modular units is driven by functional concerns and a set
of relevant quality concerns such as dependability and security [2]. These quality
concerns usually require that certain modules are decomposed and isolated from
each other. For instance, distrusted modules must be isolated from the rest of
the system to increase security. This is usually achieved by sandboxing [15] and
placing each module into its own address space. Without such a fault isolation,
errors can propagate among the modules of the system.

Isolation is usually supported by the operating system (e.g., process isola-
tion [9]) or a middleware (e.g., encapsulation of Enterprise Java Bean objects
[4]). Regardless of the underlying infrastructure, the application software archi-
tecture must be decomposed so that certain parts of the system can be quaran-
tined. However, it appears that the required decomposition for module isolation



2 F. Öztürk, E. Sarılı, H. Sözer, B. Aktemur

is usually not aligned with the decomposition based on functional concerns. The
redesign and implementation of the whole system is likely to be an impractical
approach for large-scale legacy systems. On the other hand, refactoring the exist-
ing systems is not trivial either; it requires that the interactions of a module with
all the other parts of the system are captured and appropriately isolated [13].

In this work, we propose an approach and a toolset for predicting the refac-
toring effort for decomposition and implementation of software architecture for
module isolation. As such, a selection can be made among potential decompo-
sition alternatives based on quantitative estimations. In our approach, depen-
dencies among the software modules are captured with a compiler frontend and
stored in a graph database. These dependencies are queried based on a set of
reusable query templates. Queries are instantiated according to the evaluated
decomposition alternative. The novelty of our work is to facilitate the use of
scalable and interactive architectural queries. We discuss our experiences in the
application and evaluation of our approach by introducing module isolation to a
set of modules taking part in a commercial Digital TV (DTV) and Set-top Box
(STB) software architecture. We were able to estimate the required refactoring
effort for a large code base with 85% accuracy on the average.

The remainder of this paper is organized as follows. Section 2 presents the
industrial case study and a motivating example. We introduce our approach in
Section 3. The evaluation of the approach is presented in Section 4. Related stud-
ies are summarized in Section 5. Finally, in Section 6, we provide our conclusions
and discuss future work directions.

2 Industrial Case Study: DTV/STB Software

In this section, we introduce an industrial case study and a running example to
be used in the rest of the paper. We investigated a software system being devel-
oped and maintained by Vestel3, which manufactures DTV and STB systems.
Conditional access (CA) system providers are among the customers of the com-
pany. These customers have various requirements that are subject to certification
tests. One of these requirements is module isolation. Due to many different ex-
ternal interfaces such as USB and Ethernet, DTV and STB systems are exposed
to an increasing number of dependability and security threats. Therefore, CA
system providers require that certain modules of the system are isolated from
each other by running them on different processes.

Vestel has a legacy code base that includes approximately 8M lines of code
(LOC) in C/C++ excluding the chipset drivers (33M LOC including the drivers).
The overall code base is composed of 4 layers: i) Driver : includes the platform-
related software that is mostly in the kernel space; ii) Platform Integration Layer :
provides abstraction for the functions provided by the Driver layer; iii) Middle-
ware: implements the main business logic; iv) Application: implements the user
interface. Module isolation requirements usually affect the 3rd and the 4th layers.

3 http://www.vestel.com.tr



Effort Estimation for Architectural Refactoring 3

(a)

(b)

Fig. 1: Decomposition alternatives for the isolation of the web browser engine.

For instance, it was required by a CA system provider4 that the web browser
functionality should be isolated from the rest of the system. To satisfy this re-
quirement, the corresponding module was planned to be isolated in a separate
process as depicted in a module view of the software architecture in Figure 1(a).
Refactoring a system for process isolation is not trivial for large code bases. It
requires that the interactions of the isolated module(s) with all the other parts
of the system are captured. All the function calls and direct accesses to shared
data must be redirected through inter-process communication (IPC). As a result,
additional glue layers and wrappers have to be developed [13].

There are usually many decomposition alternatives that satisfy a module
isolation requirement. The implementation of these alternatives require different
amounts of effort based on the module inter-dependencies. In fact, it was figured
out later in the architectural refactoring phase that the decomposition depicted
in Figure 1(b) was a better alternative in terms of effort. The development team
abondoned the attempts to do decomposition given in Figure 1(a), resulting in
wasted time and man-hours, and instead focused on Figure 1(b). In the following
section, we introduce our approach for estimating the refactoring effort to eval-
uate various decomposition alternatives with automated and scalable analysis.

4 Customer identity is undisclosed due to confidentiality agreements.



4 F. Öztürk, E. Sarılı, H. Sözer, B. Aktemur

System 
Source Code

Module Dependency 
Analyzer

Template 
queries

ArtifactTool

Graph Database
(Neo4J)

External Tool

Queries for 
creating the 

graph database

Decomposition 
alternatives

Data flow

KEY:

Effort 
Estimations

Decomposition 
Analyzer

1

2

3

4

4

5 6

Fig. 2: The overall approach.

3 The Approach

The overall approach is depicted in Figure 2. First, a static code analysis, called
the Module Dependency Analyzer, is applied to the system source code to identify
module inter-dependencies. The analyzer is implemented as an LLVM [10] com-
piler pass that runs on intermediate level code. (Therefore, the pass is runnable
on software written in any programming language provided that there is an
LLVM front-end that translates the code to LLVM Intermediate Representa-
tion. In our case study, the code base is written in C/C++.) The output of
the module dependency analyzer is a set of Cypher queries that build a graph
database with Neo4J [8] (step 2). Then, these queries are executed to create
a graph representation of all the identified module inter-dependencies (step 3).
In our case, two modules shown in Figure 1 were analyzed. These modules are
20K LOC in total. The size of the generated queries was 76K LOC. It took
around 3.5 hours to complete the execution of all the queries on a desktop com-
puter. The graph had 25K nodes and 60K edges. A small, representative example
is depicted in Figure 3. The graph database is built only once per code base.
Then, it can be utilized many times to evaluate various decomposition alter-
natives (step 5). Decomposition Analyzer takes decomposition alternatives and
template Cypher queries [8] as input (step 4). Each decomposition alternative
specifies the set of modules that are separated from each other. Figure 1 depicts
only the top level modules, each of which comprises many more modules. In our
case study, we specified 10 module interfaces that are separated as a result of
implementing the decomposition alternative depicted in Figure 1(b). Template
queries are instantiated based on the evaluated decomposition alternatives. They
also have coefficients to be adjusted based on the implementation. The execution
of the queries outputs effort estimations (step 6). In our case study, executing
the queries to evaluate 10 module interfaces took around 10 minutes.

We calculate the effort in terms of LOC to be written for glue layers and
wrappers [13] required for realizing a decomposition alternative. These LOC
mainly comprises IPC calls, callback handlers, and data (de)serialization imple-



Effort Estimation for Architectural Refactoring 5

memory
A instruction

function
Caller

function
Callee

memory
B

Module
2

Module
1

ARG

HAS

FCF

CMC

FORMAL ARG
CALL

BIND

INCLUDEINCLUDE

Detected

Relationships

Evaluated

Relationships

CMC path

Fig. 3: Representation of module inter-dependencies as nodes and edges.

mented for coupled modules that are isolated in different processes. Hence, the
effort is related to the amount of and the type of coupling among the isolated
module interfaces. The queries that are instantiated for evaluation first detect
function calls among such interfaces. Then, parameter bindings between formal
and actual parametres are analyzed. For every call to be redirected, complexity of
parameters and return value is calculated based on the use of pointers and nest-
ing level of classes and structures. Finally, effort required for each cross-modular
function call is summed up to represent total cost required for isolation of the
given two modules. Figure 3 represents a simple parameter binding between the
function Caller defined in Module 1 and the function Callee defined in Module
2. Here FCF represents function call, CMC represents cross-modular function
call, and BIND represents parameter binding between two memory locations.

A sample truncated query for evaluating module dependency is given in List-
ing 1. Hereby, env.module2 and env.module1 are parameters that define the sep-
arated modules (Line 5). The coefficient SIMPLE PARAM (Line 9) defines the
unit effort to handle a simple function argument. Nested argument structures
are captured and the corresponding unit effort is calculated separately (Line 12).

The utilization of a graph database and reusable template queries provides
scalability and genericity. Our analysis addresses the amount of coupling at the
module view level. However, the approach can also be applied to different types
of architectural views [5] by using appropriate set of template queries. In our
case, the toolset can provide an effort estimation based on the decomposition
structure and coefficients for unit costs. The coefficients can be adjusted based
on the underlying isolation framework.

4 Evaluation and Discussion

We examined the implementation depicted in Figure 1(b) for the 10 module
interfaces that are separated. We manually measured the real effort required
for the realization of this decomposition in terms of effective LOC [6]. We also
applied our approach on the previous version of the source code, before the



6 F. Öztürk, E. Sarılı, H. Sözer, B. Aktemur

1 ...

2 match (x:folder) -[:INCLUDE *1..]

3 ->(caller:function) -[:FCF]->(callee:function)

4 <-[:INCLUDE *1..] -(y:file) where

5 x.name = env.module2 and y.name = env.module1

6 create unique

7 caller -[: CMC{param_point :0, return_point :0}]-> callee;

8 ...

9 match a-[r: BIND]->b set r.point = SIMPLE_PARAM;

10 match b<-[bind:BIND]-a-[LOAD *0..1] - >() -[CAST *0..1]

11 ->() -[:IS_A]->(strct) with a,b,bind ,strct

12 set bind.point = strct.point;

13 ...

Listing 1: A truncated query template for dependency evaluation.

decomposition is implemented. We obtained estimations regarding the separation
of the 10 module interfaces. We compared the estimated effort and measured
effort in terms of the relative error [1] measure. Results are listed in Table 1.
Estimations are 85% accurate per interface on the average. (We think that the
per-interface average of relative error is a better indicator of accuracy than the
relative error on the overall effort, which is much smaller: 1359 vs. 1306 ⇒ 4%
error.) In fact, if we do not consider the two exceptional interfaces, H and I, the
accuracy is 91%. In the following, we discuss the reasons for estimation errors
regarding these interfaces.

The measured effort is much less than the estimated effort for Interface H.
This interface is generally composed of getter functions that return primitive C
types. Serialization and extraction of the return values are identical for several

Interface Measured Effort Estimated Effort Relative Error

A 128 133 0.04
B 94 78 0.17
C 175 189 0.08
D 102 88 0.14
E 80 66 0.17
F 321 302 0.06
G 65 68 0.05
H 165 211 0.28
I 125 70 0.44
J 104 101 0.03

Total 1359 1306 -

Average - - 0.15

Table 1: Comparison of measured and estimated effort.



Effort Estimation for Architectural Refactoring 7

functions. Therefore, such identical operations are implemented in a helper func-
tion, which reduce the effort to a large extent. On the other hand, the estimated
effort is much less than the measured effort for Interface I, because this interface
employs complex C structs with callback function pointers. The use of these
callback functions are scattered among many modules. Hence, the isolation of
Interface I required extra effort for transferring these functions through IPC.

5 Related Work

Vespucci tool [11] captures structural dependencies in multiple complementary
views called slices. Each slice captures different types of dependencies to be
analyzed separately. In this work, we capture all the dependencies in a graph
database and query all types of dependencies regarding a certain part of the
system, which is subject to refactoring for module isolation.

The FLORA framework [13] comprises a set of tools to estimate the per-
formance overhead introduced by module isolation and optimize the software
architecture decomposition [14]. The estimation is based on a dynamic analysis
that collects statistics about the frequency of performed function calls and the
data access profile of the system. In this work, we aim at estimating the mainte-
nance effort for introducing module isolation. As such, we utilize static analysis.
We also utilize a graph database and a declarative graph query language to
achieve scalability [8].

Micro-kernel architectures [7] and operating systems with sealed processes [9]
have been introduced for flexible multiprocessing support and better isolation
to improve dependability and safety. To be able to exploit the multiprocessing
support for isolation, the application software must be partitioned to be run on
multiple processes. Our approach supports such a refactoring and predicts the
re-engineering effort for making use of the multiprocessing support.

There have been also other approaches [3,4] to isolate software components
from each other. However, they do not consider the restructuring and partition-
ing of legacy software to introduce this isolation.

6 Conclusion and Future Work

Module isolation can be necessary to satisfy several quality concerns. However,
it appears that the required decomposition for module isolation is usually not
aligned with the decomposition based on functional concerns. Therefore, the re-
alization of this decomposition requires substantial maintenance effort. We have
introduced an integrated toolset that predicts the refactoring effort to introduce
module isolation by preserving the existing structure. We have illustrated our
approach in the context of an industrial case study to introduce module isolation
to a set of modules in a large code base. We obtained accurate estimations of the
refactoring effort. As such, our approach proved to be practical for large-scale
systems to support module isolation in software architectures.



8 F. Öztürk, E. Sarılı, H. Sözer, B. Aktemur

As future work, we are planning to utilize our observations summarized in
Section 4 to improve the accuracy of our estimations. We also plan to perform
additional case studies.

Acknowledgements. We thank the software developers and managers at Vestel
Electronics for sharing their code base with us and supporting our analysis.

References

1. Alsmadi, I., Nuser, M.: Evaluation of cost estimation metrics: Towards a unified ter-
minology. Journal of Computing and Information Technology 21(1), 23–34 (2013)

2. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing 1(1), 11–33 (2004)

3. Buskens, R., Gonzalez, O.: Model-centric development of highly available software
systems. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architecting Depend-
able Systems IV, LNCS, vol. 4615, pp. 163–187. Springer (2007)

4. Candea, G., Fox, A.: Crash-only software. In: 9th Workshop on Hot Topics in
Operating Systems (HotOS). pp. 67–72. USENIX Assoc., Berkeley, CA (2003)

5. Clements, P.C., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P.,
Nord, R., Stafford, J.A.: Documenting Software Architectures: Views and Beyond.
Addison-Wesley, 2 edn. (2010)

6. Fenton, N., Pfleeger, S.: Software Metrics: A Rigorous and Practical Approach.
Thomson Learning Inc., 2 edn. (2002)

7. Herder, J.N., Bos, H., Gras, B., Homburg, P., Tanenbaum, A.S.: Failure resilience
for device drivers. In: 37th IEEE/IFIP International Conference on Dependable
Systems and Networks. pp. 41–50. Edinburgh, UK (2007)

8. Holzschuher, F., Peinl, R.: Performance of Graph Query Languages: Comparison of
Cypher, Gremlin and Native Access in Neo4J. In: EDBT/ICDT 2013 Workshops.
pp. 195–204. ACM, New York, NY (2013)

9. Hunt, G., Aiken, M., Fähndrich, M., Hawblitzel, C., Hodson, O., Larus, J., Levi,
S., Steensgaard, B., Tarditi, D., Wobber, T.: Sealing OS processes to improve
dependability and safety. SIGOPS Oper. Syst. Rev. 41(3), 341–354 (2007)

10. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: Int. Symposium on Code Generation and Optimization
(CGO). pp. 75–87. IEEE Computer Society, San Jose, CA, USA (2004)

11. Mitschke, R., Eichberg, M., Mezini, M., Garcia, A., Macia, I.: Modular specifica-
tion and checking of structural dependencies. In: 12th Int. Conference on Aspect-
oriented Software Development (AOSD). pp. 85–96. ACM, New York, NY (2013)

12. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12), 1053–1058 (1972)

13. Sozer, H., Tekinerdogan, B., Aksit, M.: Flora: A framework for decomposing soft-
ware architecture to introduce local recovery. Software: Practice and Experience
39(10), 869–889 (2009)

14. Sozer, H., Tekinerdogan, B., Aksit, M.: Optimizing decomposition of software ar-
chitecture for local recovery. Software Quality Journal 21(2), 203–240 (2013)

15. Wahbe, R., Lucco, S., Anderson, T., Graham, S.: Efficient software-based fault
isolation. SIGOPS Operating Systems Review 27(5), 203–216 (1993)


