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Abstract
Runtime specialization optimizes programs based on partial infor-
mation available only at run time. It is applicable when some input
data is used repeatedly while other input data varies. This technique
has the potential of generating highly efficient codes.

In this paper, we explore the potential for obtaining speedups
for sparse matrix-dense vector multiplication using runtime spe-
cialization, in the case where a single matrix is to be multiplied by
many vectors. We experiment with five methods involving runtime
specialization, comparing them to methods that do not (including
Intel’s MKL library). For this work, our focus is the evaluation of
the speedups that can be obtained with runtime specialization with-
out considering the overheads of the code generation.

Our experiments use 23 matrices from the Matrix Market and
Florida collections, and run on five different machines. In 94 of
those 115 cases, the specialized code runs faster than any version
without specialization. If we only use specialization, the average
speedup with respect to Intel’s MKL library ranges from 1.44x to
1.77x, depending on the machine. We have also found that the best
method depends on the matrix and machine; no method is best for
all matrices and machines.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Code Generation

Keywords program specialization, sparse matrix-vector multi-
plication, performance evaluation

1. Introduction
The technique of program specialization begins with the observa-
tion that many computations get their inputs in two parts: an early,
stable part, and a late, dynamic part. One then asks the question:
Given the early data, can we fashion a new, specialized, program
that will process the dynamic data very efficiently? For example,
in some numerical applications, a single matrix M is multiplied
by many vectors v; M is early and stable, the vectors late and dy-
namic. Can we create a very efficient function multByM (v, w) to
multiply M by an input vector v (placing the result in w)?
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Program specialization is a well-studied area [13, 30, 32]. Re-
search has produced many examples of programs, in many prob-
lem domains, that have been optimized by specialization. How-
ever, most of the work has focused on languages and infrastructure,
rather than realistic applications. Take the matrix multiplication ex-
ample again. The “optimal” approach is simply to unfold the calcu-
lation. Instead of a loop iterating over M and v, multByM consists
of a long sequence of assignment statements of the form

w[i] += Mi,j0 * v[j0] + Mi,j1 * v[j1] + . . .;

where the italicized parts — i, Mi,j0 , j0, etc. — are fixed values,
not variables or subscripted arrays. (The simpler case of vector-
vector dot product is a standard “toy” example in this field [16]; a
variation of sparse matrix-vector multiplication was recently posed
as a Shonan Challenge [8]). This code is “optimal” in the sense of
producing the minimum instruction count; a standard Compressed-
Sparse-Row (CSR) loop (see Section 2.2) will execute perhaps five
times as many instructions as this unfolded code. They will, of
course, execute the same number of floating-point operations; the
additional instructions are all integer, control, or load operations.

However, it will come as no surprise to those who work in the
area of high-performance computing that instruction count tells
only a part of the story. Execution speed is affected by such factors
as the quality of the code (e.g. register usage), and memory system
performance. Traditionally, the latter is concerned primarily with
avoiding cache misses when accessing v and w (with accesses to M
being purely sequential and therefore not subject to optimization);
a new concern that arises here is access to the code itself.

This paper addresses the potential for optimizing sparse matrix–
dense vector multiplication by specialization relative to the matrix
M , using matrices of realistic size and structure. To that end, we
explore a variety of methods and report on their efficiency. The
methods (described in detail in Section 2) are these:

Compressed sparse row (CSR). This is the straightforward imple-
mentation using the most traditional representation for sparse ma-
trices. Some efficiency is gained by unrolling the inner loop; we
refer to CSR with the inner loop unrolled u times as CSRu.

Unfolding. This is the simple unfolded code described above.

CSRbyNZ. This method generates a loop for each group of rows
that contain a given number of non-zeros [27]. In effect, this
provides a perfect unrolling of the inner loop of CSR.

Stencil. This method analyzes the matrix to find the patterns of
non-zero entries in each row of M , and generates, for each pat-
tern, a loop that handles all the rows that have that pattern.

GenOSKI. This method analyzes the matrix to find the patterns of
non-zero entries in each block of size r × c, and for each pattern,



generates straight-line code [9]. A motivation of this method is to
avoid the zero-fill problem of OSKI [21], that generates efficient
per-block code by inserting some zeros into the matrix data.

We also have compared our results with 3 state of the art
libraries: the Intel MKL library [5], BiCSB [12] and CSX [24].
BiCSB [2] is implemented on top of CSB [11], a new parallel sparse
matrix data structure that allows efficient SpMV on multicores.
BiCSB requires some restructuring of the data, but no runtime gen-
eration of the code. CSX [3] is based on the Compressed Sparse
eXtended (CSX) format that allows for a flexible storage format
to support a variety of patterns within the sparse matrix, such as
horizontal, vertical, diagonal, anti-diagonal, or blocks.

Notice that not all of these methods and libraries involve run-
time specialization. We can classify them in three groups: those
that are completely generic and operate on the standard CSR rep-
resentation (CSR); those that require some restructuring of the data
but no runtime generation of code (CSB, BiCSB, and OSKI); and
those that require runtime code generation (Unfolding, CSRbyNZ,
Stencil, GenOSKI1, and CSX). The distinction matters because it
refers to the latency of each method — the preparation time needed
before a method can report its first result. CSRu has zero latency,
and methods that only restructure the data have lower latency than
methods that generate code. Of course, latency varies widely within
the latter two categories as well.

We tested all methods and libraries on 23 matrices and 5 ma-
chines. Our experimental results show two main points:
1. Speedups can be obtained by runtime specialization. In most

cases, a method involving runtime code generation is the fastest.
2. There is no one best method: it varies both across machines and

across matrices.

Specifically, out of our 115 (23×5) trials, the best specializ-
ers were: Stencil (11 times), GenOSKI (29), Unfolding (27),
CSRbyNZ (20), CSR (13), MKL (2), BiCSB (6), CSX (7)2.

The main contribution of this paper is a systematic comparison
of a number of methods for performing sparse matrix–dense vector
multiplication, including methods that are specialized to a particu-
lar matrix. The methods evaluated are “generic” in the sense that
they are not designed for matrices of any very particular form, but
would apply in general to sparse matrices of the kind found in the
Matrix Market [6] and Florida Sparse Matrix Collection [4, 17].
We discuss some of the reasons for the timings we are seeing, in-
cluding matrix characteristics, and the effect of code and data size
and cache size. In addition, we explain how this work fits into the
overall goal of creating a matrix-vector multiplication library.

The structure of the paper is this: Section 2 describes in detail
the methods we are studying for performing matrix-vector multipli-
cation. Section 3 discusses some aspects of the methods that affect
performance. Section 4 describes our experimental setup. Section 5
shows our performance numbers. In Section 6, we discuss how this
work might find applications in practice. Section 7 discusses related
work; conclusions are presented in Section 8.

2. Methods
In this section, we describe the methods we use. In this discussion,
we assume M is an n×n matrix, with nz non-zeros. We use zero-
based indexing for all arrays. The code shown in this section is
drawn from the actual generated code.

1 Potentially, the code for any possible pattern of GenOSKI can be generated
offline; however, because there are too many possibilities (e.g. 216 when
using 4 × 4 blocks), opting for runtime generation is likely to be more
feasible for this method.
2 We ran CSX only on 2 platforms due to library conflicts; BiCSB and MKL
did not run on one machine because of CPU incompatibility.

2.1 Compressed Sparse Rows
The most common representation for sparse matrices is Com-
pressed Sparse Rows (CSR). It consists of three arrays:
• mvalues is an array of floating-point numbers of length nz

containing the non-zero values of M in row-major order.
• cols is an integer array of length nz. Element i of this array

contains the column number of the ith element in mvalues.
• rows is an integer array of length n+1. Element j of this array

gives the mvalues-index of the first non-zero element of row j.

With this representation, a standard CSR loop looks as follows
(recall that v is the input vector, w is the output vector):

for (i = 0; i < n; i++){
ww = 0.0;
k = rows[i]; // mvalues[k] = M[i,cols[k]],

// the first non-zero in row i
for (; k < rows[i+1]; k++)

ww += mvalues[k] * v[cols[k]];
w[i] += ww;

}

2.2 CSR Unrolling
CSRu partially unrolls the inner loop of the standard CSR method
u times, plus inserts a “clean-up” loop handling the leftover ele-
ments. The data layout is identical to CSR. Unrolling can produce
more efficient code than CSR due to additional instruction level par-
allelism and reduced loop overhead. However, the difference in per-
formance between CSR and CSRu is expected to be small.

2.3 CSRbyNZ
This method groups the rows of M according to the number of
non-zeros they contain, and generates one loop for each group. The
array rows contains a permutation of the row numbers, in which
all the rows with a particular non-zero count are grouped together;
cols and mvalues serve the same purpose as with CSR. So, for
example, if there are exactly six rows of M that have three non-
zeros, the loop for those rows would be:

for (i = 0; i < 6; i++, b += 3) {
row = rows[a++];
w[row] += mvalues[b] * v[cols[b]]

+ mvalues[b+1] * v[cols[b+1]]
+ mvalues[b+2] * v[cols[b+2]];

}

Here, a indexes over rows and b indexes over mvalues.
mvalues contains the non-zeros of M in the order in which they
are consumed by these loops.

This method gains its efficiency from long basic blocks in each
loop, which can be compiled efficiently. It provides, in effect, a
perfect unrolling of the inner loop of CSR. CSRbyNZ is similar to
the method described by Mellor-Crummey and Garvin [27].

2.4 Unfolding
Unfolding completely unfolds the CSR loop and produces a
straight-line program. Despite its simplicity, it needs a detailed
explanation as the code it generates has interesting and important
implications on the binary code produced by the compiler.

First, recall that this method generates a statement per each
matrix row i in the following way:

w[i] += Mi,j0 * v[j0] + Mi,j1 * v[j1] + . . .;

In principle as well as in practice, this method produces the low-
est number of dynamic instructions. However, it also produces, by
far, the longest code. Yet, surprisingly, in our tests, we have seen
that Unfolding occasionally beats the other methods substantially,
even for very large matrices. The reason for this is that many matri-
ces have repeated values; indeed, the number of distinct values in
our sample matrices is usually much less than nz (see Table 1).



This produces speedups for two reasons: reduced memory load,
and reduced instructions because of common subexpressions. To
see this, suppose there are only three distinct values in the matrix
(say, 3, 5, and 9) and let the first two lines of the generated code be

w[0] += 9*v[2] + 9*v[3] + 5*v[8] + 3*v[9];
w[1] += 5*v[8] + 3*v[9] + 9*v[11];

Having a non-zero value repeated on the same row of the matrix
allows applying anti-distribution of multiplication over addition
(i.e. c×vi+c×vj = c×(vi+vj)). Having the same value repeated
on the same column of the matrix enables common subexpression
elimination (CSE). After applying both optimizations, the above
code would look like this:

double temp = 5*v[8] + 3*v[9];
w[0] += 9*(v[2] + v[3]) + temp;
w[1] += temp + 9*v[11];

The floating point constants are emitted by the compiler — we
examined icc, gcc, and clang— into the data section of the object
code, and loaded into registers. When the distinct values are very
few, registers can be reused to reduce memory loads. In effect, the
code above can be compiled as if it were:

double M[3] = {9, 5, 3};
double temp = M[1]*v[8] + M[2]*v[9];
double m9 = M[0];
w[0] += m9*(v[2] + v[3]) + temp;
w[1] += temp + m9*v[11]; // m9 reused

Unlike all our other methods, and contrary to what we said in
the introduction, specialization by this method actually allows a
reduction in the number of floating point operations.

It is worth mentioning that, although the number of distinct val-
ues is usually much less than nz, this fact alone is not that helpful;
the number has to be small enough that we are likely to see many
repeated values in each row and column, thus allowing the opti-
mizations described. Furthermore, by causing references to matrix
values to be accessed out of order — in all other methods, these
values are stored in an array that is accessed in strictly sequential
order — these optimizations can have a negative effect on locality.

2.5 Stencil
Where CSRbyNZ divides up the rows of M according to the number
of non-zeros, Stencil divides them up according to the exact
pattern of non-zeros. Specifically, the “stencil” of each row is
defined as the location of non-zeros relative to the main diagonal.
So, if row r has non-zeros in columns r − 1, r, r + 1, and r + 3,
its stencil would be {−1, 0, 1, 3}. All the rows that have the same
stencil can be handled in a single loop. For example, if rows 2, 4,
and 6 are the only ones with stencil {−1, 0, 1, 3}, then the loop for
this stencil is shown below, where the values of M are laid out in
the order in which they are consumed by these loops:

int stencil_rows[3] = {2, 4, 6};
for (i = 0; i < 3; i++) {

row = stencil_rows[i];
vv = v + row;
w[row] += mvalues[0] * vv[-1] + mvalues[1] * vv[0]

+ mvalues[2] * vv[1] + mvalues[3] * vv[3];
mvalues += 4;

}

Like CSRbyNZ, Stencil gets its efficiency from the long ba-
sic blocks inside each loop. Stencil also gains an advantage in
memory accesses, because it entirely eliminates the cols array and
the indirect access to v. Thus, for matrices with a modest number of
stencils, this method can be the most efficient. However, if there are
many stencils, the code can get quite large, reducing its efficiency.

2.6 GenOSKI
This method is based on OSKI [19, 21, 31] and is similar to
PBR [9]. The idea of OSKI is to divide the matrix into dense blocks
(of size, say, b× b) and perform the multiplication on a block basis.
By having a loop whose body handles blocks of size b×b , the goal
of this optimization is to increase register reuse. It may also reduce
the amount of memory required to store indices for the matrix M ,
since a single pair of indices is stored per block. (For example, if all
blocks were perfectly dense, arrays rows and cols would each be
of length nz/b2, for a total size of 2nz/b2, as compared to the total
size of nz + n for these arrays in CSR.) The drawback of OSKI is
that non-empty blocks may still contain zeros, and those have to be
added to M explicitly. This increases both the number of floating-
point operations and memory communication. The zero fill factor
substantially determines whether this method will be efficient. Our
experience shows that 1×2, 2×1, and 2×2 blocks are occasionally
efficient, but larger blocks almost never are. GenOSKI is our attempt
to overcome the zero fill problem by generating code.

GenOSKI has one loop for each block pattern of non-zeros in
this matrix. For each pattern, two arrays hold the list of “block
locations,” the indices of the northwest corner of the blocks that
have that pattern. For example, consider a matrix divided into 3×3
blocks and having 18 blocks conforming to the pattern of non-zeros
1,1,0; 1,1,1; 0,1,1: the first two columns on row 0; all three columns
on row 2; the second and third columns on row 3. The loop to
handle these 18 blocks is shown below. Here a and b are global
variables indexing over blocks and over values, respectively.

for (i = 0; i < 18; i++, a++) {
ww = w + rows[a];
vv = v + cols[a];
ww[0] += vv[0]*mvalues[b] + vv[1]*mvalues[b+1];
b += 2;
ww[1] += vv[0]*mvalues[b] + vv[1]*mvalues[b+1]

+ vv[2]*mvalues[b+2];
b += 3;
ww[2] += vv[1]*mvalues[b] + vv[2]*mvalues[b+1];
b += 2;

}

GenOSKI has low overhead, and indeed often performs well, es-
pecially when most blocks are fairly dense. This is a bit surprising,
because there are many reasons it should not do so. Zero fill is not
a problem per se, but it does have an impact: we need to maintain
two indexes per block (stored in the arrays rows and cols), so if
there are many sparse blocks, this entails more data than CSR. Fur-
thermore, GenOSKI can potentially generate a lot of code: for 4×4
blocks, there are 65,535 distinct patterns, which means every 4× 4
blocks could have a different pattern. In practice, the number of
patterns in a matrix is much smaller than the maximum (Table 1).
Lastly, unlike all the other methods, GenOSKI does not calculate
entire rows at a time, which means that, where the other methods
do a single write to each element of w — so exactly n writes —
GenOSKI may do as many as n/b reads and writes for each row, or
a total of nz/b memory operations on w. Nonetheless, as we have
noted and will see in Section 5, it often does quite well.

2.7 Latency
In this paper, we are not considering issues of latency, so our
remarks here will be very brief. Note that latency comes from
the need to re-order data and to generate code. CSR and CSRu do
neither, and have no latency; all other methods do code generation.

CSRbyNZ, Stencil and GenOSKI all involve some kind of anal-
ysis prior to code generation: grouping the rows by non-zero count,
calculating the stencil of each row, classifying blocks by pattern. In
general, we have found that low-level code generation is the most
expensive part of the specialization process, and therefore code size



Table 1. Characteristics of the matrices used in the experiments. Matrices labeled (p) are pattern matrices.
Matrix n nnz(M) size(MB) nnz/n group #stencils #genOSKI4 #genOSKI5 #distVals Row nz
email-EuAll (p) 265214 0.420 5.82 1.6 SNAP 161683 499 1088 420045 311
cit-HepPh (p) 34546 0.421 4.96 12.2 SNAP 31814 315 683 421578 162
soc-Epinions1 (p) 75888 0.508 6.11 6.7 SNAP 49442 3281 8439 307854 326
soc-sign 77357 0.516 6.21 6.7 SNAP 40649 1212 2867 2 279
web-NotreDame (p) 325729 1.497 18.38 4.6 SNAP 126894 4135 9474 1497134 312
webbase-1M 1000005 3.105 39.35 3.1 Williams 504865 4394 11141 222 370
e40r5000 17281 0.553 6.40 32.0 SPARSKIT 601 130 265 368750 25
fidapm11 22294 0.617 7.16 27.7 SPARSKIT 4682 1197 2576 88275 22
fidapm37 9152 0.766 8.80 83.7 SPARSKIT 8391 876 2102 350166 70
m133-b3 200200 0.801 9.93 4.0 JGD Homology 200200 489 1627 2 1
torso2 115967 1.033 12.27 8.9 Norris 3148 81 108 806653 3
fidap011 16614 1.091 12.55 65.7 SPARSKIT 7432 1684 3315 211502 71
cfd2 123440 1.604 18.83 13.0 Rothberg 46535 3422 7823 1480984 27
m14b (p) 214765 1.679 20.03 7.8 Dimacs10 172130 3331 9099 1679018 22
s3dkt3m2 90449 1.888 21.96 20.9 CYLSHELL 935 97 143 29116 23
conf6 0-8x8-20 49152 1.917 22.13 39.0 QCD 648 22 156 84553 1
ship 003 121728 1.949 22.77 16.0 DNVS 105098 3982 15702 49424 60
cage12 130228 2.032 23.76 15.6 vanHeukelum 130228 1100 4495 350 28
debr (p) 1048576 2.097 28.00 2.0 AG-Monien 786432 7 9 2097149 3
mc2depi 525825 2.100 26.04 4.0 Williams 2298 50 57 3584 3
s3dkq4m2 90449 2.259 26.20 25.0 CYLSHELL 1131 380 680 8632 29
engine 143571 2.424 28.30 16.9 Dimacs10 84195 108 538 1 147
thermomech dK 204316 2.846 33.35 13.9 Botonakis 204290 17 329 1967432 9

is the most reliable guide to specialization cost. Size was discussed
when presenting the methods: in practice, Unfolding produces the
longest code, CSRbyNZ almost always produces code of modest size
(though much bigger than CSR), while the amount of code produced
by Stencil and GenOSKI varies by matrix. (We note that when
those two methods do produce large codes, they usually do not per-
form very well.) Performance issues, and their relation to code size,
are discussed further in Sections 3 and 5. We do not report any mea-
surements for latency, because the code generator is a python script
that we are using to prototype the performance of different meth-
ods, not their latency.

2.8 Other Methods

We would like to mention two other potentially useful methods
which we are not testing in this study, vector instructions and mixed
methods. In general, our methods cannot efficiently use vector
units, due to non-consecutive accesses of vector v. For matrices
that are almost perfectly banded, elements can be stored in diagonal
form, and vector units can be used to advantage. However, in our
experiments with this method, it was never the best for our set of
matrices. Similarly, regular (non-generative) OSKI never showed
well for us. Thus, we do not show results for these two methods.

Another option is to use mixed methods, where a matrix is
decomposed into two or more matrices, and each matrix is handled
with a different method. For example, we might use the Stencil
method for the dense bands around the diagonal and CSRbyNZ
for the remaining elements. We have experimented with this idea,
but we have only rarely seen it perform well. Furthermore, the
algorithmic space here is so large that it is not yet clear to us how
to go about exploring it. For both these reasons, we do not show
results for mixed methods here.

3. Performance Issues
In this section we discuss some aspects of the methods that are
likely to affect performance; we will return to these in Section 5,
after seeing the actual timings.

3.1 Memory Requirements

A significant difference between specialized methods and “generic”
methods is that specialization can produce large codes, which can
in turn have a major impact on performance. On the other hand,
by folding data into the code, the non-code data storage require-

ments can be reduced. Table 2 contains the expressions to compute
code and data size for the various methods. Here we provide some
explanation of that table.

CSRu: Code size of CSRu is constant, and, for the values of u we
consider, small. Data consists of array mvalues (nz doubles),
array rows (n integers), and the cols array (nz integers). (Due
to a technicality of the representation, rows is of length n+ 1.)

CSRbyNZ: Since a different loop is generated for each group of
rows with the same count of non-zeros, the code size for CSRbyNZ
is a function of the number of distinct non-zero counts (Row nz),
as well as the number of non-zeros in each group (nz rowi).
In practice, Row nz is usually small (Table 1), so code size is
modest. Data size is practically the same as CSR.

Unfolding: For most matrices, Unfolding produces the longest
code of any of our methods. (In rare cases, Stencil can produce
code as long; no other method comes close.) As discussed above,
repeated values can allow for optimizations that, in some cases,
can significantly reduce code size, but this is rare, and in any
case still leaves the code very long. (At the very least, the size
of the code is O(n), since there is one assignment for each row.)
Repeated elements reduce data size significantly in many cases.

Stencil: The code size of this method depends on the number
of stencils and the size of each stencil. As shown in Table 1, the
number of stencils varies widely from matrix to matrix.

GenOSKI: The code size for GenOSKI is primarily a function of
the number of distinct patterns that appear in the matrix. As
with stencils, this number varies widely from matrix to matrix
(Table 1). In practice, it is always smaller, and usually much
smaller, than the number of stencils.

3.2 Memory Reference Locality

Another issue affecting performance that will vary by method is lo-
cality of memory references. All of our methods except Unfolding
maintain the values of M in an array of length nz and access it se-
quentially; there is nothing to be done here about locality. Similarly,
the location data in rows and cols are accessed sequentially. The
issue of locality shows up in how the methods reference the input
and output vectors v and w.



Table 2. Expressions to compute code and data size for the different methods.
CSR CSRbyNZ Unfolding Stencil GenOSKI

Code Size c
Row nz∑

i=1

nz rowi ∗ c (possibly) nz ∗ c
stencils∑

i=1

nz stencili ∗ c
patterns∑

i=1

nz patterni ∗ c

Data Size nz ∗ 8 + nz ∗ 4+ nz ∗ 8 + nz ∗ 4+ distinct nz ∗ 8 nz ∗ 8 + n ∗ 4 nz ∗ 8+
(n+ 1) ∗ 4 n ∗ 4 nblocks ∗ (4 + 4)

Table 3. Specification of experimental machines.
Name Processor & Freq (GHz) / Microarchitecture Cores Cache Sizes (Bytes) Mem OS icc

L1 (I/D) L2 L3 (GB)
loome2 Intel Core i7 880 @ 3.07 / Nehalem 4 128K 1M 8M 8 Linux CentOS 5.8 14.0
loome3 Intel Core i5 2400 @ 3.10 / SandyBridge 4 32K 256K 6M 8 Linux CentOS 5.8 14.0
i2pc3 Intel Xeon E7-4860 @ 2.27 / Westmere 40 64K 256K 24M 128 Scientific Linux 6.3 14.0
turing Intel Xeon E5-2620 @ 2.00 / SandyBridge 6 32K 256K 15M 16 Ubuntu Linux 12.04 14.0
milner AMD FX 8320 @ 3.50 / Piledriver 8 64K/16K 2M 8M 8 ArchLinux gcc 4.8.2

CSR: CSR maintains perfect locality relative to w, as it assigns to its
elements sequentially. If M is strongly banded — meaning the
non-zeros are clustered around the main diagonal — then it will
have good locality in v as well. In most cases, there is a dense
cluster of non-zeros around the main diagonal, but also a good
number of non-zeros elsewhere; in this case, access to v will begin
to look random, and locality will be poor.

CSRbyNZ: Here, because of the reordering of rows, access to w is
no longer sequential. Furthermore, any “natural” locality in v —
as when a matrix is strongly banded — may be lost. As a con-
sequence, this method does not have particularly good memory
behavior relative to either v or w.

Stencil: Memory access behaviour of Stencil is similar to
CSRbyNZ. Because each stencil loop may cover rows that are
randomly distributed throughout M , and also each stencil con-
tains elements of M potentially randomly distributed throughout
a single row, accesses to v and w are arbitrary.

GenOSKI: As with all other methods the access to the values, rows,
and cols are perfectly sequential. However, as with CSRbyNZ and
Stencil, accesses to v and w bear no obvious relation to the nat-
ural order, and are likely to be highly non-localized. (Aside from
locality issues, we noted earlier that GenOSKI performs many
more memory operations relative to w than the other methods.)

3.3 Parallelization

In this paper, we run all of our codes in parallel, using four threads.
It is also interesting to see how these methods perform sequentially,
but most researchers are using parallel codes, so parallel times are
easier to compare to other methods. For example, we have found
that MKL does not perform very well in sequential mode, so that
without running it in parallel, comparisons are fundamentally un-
fair. As another example, CSX does not claim to have good per-
formance in the sequential case, but only when parallel execution
creates memory contention.

Parallelization of these codes is generally quite straightforward.
It is just a matter of splitting M into four horizontal tranches, with
approximately equal numbers of elements, applying a method to
each, and producing four functions to be run on the four cores. For
CSR and Unfolding, there is really nothing more to it.

For CSRByNZ, Stencil, or GenOSKI, there is one choice to be
made before doing the split, and that is whether to sort the rows
before splitting. Consider Stencil: Suppose M has s stencils,
and they are spread throughout the matrix. If we split M into four
tranches in the obvious way (what we call “split-by-count”), we are
likely to have all s stencils, more or less, show up in each tranche;

if there are a lot of stencils, the code running on each processor
will be large. If instead we first sort the rows of M by stencil and
then do the split into four pieces (we call this “split-by-pattern”),
each piece will have only a portion of the stencils and will therefore
have less code, which is generally better for performance. Note that,
for stencil and CSRbyNZ, we already have to sort the rows into
groups, so split-by-pattern is no extra work.

GenOSKI presents a somewhat different problem. The method
divides the matrix up by patterns, and handles every occurrence of
a given pattern in a single loop. If we generate this code first, then
assign a subset of the loops to each core, it gives us an even split
and minimizes code size. However, there is a problem alluded to
earlier: any of the patterns can contribute values to any of the rows.
If we had code running on separate cores reading and writing to
the same location in w, we would have to put locks on each one.
On the other hand, if we split M into tranches (split-by-count),
and generate (sequential) GenOSKI code separately in each tranche,
there is no need for locks. Although split-by-count results in larger
code, the effect is more than offset by avoiding the need for locking.

Accordingly, we parallelize GenOSKI, Unfolding and CSR us-
ing split-by-count; Stencil and CSRbyNZ using split-by-pattern.

4. Experimental Setup
The five target platforms on which we ran our experiments are
listed in Table 3. The motivation to select these platforms was
to have a variety of LLC cache sizes and microarchitectures. To
generate parallel code we used the OpenMP “section” construct
and created as many sections as threads. The codes were compiled
with icc with the -O3 -openmp flags; when icc was not available,
we used gcc instead, with the same flags.

We have implemented and evaluated the following methods:
CSR, CSRu with u ranging from 1 to 3, CSRbyNZ, Unfolding,
Stencil, and GenOSKI. We explained in Section 3.3 why split-
ting the matrix using split-by-pattern was likely to produce better
results for CSRbyNZ and Stencil, while split-by-count would be
better for GenOSKI; our experiments confirm this intuition, and ac-
cordingly we use the better method in each case and do not report
the alternative. (With the split-by-pattern approach, when a loop
has to handle more than nthread*500 non-zeros, we split the loop
to allow for a better balanced workload.) For GenOSKI, our exper-
iments show that the best results are obtained with blocks of 4× 4
or 5×5, so we only show results for these sizes, and use the names
GenOSKI4 and GenOSKI5, respectively.

We compare our methods against the Intel MKL library ver-
sion 14.0, whenever it is available on the target platform. We also
compare against two state-of-the-art SpMV libraries, BiCSB [12]



Table 4. Code and Data Size in MB. For Stencil and CSRbyNZ, we use split-by-pattern. For GenOSKI, we use the split-by-count approach.
In all the cases, we generate the code for 4 threads.

CSR Stencil GenOSKI4 GenOSKI5 Unfolding CSRbyNZ
Matrix Code Data Code Data Code Data Code Data Code Data Code Data
email-EuAll 0.00 5.8 11.5 3.4 0.13 6.5 0.29 6.4 12.2 3.3 1.70 5.9
cit-HepPh 0.00 5.0 9.6 3.4 0.07 6.6 0.22 6.6 9.6 3.3 0.58 5.2
soc-Epinions1 0.00 6.1 12.1 4.1 0.92 7.2 1.90 7.0 12.1 4.0 1.90 6.3
soc-sign 0.00 6.2 11.8 4.1 0.30 7.7 0.62 7.6 5.1 0.0 1.40 6.3
web-NotreDame 0.00 18.4 34.7 12.0 1.50 15.1 2.80 14.6 32.3 12.0 2.70 18.5
webbase-1M 0.00 39.4 77.7 25.0 1.98 32.2 4.00 31.0 31.2 15.9 5.30 41.2
e40r5000 0.00 6.4 0.5 4.5 0.09 5.0 0.30 4.9 12.8 4.0 0.09 6.7
fidapm11 0.00 7.2 5.7 5.0 0.57 6.3 1.34 5.9 14.2 18.9 0.04 7.5
fidapm37 0.00 8.8 19.6 6.1 0.39 7.2 1.34 6.9 20.0 5.9 0.50 9.2
m133-b3 0.00 9.9 19.6 6.4 0.18 10.5 0.84 10.0 9.7 0.0 0.00 10.4
torso2 0.00 12.3 0.6 8.7 0.04 10.1 0.04 9.7 7.4 8.3 0.01 12.8
fidap011 0.00 12.6 13.7 8.8 1.27 9.7 2.74 9.4 25.9 6.0 0.31 13.1
cfd2 0.00 18.8 21.6 13.1 1.81 15.5 4.13 14.9 31.9 11.9 0.04 19.7
m14b 0.00 20.0 38.0 13.5 1.38 22.2 2.85 21.8 39.1 13.4 0.03 20.9
s3dkt3m2 0.00 22.0 0.3 15.5 0.09 16.6 0.20 16.1 39.6 5.5 0.03 23.0
conf6 0.00 22.1 2.0 15.5 0.02 17.3 0.15 17.2 42.1 7.4 0.02 23.2
ship 003 0.00 22.8 44.5 15.6 2.21 19.7 9.52 18.3 43.8 11.8 0.14 23.8
cage12 0.00 23.8 46.6 16.2 0.35 22.4 1.73 22.4 26.6 0.7 0.05 24.9
debr 0.00 28.0 58.1 16.7 0.00 20.9 0.00 20.9 58.4 16.7 0.00 29.3
mc2depi 0.00 26.0 0.4 18.9 0.02 21.9 0.02 20.9 10.8 12.8 0.00 27.3
s3dkq4m2 0.00 26.2 0.8 18.4 0.31 19.8 1.10 19.2 47.0 6.9 0.05 27.4
engine 0.00 28.3 51.8 19.6 0.10 22.8 0.51 22.1 11.8 0.0 0.84 29.6
thermomech dK 0.00 33.4 64.8 22.7 0.02 28.0 0.12 30.3 63.8 22.3 0.01 34.9

and CSX [24], that have online code that can be installed and run.
BiCSB [2] is implemented on top of CSB [11], a parallel sparse
matrix data structure designed for SpMV on multicores. BiCSB
uses bitmasked register blocks to reduce the memory bandwidth
requirement when using register blocking. (We ran both CSB and
BiCSB, but since BiCSB is always faster than CSB, we only com-
pare against BiCSB.) CSX [3] is based on the Compressed Sparse
eXtended format that allows for a flexible storage format to support
a variety of structures within the sparse matrix, such as horizontal,
vertical, diagonal, anti-diagonal, or blocks. This approach requires
runtime code generation. We compare against the SpMV running
times, without taking into account the time to generate the code.

Table 1 shows the 23 matrices from the Matrix Market [6] and
the University of Florida Sparse Matrix collection [4, 17] that we
have used. The table is split into two sets by a horizontal line and
each set is sorted by number of non-zeros. The matrices above
the horizontal line are derived from graphs that model social or
communication networks, among others, and follow a power law
distribution. The matrices below the line come from other domains,
such as Finite Element modeling (SPARSKIT). Several of these
matrices were used in previous studies [11, 24, 34]. We did not
select them based on any specific pattern, but rather to represent a
variety of domains. Some of these matrices are pattern matrices, for
which the source does not provide values; we have generated values
for these matrices, with all the generated values being different. The
set includes symmetric and structurally-symmetric matrices. For
these, we do not apply any shape-based optimization; we simply
treat them as regular matrices and, consequently, only report the
number of elements that we multiply.

The columns of Table 1 provide the following information: n
and nnz; the size of the CSR code — which is to say, the size
of the raw data — in MB; the denseness (nnz/n); and the group
they come from. The last few columns give data that are useful
in evaluating the performance of these methods: #stencils is the
number of different stencils; #genOSKI4 and #genOSKI5 are the
numbers of distinct patterns that appear in 4× 4 and 5× 5 blocks,
respectively; #distVals is the number of distinct values; and Row nz
is the number of distinct row non-zero counts.

Table 4 shows code and data sizes for the matrices for the
different methods when we generate OpenMP code for 4 threads.
These sizes are drawn directly from the compiled code. Code size
values differ slightly from those computed using the expressions
in Table 2, as those expressions do not take into account the extra
loops that appear when a loop is split for parallel execution into
2 or more threads. Also, the icc compiler unrolls some loops. In
addition, to speed up compilation time3, we split the code into
several functions, grouped in multiple files. As a consequence, even
if a matrix has a single distinct value, this value will appear once
in each file. Thus, for Unfolding, the data size in practice is larger
than the number of distinct values reported in the table.

To collect the timings, we did the following for each ma-
trix/method/machine combination: (1) Performed matrix-vector
multiplication 10,000 times (on an unloaded machine); (2) repeated
(1) five times; and (3) chose the fastest of those five runs. For gen-
erality, the result of the multiplication is added to the output vector,
even though this output vector is zeroed before each multiplication.
The 10,000-iteration choice makes time measurements reliable by
giving running times that are in the order of seconds even for the
smallest matrices in our set. We choose the minimum time in step
(3) because it represents the fastest run and the one that is con-
taminated by the fewest external events. We observed the relative
difference of the minimum with respect to the median of the five
runs to be usually less than 2%. For instance, in loome2, out of 138
cases (23 matrices × 6 specializers), only in 5 cases the relative
difference is more than 2%, with the maximum being 5%.

5. Experimental Results
In this section, we report our experimental results. We compare
with MKL, and in broader outline with two state-of-the-art libraries,
CSX and BiCSB. We briefly address the issue of scalability by com-
paring our methods to others when running on eight threads (rather
than our usual four). Finally, we discuss how the characteristics of

3 Compilers are optimized for human-written code, which tends to be small,
so they are slow when compiling large codes produced by a code generator.



Table 5. Best method for all matrices/machines and speedup with respect to MKL, except for milner where the baseline is CSR. All the
methods (including MKL) run with 4 threads.

Matrix loome2 Speedup loome3 speedup i2pc3 speedup turing speedup milner speedup
email-EuAll CSR 1.48 BiCSB 1.71 CSRbyNZ 1.60 CSRbyNZ 2.05 GenOSKI4 2.11
cit-HepPh CSRbyNZ 1.21 CSRbyNZ 1.18 Unfolding 1.10 CSRbyNZ 1.30 CSRbyNZ 1.53
soc-Epinions1 CSRbyNZ 1.43 BiCSB 1.48 Unfolding 1.96 CSRbyNZ 2.20 CSRbyNZ 2.17
soc-sign Unfolding 2.92 Unfolding 2.79 Unfolding 2.80 Unfolding 2.77 Unfolding 3.52
web-NotreDame GenOSKI4 1.12 CSR 1.03 Unfolding 1.28 GenOSKI4 1.23 GenOSKI4 1.57
webbase-1M Unfolding 1.33 Unfolding 1.39 Unfolding 1.74 Unfolding 1.31 GenOSKI4 1.38
e40r5000 Stencil 1.35 Stencil 1.89 CSR 1.02 CSR 1.05 GenOSKI4 1.73
fidapm11 CSRbyNZ 1.07 CSX 1.20 CSR 1.03 CSR 2.11 CSRbyNZ 1.40
fidapm37 GenOSKI4 1.28 CSX 1.35 CSR 1.08 CSR 1.06 GenOSKI4 1.38
m133-b3 Unfolding 1.19 Unfolding 1.22 Unfolding 1.40 CSRbyNZ 1.91 CSRbyNZ 1.50
torso2 Stencil 1.76 GenOSKI5 1.47 Unfolding 1.58 Unfolding 2.08 GenOSKI5 2.03
fidap011 CSX 1.47 GenOSKI4 1.11 CSR 1.04 CSRbyNZ 1.49 GenOSKI4 1.45
cfd2 CSX 1.19 CSX 1.18 Unfolding 1.08 GenOSKI4 1.09 GenOSKI4 1.55
m14b CSRbyNZ 1.42 BiCSB 1.64 CSR 1.27 BiCSB 1.56 CSRbyNZ 1.43
s3dkt3m2 Stencil 1.63 Stencil 1.51 Stencil 1.19 Stencil 2.16 GenOSKI5 2.04
conf6 0-8x8-20 Stencil 1.39 GenOSKI4 1.41 CSR 1.01 GenOSKI4 1.62 GenOSKI4 1.76
ship 003 CSR 1.07 CSX 1.20 MKL 1.00 CSR 1.01 GenOSKI4 1.31
cage12 CSX 1.22 CSRbyNZ 1.08 Unfolding 1.56 GenOSKI4 1.10 GenOSKI4 1.28
debr CSRbyNZ 1.15 CSRbyNZ 1.09 GenOSKI4 1.49 BiCSB 1.15 CSRbyNZ 1.36
mc2depi Unfolding 1.29 Unfolding 1.23 Unfolding 1.61 GenOSKI5 1.52 GenOSKI5 1.76
s3dkq4m2 Stencil 1.51 Stencil 1.45 MKL 1.00 Stencil 1.81 GenOSKI5 1.73
engine Unfolding 3.24 Unfolding 2.85 Unfolding 3.89 Unfolding 6.20 Unfolding 1.82
thermomech dK GenOSKI4 1.11 BiCSB 1.06 GenOSKI4 1.01 GenOSKI4 1.41 GenOSKI4 1.61
Average 1.47 1.46 1.46 1.78 1.71

Table 6. Comparison between methods.
loome2 loome3 i2pc3 turing milner

Avg. Speedup 1.12 1.09 1.08 1.15 -
# matrices is best 2 1 6 4 -

CSR # matrices is better 23 20 16 20 -
Avg. Speedup if better 1.12 1.11 1.12 1.17 -
Avg. Speedup 0.79 0.81 1.01 0.81 0.93
# matrices is best 5 3 1 2 0

Stencil # matrices is better 6 6 11 6 7
Avg. Speedup if better 1.49 1.46 1.32 1.68 1.6
Avg. Speedup 1.06 1.15 1.05 1.28 1.58
# matrices is best 3 2 2 5 11

GenOSKI4 # matrices is better 14 16 11 19 23
Avg. Speedup if better 1.21 1.29 1.25 1.37 1.58
Avg. Speedup 0.97 1.04 0.98 1.19 1.50
# matrices is best 0 1 0 1 4

GenOSKI5 # matrices is better 10 9 10 15 23
Avg. Speedup if better 1.22 1.31 1.21 1.38 1.50
Avg. Speedup 0.88 0.82 1.30 1.03 0.84
# matrices is best 5 5 11 4 2

Unfolding # matrices is better 6 6 13 6 4
Avg. Speedup if better 1.89 1.78 1.75 2.59 2.05
Avg. Speedup 1.13 1.14 1.12 1.29 1.32
# matrices is best 5 3 1 5 6

CSRbyNZ # matrices is better 20 22 12 17 23
Avg. Speedup if better 1.16 1.15 1.28 1.43 1.32
Avg. Speedup 0.86 0.90 - - -
# matrices is best 3 4 - - -

CSX # matrices is better 8 10 - - -
Avg. Speedup if better 1.29 1.20 - - -
Avg. Speedup 0.66 1.07 0.63 0.99 -
# matrices is best 0 4 0 2 -

BiCSB # matrices is better 2 10 3 11 -
Avg. Speedup if better 1.04 1.30 1.26 1.22 -
Avg. speedup 1.47 1.45 1.44 1.77 1.71

Best #matrices is better 23 23 17 20 23
Specialization Avg. Speedup if better 1.47 1.45 1.62 1.84 1.71

the machines and matrices help explain the timing results; the latter
is important in the process of predicting the best method.

5.1 Comparison of Methods

Table 5 shows, for each matrix and machine, the best method
among MKL, CSR, Stencil, GenOSKI4, GenOSKI5, Unfolding,
CSRbyNZ, CSX and BiCSB (we only consider CSR because CSR and
CSRu are always very close to each other). The table also shows
the speedup with respect to MKL, where the speedup is computed
by dividing the MKL running times by the running times of each
method, when all run with four threads (including MKL). For milner,
we could not run MKL, because it has an AMD processor. In addi-

tion, the AMD’s Core Math Library (CML) does not have level-2
sparse operations [1]. Hence, for this machine we compare with
CSR. The last row shows, for each machine, the average speedup
obtained when the best method is used. We were able to run CSX
only on loome2 and loome3 due to library conflicts. Also, we could
not run BiCSB on milner because BiCSB requires the icc compiler.

Table 6 compares the different methods. For each method and
machine the table shows the average speedup if that method is used
for all the matrices, the number of matrices for which that method is
the best, the number of matrices that run faster than MKL using that
method, and the average speedup of that method if only used when
it runs faster than MKL. The last two metrics tell us how often each
method improves with respect to MKL, and if it improves, what is
the average speedup. The last row in the table (labeled Best) shows
the same metrics, but when the best specializer is chosen. In this
case, “Avg. speedup” is the speedup obtained if we always use a
method that requires specialization (CSR, CSRu, MKL, and BiCSB do
not require specialization, while all the others do); in some cases
this will result in slowdowns with respect to MKL. This value is very
similar to the Avg. speedup of the best method, shown in the last
row of Table 5.

Overall, the results show that specialization can produce sig-
nificant speedups. Out of 23 matrices, specialization produces
speedups for 23, 23, 17, 20, and 23 matrices and average speedups
of 1.47, 1.45, 1.44, 1.77, and 1.71 for loome2, loome3, i2pc3, tur-
ing, and milner, respectively. The average speedups are computed
using the best specialization method, even if this method is slower
than a method that does not require specialization.

Figures 1 and 2 show MFLOPS/sec for every combination
of machine/matrix/method. To reduce clutter, we omit CSR and
GenOSKI5. The figures show that our methods are usually faster
than CSX and BiCSB. Moreover, when one of these methods is
faster, the difference with one of our methods is usually very small.

We have also run some experiments to evaluate the scalability of
our methods. Figure 3 shows speedups for MKL with 4 and 8 threads,
and the best of Unfolding, CSRbyNZ, Stencil, and GenOSKI4
when running with 4 and 8 threads with respect to MKL with a single
thread. The figure shows that in all cases, but in three matrices, a
method that requires specialization is better than MKL. It also shows
that the methods that require specialization scale well.
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Figure 1. MFLOP/sec for loome2, i2pc3 and milner.

5.2 Explaining the Timings

The natural question is how to determine what is the best method.
Our results show that speedups depend on both machine and matrix
characteristics. For two matrices (soc-sign and engine), the same
method is the best across the board. For the rest, the best method
varies across machines. For instance, for email-euAll, there are four
different methods with very different speedups. We now discuss
how the machine and matrix characteristics (Tables 1, 3, and 4)
help explain the timings (Tables 5 and 6).

CSR or CSRu are not usually the best methods. Although not
shown, running times for CSRu are very similar to those of CSR.
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Figure 2. MFLOP/sec for loome3 and turing.

Unfolding is the best method when the sum of code and data
size fits in the Last Level Cache (LLC) (Table 3 and 4). Our ma-
trices are large, and this term should always be large. However, as
explained in Section 2, when the number of distinct values is small
(distVals in Table 1), the compiler can apply certain optimizations
such as CSE, that significantly reduce the code size. Matrices that
benefit from this method across the board are soc-sign and engine.
soc-sign and engine have only 2 and 1 distinct values, respectively,
and achieve significant speedups in all the platforms. For webbase-
1M, the number of distinct values is 222, but it is our largest matrix
in terms of non-zero elements, and thus Unfolding is the best for
all machines except milner. For m133-b3, Unfolding is the best
in all platforms except turing and milner (on these two platforms,
Unfolding is the second best method with only a very small differ-
ence between them). m133-b3 obtains, in general, lower speedups
than soc-sign and engine, even though it only has 2 distinct val-
ues. The reason is that the code size of Unfolding for m133-b3
is about the size of the CSR data. The results also show that for
i2pc3, Unfolding is the best method for 11 matrices. This is be-
cause i2pc3 has the largest LLC (24MB). To the best of our knowl-
edge, this is the first study that reports the benefit of Unfolding
when the number of distinct values is small. This can be applica-
ble to a large set of matrices, like those derived from graphs, such
as the adjacency matrix or laplacian matrix. Another example are
algebraic multigrid methods for sparse linear systems [10].

Stencil has the potential to produce good speedups, but only
the matrices with a small number of stencils can benefit from it.



Stencil is not the best method across the board for any matrix,
but it is the best for s3dkt3m2 for all machines, except milner.
s3dkt3m2 has 935 different stencils, which results in larger code
compared to the 94 different patterns of GenOSKI4 (see Table 1).
However, Stencil is more efficient than GenOSKI in all the ma-
chines (except milner, where GenOSKI is usually the best method)
because code size is relatively small, it does not require the cols
array or indirect access to v, and it has good locality in the out-
put vector. Stencil is also usually good for s3dkq4m2, torso2,
mc2depi, and e40r500. Although Stencil might not be the best
method for these matrices, is usually as good as the best. Notice
that these matrices (together with conf6 0-8x8-20) are the matrices
with the smallest number of stencils. For conf6 0-8x8-20, that has
only 648 stencils, GenOSKI is better in loome3, turing, and mil-
ner, but Stencil is the second best method on those machines.
Stencil delivers significant speedups, when it is better than MKL,
as shown in Table 6.

CSRbyNZ always produces small codes. Even for the power law
matrices (matrices from the SNAP group and webbase-1M) that
have a relatively large Row nz (see Table 1), it is still much smaller
than the number of stencils or block patterns. The data size of
this method is similar to that of CSR, but the code executes fewer
loop overhead instructions, resulting in higher Instruction Level
Parallelism (ILP). This method tends to have modest speedups,
although it produces significant speedups on turing. We consider
this to be a default method that can be used when none of the other
methods seems appropriate. It is interesting to notice that many of
the power law matrices benefit from this method in loome2, turing,
and milner machines, which have smaller caches than i2pc3.

GenOSKI always produces modest code size (see Table 4), as
the number of patterns is never too big: out of 65,536 possible pat-
terns when using blocks of size 4×4, the maximum in Table 1 is
4,394. However, the number of patterns is not the most important
feature to determine the performance of this method, as it is the
best method for web-NotreDame, which has 4,135 patterns (only
webbase-1M has more) and is not the best method for debr, that has
the lowest number of patterns, only 7. The ability of this method to
decrease data size is also important, and that depends on the num-
ber of blocks that are empty (each block needs a cols and a rows
index) and the locality. Overall, GenOSKI produces good results
most of the times for 6 matrices: web-NotreDame, fidapm37, fi-
dap011, cfd2, conf6 0-8x8-20, and thermomech dK. Speedups of
this method are comparable to those of CSRbyNZ. milner stands out
as the machine most favorable, by far, to GenOSKI. (4×4 is usually
the best block size; 5×5 is occasionally better. We have also evalu-
ated smaller blocks, but we do not report results, as they are never
better.)

CSX, which does specialization, is the best method for 3 matrices
on loome2 and 4 matrices on loome3. It seems to perform well on
matrices where GenOSKI is also a good option. BiCSB is the best
only for 4 matrices on loome3, and 2 matrices on turing. Similarly,
MKL is the best for 2 matrices on i2pc3.

6. Applications
Knowing that efficient codes can be produced by code generation
is interesting, but is it useful? That depends entirely upon the
tolerance for latency in the particular application.

We note that it is very common for the shape of a matrix —
the exact locations of its non-zeros — to be known even when the
values are not. Some of these are referred to as “pattern matrices,”
and the Matrix Market and the Florida collection include many
of them. Also, for those matrices derived using Finite Element
methods [26], the shape of the matrix may be known ahead of
time, as the matrix is derived from a mesh that is usually available
before solving the problem. All of our methods except Unfolding
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Figure 3. Speedup versus sequential MKL for 4 and 8 threads on
i2pc3.

generate code based only on the shape; by generating code for those
matrices off-line — only the mvalues array needs to be supplied at
runtime — the issue of latency is entirely obviated.

The more challenging case is when nothing is known about
the matrix until runtime. The work presented here is the first step
in the creation of a library for matrix-vector multiplication that
will use runtime specialization, auto-tuning, and machine learning
techniques to predict the best method, as has been done in previous
work [19, 20, 25, 28, 33]. The library would be employed in cases
where a single matrix M is to be multiplied by many vectors.

Here is how we envision the library working: The user will sup-
ply the matrix to the library, and the library will produce a pointer
to a function of type void multByM (double v[], double
w[]). When called subsequently, multByM will multiply M by
v and place the result in w. (The OSKI library [19, 21, 31] operates
similarly.) When first presented with M , the system will determine
which method will produce the most efficient multByM. It may de-
termine that CSR is the best, and will immediately return a pointer
to pre-existing code; or it may determine that a specialized code,
which must be generated at runtime, will be most efficient. This
process itself will take time, and generating the specialized code,
if that is the decision, will take even more; in any case, the system
cannot produce overall speedups if the matrix is to be multiplied
only a small number of times. (The risk might be managed by run-
ning program generation in parallel with a low-latency method like
CSR until the generated code is ready.)

This library organization raises several questions:

1. What methods of generating multByM are likely to produce
efficient code and what are the speedups that these methods can
deliver? This is the question we address here.

2. How can the system determine the best method for a particular
matrix on a particular machine?

3. How can the latency introduced by the code specialization pro-
cess be minimized?

Question (2) will be addressed by auto-tuning [19, 20, 25, 28, 33].
Here, one gathers information about the machine at “install time,”
and feeds it into the runtime specialization process, which uses it,
together with characteristics of the matrix M , to determine how
best to generate multByM. To minimize latency (question 3), we
are developing purpose-built code generators.

7. Related Work
Sparse matrix-dense vector multiplication is an operation that is
used in many scientific problems. It has been studied in the OSKI



project [21]. A number of researchers have looked at multi-core im-
plementations [9, 11, 12, 18, 22, 24, 27, 34]. Among those, we have
compared our codes with CSB, BiCSB [12], and CSX [24], as their
libraries were available online. CSRByNZ is similar to the method
described by Mellor-Crummey and Garvin [27], while GenOSKI is
similar to PBR [9]. Perhaps, the main difference between our work
and previous ones, is that rather than evaluating a single method,
we are evaluating many. Our goal was to understand if, and by how
much, specialization could improve performance.

As discussed in Section 6, auto-tuning is used to overcome the
problem that the best code for a problem can vary from machine to
machine. It is used by OSKI; other examples are [20, 25, 28, 33].

The area of program specialization — also called code gen-
eration, partial evaluation, or staging — has been quite heav-
ily studied, especially with respect to language features, such as
type-checking, that promote simplicity and safety of specializa-
tion [13, 30, 32]. Work in this area specifically addressing high-
performance for realistic applications includes work on marshalling
[7, 14] and on code-optimizing transformations [15]. With runtime
specialization, the focus moves toward the efficiency of specializa-
tion itself [23, 29].

8. Conclusions
In this paper we have shown that specialization can be used to ob-
tain speedups for SpMV. Our experimental results using 23 matri-
ces and five machines show that a method requiring specialization
runs faster than MKL in 106 out of 115 runs (23×5). These exper-
imental results include comparisons with state of the art libraries,
such as Intel’s MKL, BiCSB, and CSX. If we only use special-
ization, the average speedup with respect to Intel’s MKL library
ranges from 1.44x to 1.77x, depending on the machine. For indi-
vidual matrices, these speedups can be higher.

In this paper, rather than evaluating a single method, we are
evaluating many. Our results show that there is no one best method
and that the best method depends on the machine and matrix char-
acteristics. Among the evaluated methods, we have found that one
of our methods, Unfolding, can produce significant speedups
when the number of distinct values is small. This is important,
as this can be common in matrices that are derived from graphs,
such as the Laplacian matrix, or algebraic multigrid methods for
sparse linear systems.
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[12] A. Buluç, S. Williams, L. Oliker, and J. Demmel. Reduced-bandwidth
multithreaded algorithms for sparse matrix-vector multiplication. In
IPDPS ’11, pages 721–733, 2011.

[13] W. Choi, B. Aktemur, K. Yi, and M. Tatsuta. Static analysis of multi-
staged programs via unstaging translation. In POPL ’11, pages 81–92,
2011.

[14] A. Cohen and C. Herrmann. Towards a high-productivity and high-
performance marshaling library for compound data. In 2nd MetaO-
Caml Workshop, 2005.

[15] A. Cohen, S. Donadio, M. J. Garzarán, C. Herrmann, O. Kiselyov,
and D. Padua. In search of a program generator to implement generic
transformations for high-performance computing. Science of Com-
puter Programming, 62(1):25–46, 2006.

[16] R. Davies and F. Pfenning. A modal analysis of staged computation.
In POPL ’96, pages 258–270, 1996.

[17] T. A. Davis and Y. Hu. The University of Florida sparse matrix
collection. ACM Trans. Math. Softw., 38(1):1:1–1:25, Dec. 2011.

[18] E. D’Azevedo, M. Fahey, and R. Mills. Vectorized sparse matrix
multiply for compressed row storage format. In ICCS’05, pages 99–
106, 2005.

[19] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc,
R. C. Whaley, and K. Yelick. Self Adapting Linear Algebra Algo-
rithms and Software. Proc. of the IEEE, 93(2):293–312, 2005.

[20] M. Frigo. A Fast Fourier Transform Compiler. In PLDI ’99, pages
169–180, 1999.

[21] E.-J. Im, K. Yelick, and R. Vuduc. Sparsity: Optimization framework
for sparse matrix kernels. Int. J. High Perform. Comput. Appl., 18(1):
135–158, 2004.

[22] A. Jain. pOSKI: An extensible autotuning framework to perform
optimized SpMVs on multicore architectures. Master’s thesis, U. of
California at Berkeley, 2008.

[23] S. Kamin, L. Clausen, and A. Jarvis. Jumbo: Run-time Code Genera-
tion for Java and Its Applications. In CGO ’03, pages 48–56, 2003.

[24] K. Kourtis, V. Karakasis, G. Goumas, and N. Koziris. Csx: An
extended compression format for spmv on shared memory systems.
In PPoPP’11, pages 247–256, 2011.

[25] X. Li, M. J. Garzarán, and D. Padua. Optimizing Sorting with Genetic
Algorithms . In CGO ’05, pages 99–110, 2005.

[26] A. Logg, K.-A. Mardal, and G. N. Wells. Automated solution
of differential equations by the finite element method (chapter 6).
https://bitbucket.org/fenics-project/fenics-book/downloads.

[27] J. Mellor-Crummey and J. Garvin. Optimizing sparse matrix vector
multiply using unroll-and-jam. Int. J. High Perform. Comput. Appl.,
18(2), 2004.
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