
VISOR: A Fast Image Processing Pipeline

with Scaling and Translation Invariance

for Test Oracle Automation of Visual Output Systems

M. Furkan Kıraç, Barış Aktemur, Hasan Sözer∗

Ozyegin University, Istanbul, Turkey

Abstract

Test oracles differentiate between the correct and incorrect system behavior.

Hence, test oracle automation is essential to achieve overall test automation.

Otherwise, testers have to manually check the system behavior for all test

cases. A common test oracle automation approach for testing systems with

visual output is based on exact matching between a snapshot of the observed

output and a previously taken reference image. However, images can be

subject to scaling and translation variations. These variations lead to a high

number of false positives, where an error is reported due to a mismatch

between the compared images although an error does not exist. To address

this problem, we introduce an automated test oracle, named VISOR, that

employs a fast image processing pipeline. This pipeline includes a series of

image filters that align the compared images and remove noise to eliminate

differences caused by scaling and translation. We evaluated our approach in

the context of an industrial case study for regression testing of Digital TVs.

∗Ozyegin University, Nişantepe Mah. Orman Sk. No: 34-36, Alemdağ – Çekmeköy
34794, İstanbul, Turkey. phone: +90 216 564 9383, fax: +90 216 564 9057

Email address: hasan.sozer@ozyegin.edu.tr (Hasan Sözer)

Preprint submitted to Journal of Systems and Software June 21, 2017

Results show that VISOR can avoid 90% of false positive cases after training

the system for 4 hours. Following this one-time training, VISOR can compare

thousands of image pairs within seconds on a laptop computer.

Keywords: black-box testing, test oracle, computer vision, image

processing, test automation

1. Introduction1

Testing activities are essential to ensure the reliability of systems. In-2

creasing system size and complexity make these activities highly expensive.3

It was previously reported [1, 2] that testing can consume at least half of4

the development costs. A typical approach for reducing this cost is to adopt5

test automation [3, 4]. This can involve the automation of a set of various6

activities such as the generation of test inputs/cases, execution of these on7

the system under test, and the verification of the results. Hereby, the last ac-8

tivity is performed by a so-called test oracle [5] that differentiates the correct9

and incorrect behavior of the system.10

A recent survey [6] suggests that the problem of automating test oracles11

has received significantly less attention in the literature compared to the other12

aspects of test automation. However, test oracle automation is essential to13

achieve overall test automation. Otherwise, the tester has to manually check14

the system behavior for all test cases.15

One might assume the availability of formal specifications of intended sys-16

tem behavior and/or annotations of pre/post-conditions in source code [7].17

In such cases, test oracle automation becomes a straightforward compari-18

son task. However, this assumption is mostly not applicable in state-of-the-19

2

practice [6]. One might also use metamorphic testing techniques [8] that20

rely on metamorphic relations as derived invariants of correct system out-21

put. These techniques have proven to be practical and effective in various22

application domains [8, 9]. Hereby, the biggest challenge is the discovery of23

metamorphic relations relevant for the domain [6].24

Test oracle automation is especially hard when the evaluated system out-25

put is not unique/exact and when it takes complex forms such as an im-26

age [10]. Under these circumstances, test oracles cannot perform trivial27

comparisons with respect to a reference output. Otherwise, they tend to28

be fragile and they lead to many false positives [11].29

In this paper, we focus on black-box testing of software-intensive con-30

sumer electronics. These embedded systems are subject to regular regression31

testing activities without any access to the source code or internal execution32

platform. Furthermore, these systems work with a variety of screen sizes.33

Test cases are evaluated by taking a snapshot of the graphical user inter-34

face, and comparing this snapshot with a previously taken reference image35

that serves as the expected output. There exist tools to perform image com-36

parisons between such image pairs, e.g. Perceptual Image Diff1, DSSIM2,37

ImageMagick3. However, these comparisons lead to a high number of false38

positives [12, 13]. That is, an error is reported due to a mismatch between the39

compared images although an error does not exist. As a result, images cor-40

responding to each reported error should be manually inspected to identify41

1http://pdiff.sourceforge.net
2https://github.com/pornel/dssim
3https://www.imagemagick.org

3

http://pdiff.sourceforge.net
https://github.com/pornel/dssim
https://www.imagemagick.org

which of them should be classified as an error or not. This process requires42

considerable time and effort.43

We observed that false positives are mainly caused by scaling and shifting44

between the reference image and the snapshot. Systems that are robust under45

both shifting and scaling of an image are said to be invariant to translation46

and scale transformations. In this paper, we analyze these problems and47

build a pipeline of image processing techniques to reduce false positives. We48

particularly design and implement the pipeline to run fast. Hereby, we do49

not aim at providing contributions in the area of image processing. However,50

existing techniques in this domain have not been systematically reviewed51

for addressing relevant problems in test oracle automation. To the best of52

our knowledge, there does not exist any published work that focuses on this53

problem. Moreover, the solution is less likely to be introduced effectively in54

industries because test automation is mainly performed by software and/or55

test engineers, whereas an effective solution for this problem should benefit56

from a strong background on image processing and computer vision.57

We illustrate and evaluate the effectiveness of our approach in the context58

of an industrial case study. We collected thousands of captured and reference59

image pairs that are used for automated regression testing of a commercial60

Digital TV system. We counted the number of false positive cases caused by61

the comparison of these images. Results show that more than 90% of these62

cases can be avoided when we use our approach. The comparison of all the63

image pairs can be completed within seconds on a laptop computer. The64

system requires a one-time training step for parameter calibration if/when65

the system or environment changes. This step takes 4 hours.66

4

In the following section, we provide the problem statement and introduce67

our industrial case study. In Section 3, we explain our overall approach68

and the image processing techniques we employed. In Section 4, we present69

and discuss the results obtained based on the case study. In Section 5, we70

summarize the related work, and discuss why they fall short in our problem71

context. Finally, in Section 6, we provide our conclusions.72

2. Industrial Case Study: Digital TV Systems73

In this section, we introduce an industrial case study that serves as a run-74

ning example for both illustrating the problem context and evaluating the75

adopted techniques. We focus on automated regression testing of Digital TV76

(DTV) systems. In particular, we investigated the testing process of DTV77

systems at Vestel Electronics4, which is one of the largest TV manufacturers78

in Europe. DTV systems have become complicated software systems, includ-79

ing over ten million lines of code. In addition to conventional TV function-80

alities, they provide features such as web browsing, on-demand streaming,81

and home networking [14]. The number of such additional features is in-82

creasing day by day. This trend makes it essential to employ efficient testing83

techniques to ensure the product quality despite limited resources. In the84

following, we first describe the current practice of testing in the company,85

which defines the context of our case study. We then discuss the observed86

issues, in particular those that are related to test oracle automation. Finally,87

we describe the data set we collected for our case study.88

4http://www.vestel.com.tr

5

http://www.vestel.com.tr

2.1. The Current Practice89

The current practice of testing for DTVs at Vestel Electronics involves90

the following activities:91

1. Specification: A test engineer prepares test scenarios in the form of92

executable test scripts. These scripts are later executed by an in-house-93

developed test automation tool that drives test execution by sending a94

sequence of remote controller key press events to the TV. Test scripts95

for some of the TV features are automatically generated by adopting96

model-based testing. For these features, first, test models are created97

by specifying the possible usage behavior. Then, a set of purchased98

as well as in-house-developed tools [15, 16, 17] are employed to refine99

these models and automatically generate test scripts.100

2. Reference image collection: The test scenarios are executed on a “mas-101

ter” TV that is known to function correctly. At certain points during102

the execution of the test scenarios, snapshots of the TV are taken to103

serve as reference images. These points of execution are hard-coded in104

test scripts by the test engineers. For some cases, the test engineer also105

prepares a mask to accompany the reference image. In that case, some106

portions of the image are not used for comparison during testing.107

3. Testing: When a TV is to be tested, the same test scenarios are exe-108

cuted. At the same points when reference images were captured from109

the master TV, screenshots of the TV under test are taken. A snapshot110

is then compared with the corresponding reference image.111

Test scenarios involve validating various GUI features of the TV, such112

as checking whether the correct text and shapes are displayed, color and113

6

transparency rendering is as expected, hyper text is visualized correctly, text114

wrapping is proper, menu items are positioned appropriately, and response115

to certain user-interaction events are as defined.116

During reference image collection and testing, a snapshot of the screen is117

taken using one of the following three methods:118

• Via a connection made to the TV through a peripheral port – usually119

the ethernet.120

• Via an LVDS (Low-Voltage Differential Signaling) reader – a device121

that intercepts and reads the signals going to the LCD (Liquid Crystal122

Display) panel. The device has to be installed on the cable that goes123

into the panel.124

• Via an external camera.125

Test engineers prefer the first method listed above, because it requires the126

least installation effort, and exact snapshots can be taken. However, such a127

port is not always available, because it just does not exist or it is occupied for128

another purpose during testing. LVDS reader is the second favorite option,129

because it still gives the opportunity to take high quality snapshots even130

though images occasionally show salt-and-pepper noise or similar problems.131

The drawback of this method is that it is costly or even infeasible to install132

the LVDS device on the TV. The third option, using an external camera, is133

the least favorite because the snapshots taken with this method show a great134

variation in illuminance, color tones, and the view angle.135

7

2.2. Observed Issues Regarding Test Oracle Automation136

During testing, a test oracle compares the captured snapshot with respect137

to the previously taken reference image. An exact match of the compared138

images is expected as the pass criterion for the test. As a result, minor139

differences between the images (e.g., slight variations in scale, anti-aliasing,140

etc.) cause a test to be deemed failing, even though there exists no behavioral141

error of the system. Consequently, the test oracle yields a high number of142

false positives. This drawback is also acknowledged in the literature [11].143

Figure 1 illustrates 4 cases that incorrectly failed based on exact com-144

parison of the reference and captured images. The differences are caused by145

rendering issues (i.e. anti-aliasing of characters and shape edges, different146

font kerning settings) as in rows 1 and 2, or shifting and scaling issues as147

in rows 3 and 4. Some test cases contain text only (rows 1 and 3), while148

others may also contain shapes (rows 2 and 4). Figure 2a shows an example149

case where a mask is used. The black regions in a mask are excluded during150

image comparison.151

There are several types of changes that lead to fragile tests. One of them152

is related to different screen sizes. The captured image might not match153

with the reference image if it was captured from a TV with a different screen154

size, or by a camera with different intrinsic parameters (e.g. different lens,155

different sensor, etc.). We refer to this type of change as scaling, in which156

the aspect ratio of the original screen is not preserved. Even two cameras157

with exactly the same brand and model may differ in scaling due to their158

varying intrinsic parameters. As another change, the captured image can be159

shifted with respect to the reference image. We refer to this type of change160

8

R
ef

er
en

ce
C

a
p
tu

re
d

D
iff

er
en

ce

F
ig

u
re

1:
S

am
p

le
te

st
ca

se
s

th
at

in
co

rr
ec

tl
y

fa
il

ed
d

u
e

to
sc

a
li

n
g
,

sh
if

ti
n

g
a
n

d
/
o
r

a
n
ti

-a
li

a
si

n
g

d
iff

er
en

ce
s

b
et

w
ee

n
th

e
re

fe
re

n
ce

an
d

th
e

ca
p

tu
re

d
im

ag
es

.

9

R
ef

er
en

ce
C

a
p
tu

re
d

M
a
sk

D
iff

er
en

ce

(a) (b)

Figure 2: Two test cases where (a) a mask is used, (b) there is a GUI theme change.

10

as translation. A common source of change is the anti-aliasing and rendering161

differences caused by the use of a different font and/or rendering parameters162

(such as kerning) on the TV under test. These issues also result in scaling163

and translation-related differences.164

Yet another source of change is the difference in the user interface of165

the product. Vestel produces DTV systems for 157 different brands in 145166

countries worldwide. Although the functionality is similar, products man-167

ufactured for different customers can have different GUIs. For example, a168

button can be moved from the top-left corner of the screen to the top-right.169

These variations also lead to fragile tests. Figure 2b depicts a case where the170

captured image differs significantly from the reference image due to a change171

in the GUI theme. We consider this problem as out-of-scope for this work.172

We focus on handling translation and scaling changes only.173

Existing visual test automation tools [18, 19, 20, 21] cannot be applied174

for testing DTV systems. These tools are supposed to run on the same175

machine as the system under test where they have access to the GUI of the176

system. Unlike desktop applications and Web applications, it is not possible177

to access GUI widgets of DTV systems, such as buttons and text boxes, to178

control and monitor them. The main resource problem with testing DTVs is179

that a peripheral port, such as the ethernet port, is not always available. This180

prevents the testers from accessing the software, regardless of the operating181

system. It is also not an option to run the tests on an emulator (e.g., as done182

by Sikuli [22] for testing Android apps); black box tests for DTV systems are183

always performed on real devices to be able to capture errors due to external184

factors and hardware issues, which cannot be all represented in an emulator.185

11

Table 1: Categorization of the collected data set when using exact image matching.

TN TP FN FP

Test scenarios ∼1500 6 0 216

Image comparisons N/A 96 0 2563

2.3. The Collected Data Set186

We collected a data set to evaluate the accuracy of the currently applied187

approach and our approach. This data set involves a set of reference and188

captured image pairs. These image pairs were actually used as part of test189

scripts that are executed for a real TV system in the company. A test engineer190

within the company manually examined these image pairs and marked them191

as either a correct execution or a failure case. We obtained the verdicts of192

the currently employed test oracle for these image pairs as well. Recall that193

this oracle gives a verdict according to exact image comparison.194

According to the verdict of the test oracle, test cases are categorized as195

true negative (TN), true positive (TP), false negative (FN) and false positive196

(FP) based on the following definitions that we use throughout the paper:197

• TN: An error does not exist, and the oracle did not report an error.198

• TP: An error exists, and the oracle reported an error.199

• FN: An error exists, but the oracle did not report it.200

• FP: An error does not exist, but the oracle reported an error.201

Table 1 summarizes the results. Hereby, the first row lists the number of202

test scenarios (scripts) for each of the TN, TP, FN and FP categories. Each203

12

test scenario usually includes more than one image comparison at different204

points of execution. Hence, the second row separately lists the total number205

of image comparisons made. Note that the FN category trivially contains206

no cases. This is because the current oracle gives verdict according to exact207

image comparison; if there is actually an error, the reference and the captured208

images must differ, and the oracle catches an error.209

We have been informed that there are approximately 1500 TN scenarios;210

the exact number in this category and the number of image comparisons per211

each of these test scenarios were not disclosed to us. We collected 6 sample212

TP test scenarios, each representing a different cause of error. These errors213

are related to accent character rendering, geometrical shape display, digital214

text rendering, incorrect screen output due to functional error, missing text,215

and UI changes. There are a total of 96 image comparisons performed in the216

6 TP test scenarios. We collected 216 FP test scenarios in which a total of217

2563 image comparisons are performed. All these cases have been manually218

examined and labeled as TP/FP by a test engineer at Vestel.219

In this work, our goal is to reduce the number of FP cases, because manu-220

ally examining these to determine whether they are true or false positives is a221

time-consuming task for the testers. To this end, we focused on the FP cases222

we received from the company. We observed that, although there are cases223

that fail because of a change in the GUI theme (e.g. Figure 2b), or color and224

transparency differences, the majority of the FP cases (incorrectly) failed due225

to changes caused by anti-aliasing, shifting, and scaling issues. Therefore, we226

focus on reducing FP’s caused by translation and scaling reasons; we do not227

attempt fixing problems related to color or GUI layout.228

13

artifact

reference
image

process data flow
KEY:

captured
image

diff
image

verdict
B

a
ck

g
ro

u
n

d
 C

o
lo

r
R

e
m

o
va

l

B
o

u
n

d
in

g
 B

o
x

Id
e

n
ti

fi
ca

ti
o

n

U
p

-s
a

m
p

lin
g

M
a

x-
p

o
o

lin
g

Im
ag

e
D

if
fe

re
n

ci
n

g

E
va

lu
at

io
n

 o
f

Q
u

an
ti

ze
d

 D
is

p
a

ri
ty

mask
image

tool
boundary

N
o

is
e

 R
em

o
va

l

Lu
m

in
a

n
ce

Q

u
an

ti
za

ti
o

n

Alignment

optional
data flow

(pass/fail)

Figure 3: The general structure and the pipeline of VISOR.

3. Test Oracle Automation with VISOR229

We implemented our approach as a tool, named VISOR. The general struc-230

ture of the tool is shown in Figure 3. VISOR takes 3 inputs for each test case:231

(i) The image that is captured during test execution. (ii) The previously232

captured reference image that serves as the ground truth. (iii) An optional233

mask image that visually specifies the regions within the reference image that234

should be included or excluded for comparison. The only output of VISOR is235

a verdict regarding the success or failure of a particular test case.236

Figure 3 shows a series of image filters and transformations employed by237

VISOR. Recall that our problem context involves usage of captured images238

of Digital TV screens, which are prone to illumination, translation, scaling239

variations, and noise. VISOR’s pipeline has been specifically designed to240

address the image differencing problems induced by translation and scaling241

reasons, which comprise the majority of causes that lead to false positives242

according to our observations. On the other hand, VISOR has an extendable243

14

and adaptable architecture. One can add/remove/replace filters or adjust244

parameters to apply the approach in another context. That is, VISOR is a245

generic pipeline and we implemented an instance of it for the industrial case.246

The main idea behind our pipeline is based on finding the salient sub-247

region (SSR) that contains the foreground items in both the reference and248

captured images, aligning the SSRs of the corresponding images, and then249

comparing the aligned regions. Precision and accuracy of SSR extraction and250

alignment phase is vital for the overall effectiveness since perceptual image251

differencing algorithms depend heavily on exact alignment of images [23, 24].252

For our problem context, we found that using a single rectangular region as253

SSR gives good results.254

In the following, we discuss each step of the pipeline in detail by evaluating255

alternative techniques that can be adopted.256

3.1. Background Color Removal257

This is the first filter we apply in our pipeline. Although the background258

color is black for most of the data set images, there are also numerous cases259

where the background is different. Background color needs to be removed be-260

fore detecting the salient regions of both frames. Background segmentation is261

a deeply studied topic in computer vision; there are numerous methods for it262

[25]. Some of them learn a background model from a supervised training data263

set, while others use temporal information in video frames. Principal Com-264

ponent Analysis (PCA) [26] has been successfully applied to training data set265

for reducing the dimensionality of vector space represented by concatenated266

image pixels. Since background pixels are assumed to be stationary most of267

the time, PCA application learns a model of background pixels that repeat268

15

in the data set. Any behavior that cannot be represented by the PCA model269

is considered an outlier, and detected as a foreground pixel. An alternative270

approach is to model each pixel in an image by a Gaussian Mixture Model271

(GMM), meaning that a pixel can take values sampled from a GMM [27]. If272

the pixel is outside of the range of GMM, it is considered to be an outlier273

pixel, hence, a foreground pixel. Both of these methodologies apply either274

to video frames or to data sets that contain samples significantly similar to275

each other. In our case, each data set image can be substantially different276

from others. Therefore, we need an algorithm that can work on a single277

image frame without using temporal information, namely a single-shot seg-278

mentation algorithm. Fortunately, the images in our data set have solid and279

single-colored backgrounds. Hence, we can represent backgrounds by the fol-280

lowing straightforward model: Background pixels are the pixels that have281

the highest frequency in a specific image. This applies for all the images in282

our data set except a few where text is rendered on a still background picture283

(e.g. Text layer is transparent and it is rendered on a flower photograph).284

We did not increase our background segmentation model’s complexity for285

these few cases. If we had more samples with transparent text layer and286

photographic backgrounds, we could apply a PCA model and still have high287

accuracy in background detection.288

In order to achieve background segmentation, we convert both images to289

8-bit single luminance channel images, and create a 256-bin (8-bit) grayscale290

histogram. We set the most frequent bin of the histogram as the background291

color, and replace all its occurrences in the images with a sentinel color value.292

Our subsequent filters use this sentinel value for distinguishing between real293

16

foreground and background pixels.294

3.2. Noise Removal295

As a simplification, we assume an SSR to be the maximum enclosing296

bounding box (MEBB). For this assumption to be useful, no noisy pixels297

should reside outside the SSR. Hence, as the next step in our pipeline, we298

perform noise removal.299

Most of the studies in the literature regarding noise removal deal with300

complex scenarios where severe noise occurs [28]. This is seen, for instance, in301

scanned historical documents, and also when reconstructing a high resolution302

image by using a learned mapping between low resolution images and high303

resolution ground-truth counterparts. We do not see these problems in our304

data set. We have Full HD (1080p) images captured directly on the TV305

or with a high quality camera. In our case, we observe “salt and pepper”306

noise where noise frequency is low but speckle size is big. In other words,307

we occasionally see areas with slight color variations around the detected308

background color that are overlapping background pixels. We address this309

problem by finding the connected components that are inside background310

regions and erasing them by replacing with the background color. We could311

alternatively apply a non-linear filter, such as a median filter, that is known312

for its effectiveness against salt and pepper noise [29]. However, this would313

impede the speed and damage the text regions since our speckle size is big.314

That is why we use a more concentrated approach for our data set instead.315

Our approach involves creating a binary version of the input image first,316

and then sweeping the noise. A binary image is constructed from a color317

image by setting a pixel on when the pixel’s RGB value is different than the318

17

background color and its luminance is less than a threshold Tlum. Setting319

even Tlum = 0 can be a feasible choice at this step. Choosing a value slightly320

greater than zero further filters probable noisy artifacts. One should be321

careful about increasing Tlum too much, because this would cause valuable322

details to be erased along with the noisy pixels. Noise detection is done323

by finding the connected components of the binarized image, and erasing324

the regions with area below a certain threshold Tnoise. The threshold can325

be adjusted for eliminating noise that can affect the accuracy of MEBB326

detection.327

3.3. Bounding Box Identification328

After we erase the background and remove the noise, we perform bounding329

box identification. This is a straightforward step where we find the MEBB of330

each image by finding a bounding sub-region that contains all the foreground331

pixels. This relies on the fact that we segmented all the foreground pixels332

correctly by finding the background color and erasing the noise in the previous333

steps.334

We apply the detected bounding box on the original images; that is,335

background and noise removal effects are reverted once we find the MEBB.336

Following the bounding box identification step, we may consider compar-337

ing the regions inside the MEBB’s of the reference and the captured images.338

Although we expect the major scaling and shifting problems to have been339

cleared out, there can always be minor scaling and translation problems that340

would cause the FP rate to still remain at an unacceptable level. To remedy341

such problems, we perform up-sampling followed by max-pooling.342

18

3.4. Up-Sampling343

In this step, the MEBB’s of the reference and the captured images are344

scaled to the full image resolution for roughly satisfying the translation and345

scale invariance in one easy step. For up-sampling, smooth interpolation346

methods such as bicubic or Lanczos [30] should be used. Nearest neighbor347

approximation produces artifacts unsuitable for direct image differencing.348

3.5. Max-Pooling349

The last translation step, max-pooling, decomposes the input image into350

a grid of small rectangular blocks of size B. Each block is replaced with the351

maximum pixel value that it contains. (Standard down-sampling replaces352

a block with the mean value.) Max-pooling is a widely used technique in353

deep learning pipeline of recent state-of-the-art machine learning algorithms.354

It has been effectively incorporated in various settings such as fast image355

scanning [31], object recognition [32], and hand gesture recognition [33].356

Boureau et al. discuss a detailed theoretical analysis of performance gains357

of max-pooling compared to average pooling [34]. Although max-pooling358

causes some information loss in the input images, it provides further trans-359

lation and scale invariance. It even adds robustness against slight elastic360

deformations. Perceptual image differencing algorithms [23] are based on361

evaluating the difference of two aligned images. Max-pooling produces im-362

ages that are more suitable to be used in image differencing by removing363

unnecessary detail. Furthermore, because the image size is reduced, this364

step makes the differencing algorithm run faster. Selecting a proper block365

size is key to the effectiveness of max-pooling. A large block size erases too366

19

much information whereas a small one may not be sufficient for removing367

sensitivity to translation and scaling.368

3.6. Image Differencing369

This step simply takes the pixel-by-pixel difference of the images received370

from the max-pooling filter.371

3.7. Luminance Quantization372

The difference image may be histogram-equalized or contrast-stretched373

for removing possible illumination difference between the reference and cap-374

tured images. For our data set, we did not directly modify the histograms.375

Slight illumination differences between the max-pooled reference and cap-376

tured images are handled by quantizing the difference image. Namely, we377

divide the per-pixel difference values by a quantization factor, Q. We use378

integer division; therefore, this step intentionally eliminates difference values379

below Q. For representing the total difference between images, we sum the380

quantized per-pixel difference values over the whole difference image, and use381

this value as our disparity feature, Fdisparity.382

3.8. Evaluation of the Quantized Disparity383

Image pairs whose disparity value is above a certain threshold, Tf , are384

deemed “different”, while those with smaller disparity are considered “same”.385

3.9. Summary386

A running example that shows the stages of the pipeline is shown in387

Figure 4. Hereby, the first row shows the original reference and captured388

images that are supplied as input to VISOR. The last column shows the389

20

R
ef

er
en

ce
C

a
p
tu

re
d

D
iff

er
en

ce

F
ig

u
re

4:
A

n
im

ag
e

p
ai

r
sh

ow
in

g
th

e
m

a
jo

r
st

ag
es

in
V
IS
O
R

’s
p
ip

el
in

e.
T

o
p

ro
w

:
o
ri

g
in

a
l

in
p

u
ts

a
n

d
th

ei
r

d
iff

er
en

ce
;

m
id

d
le

ro
w

:
af

te
r

th
e

al
ig

n
m

en
t

p
h

as
e;

b
ot

to
m

ro
w

:
af

te
r

th
e

m
a
x
-p

o
o
li

n
g

st
ep

.

21

Table 2: The set of VISOR parameters.

Parameter Description Range

Tf Disparity threshold 0 to 400

Tlum Foreground luminance threshold 0 to 10

Tnoise Noise threshold 10 to 60

B Max-pooling block size 8×8 to 40×40

Q Quantization factor 10 to 60

difference between the two images. The second row shows the transformed390

images after the alignment step. We can see that the difference between the391

images turns out to be significantly low compared to the difference between392

the original images. The last row shows the images after the application of393

the max-pooling step, at which point almost no difference can be observed.394

VISOR has 5 parameters in total as listed in Table 2. Hereby, the Tf395

parameter is determined based on a training step prior to tests (discussed in396

the next section) and its range might be increased depending on the resolution397

of input images. Recall that the amount of difference between two images is398

quantified as the Fdisparity value in the last step of the VISOR pipeline. VISOR399

evaluates the disparity against the threshold, Tf . Optimal values for the400

other 4 parameters are dependent on the test setup and environment rather401

than input images. We performed a grid search to determine values of these402

parameters. We uniformly sampled each of the 4 parameters in their range,403

and evaluated all the combinations of the sampled values (see Section 4.2.1).404

The MATLAB code regarding an implementation of our pipeline is available405

in public domain at http://srl.ozyegin.edu.tr/tools/visor/.406

22

http://srl.ozyegin.edu.tr/tools/visor/

4. Evaluation and Results407

In this section, we evaluate our approach based on the industrial case408

study for testing DTV systems. First, we introduce our research questions.409

Then, we describe the experimental setup. Third, we present the results410

and interpret them for answering the research questions. Finally, we discuss411

validity threats for our evaluation and the known limitations of our approach.412

4.1. Research Questions413

Our first dimension of concern regarding VISOR’s performance is the im-414

provement in accuracy. We take the accuracy of a test oracle that uses exact415

image comparison as the baseline for improvement. Our second concern is416

the speed. Because the full test suite processes thousands of images, the417

efficiency of the test oracle plays a key role in running the test suite in a418

reasonably short time. We therefore implemented VISOR in C++ and par-419

allelized it, instead of using an interpreted language. Our final concern is420

the calibration and training time required for VISORbefore it can be used for421

the actual tests. Although this is a one-time effort, we would like to know422

the cost of this initial investment. The latter two concerns are related to the423

acceptability of the tool in the real industrial scenario.424

Based on the concerns, we defined the following research questions:425

RQ1: To what extent does VISOR improve accuracy with respect to exact426

image comparison?427

RQ2: How much time is required for VISOR to compare two images and428

provide a verdict?429

RQ3: What is the parameter calibration and training overhead?430

23

4.2. Experimental Setup431

As explained in Section 2, we collected a total of 2659 reference and432

captured image pairs. These image pairs were actually used during the re-433

gression testing of a real TV system in the company. A test engineer within434

the company manually examined these image pairs prior to our experiment.435

He labeled each pair as either a correct execution or a failure case. We used436

these labeled image pairs as the data set (i.e., objects) of our experiment.437

Our experiment does not involve any human subjects. We used the col-438

lected image pairs as input to two different tools. First, we used an automated439

test oracle that employs exact image comparison. As listed in Table 1, 96440

image pairs led to TP verdicts, whereas 2563 pairs led to FP verdicts. We441

took these results as the baseline. Then, we supplied the same inputs to VI-442

SOR. To evaluate the improvement in accuracy attained by VISOR, we define443

the following metrics:444

• PTP (TP performance): Ratio of original TP cases that are retained as445

TP when using VISOR.446

• PFP (FP performance): Ratio of original FP cases that became TN447

when using VISOR.448

• Accuracy : The ratio of correct verdicts to the total number of image449

comparisons (i.e., 2659).450

We desire both PTP and PFP to be as high as possible. However, there is451

a trade-off between the two. To understand why, first recall that the amount452

of difference between two images is quantified as the Fdisparity value in the453

last step of the VISOR pipeline. VISOR evaluates the disparity against the454

24

threshold, Tf , to reach a verdict as pass or as fail. A large threshold value455

would improve PFP (by turning more FP cases to TN), but hurt PTP (by456

turning more TP cases to FN). A small threshold value would yield high457

PTP , but low PFP . We aim at obtaining parameter settings that balances458

this trade-off, where PTP/PFP ≈ 1.459

4.2.1. Parameter Settings460

Recall from Section 3.9 that VISOR has five parameters. We do a grid461

search to set the Tlum, Tnoise, B, and Q parameters. Our grid search involved462

the following sampled parameter values:463

• Tlum: 0, 2, 4, 6, 8, 10464

• Tnoise: 10, 20, 30, 40, 50, 60465

• B: 8×8, 16×16, 24×24, 32×32, 40×40466

• Q: 10, 20, 30, 40, 50, 60467

We evaluated all the combinations of these sampled values. Hence, in total,468

6× 6× 5× 6 = 1080 combinations are evaluated. The combination that gave469

the best results for our setup is (Tlum: 6, Tnoise: 40, B: 24×24, Q: 40).470

We set the fifth parameter, Tf , via a training step before the use of471

VISOR for actual testing. This requires a one-time effort before regression472

testing of a new system. The parameter fine-tuning by grid search has to be473

repeated for each different application/system. The data set training step474

should also be repeated if the user interface and/or corresponding reference475

images change. Repeating this step for each and every possible parameter476

setting is also required after a major system change such as changing of a477

25

camera, angle of the camera and illumination of the environment. Normally,478

a test environment is fixed and this step is required only once during the479

whole lifecycle of the test oracle system.480

To evaluate the impact of training for setting the Tf parameter and the481

data set on accuracy, we applied 10-fold cross validation. That is, we par-482

titioned our data set into 10 randomly-selected, equally-sized, disjoint seg-483

ments. Then, we trained and applied VISOR for tests 10 times. Each time,484

we used a different combination of 9 disjoint segments for training, and used485

the remaining disjoint segment for testing. We measured the accuracy, PTP ,486

and PFP for each test.487

4.3. Results and Discussion488

In this section, we first introduce the results. Then, we elaborate on these489

results to answer each of the three research questions.490

The overall results are listed in Table 3. Hereby, the first column denotes491

which data segment is used for testing as part of 10-fold cross validation.492

Recall that each segment corresponds to a randomly selected, disjoint subset493

of the data set that contains 10% of the experiment objects. The union of494

the 9 other segments is used for training. The second column lists the best495

threshold values that are learned after the training step. The third column496

lists the accuracy of VISOR. The measured PTP and PFP values, and their497

ratio are listed in the fourth, fifth, and sixth columns, respectively. In each498

training step, the “best” threshold value is the value that leads the PTP/PFP499

ratio closest to 1 in the training set.500

26

Table 3: Results obtained with 10-fold cross validation.

Fold Best threshold Validation

value (Tf) Accuracy PTP PFP PTP /PFP

1 42 91.35% 100.00% 91.05% 1.09

2 43 92.11% 88.89% 92.11% 0.97

3 42 91.11% 100.00% 91.80% 1.09

4 43 92.48% 90.00% 92.58% 0.97

5 41 91.73% 100.00% 91.41% 1.09

6 44 92.86% 80.00% 93.36% 0.86

7 43 93.23% 90.00% 93.36% 0.97

8 43 92.11% 90.00% 92.19% 0.98

9 43 92.08% 88.89% 92.19% 0.97

10 42 92.08% 100.00% 91.80% 1.09

Average 92.11% 92.78% 92.19% 1.01

4.3.1. Accuracy501

We can see in Table 3 that the learned threshold values (second column)502

do not show a high degree of fluctuation; they are in a narrow range, indi-503

cating high consistency of the training step under changing segments of the504

data set that are used for training. This means that our threshold parame-505

ter is not dependent on the data partition selected for training our system.506

This is also the case for the measured accuracy, PTP , and PFP values, which507

are depicted on a box-plot in Figure 5. Despite the fact that the y-axis of508

the plot is narrowed down to the range 75%-100%, we can see negligible509

variance. This is especially the case for the accuracy and the PFP values.510

The measured PTP values have relatively larger variance, especially caused511

by the 6th test, where PTP is measured to be 80%. This might be caused by512

27

75.00

80.00

85.00

90.00

95.00

100.00

accuracy PTP PFP

Figure 5: The box plot that shows the distribution of the accuracy, PTP , and PFP values

obtained with 10-fold cross validation.

the size of the data set. Recall that we had only 96 image pairs in the TP513

category, whereas we had 2563 pairs in the FP category. As a result, the514

training step can utilize only ∼86 image pairs (90% of the pairs) from the515

TP category each time. We believe that the measured PTP values would be516

more consistent if we had more samples in the TP category for training.517

4.3.2. Speed518

In order to evaluate the image processing speed and the training overhead,519

we measured the time it takes to process one image pair, the time it takes to520

learn the threshold value Tf , and the time it takes to perform grid search to521

set the remaining four parameters. At the beginning of our study, we were522

informed by Vestel test engineers that it takes around 5 seconds to manually523

compare two images and reach a decision.524

For evaluating speed, we measured the image processing throughput on525

a laptop computer that has 16 GB of memory and a 2.8 GHz quad-core526

Intel i7 CPU with 2 hyper-threads on each core. VISOR processes 60 image527

28

pairs per second, excluding file I/O, when executed in single-thread mode.528

The throughput is 195 image pair comparisons per second when using 8529

threads (again excluding file I/O). In other words, it takes about 45 seconds530

to process all the cases in our data set in single thread mode, and about531

14 seconds in multi-thread mode. As a comparison, the perceptual image532

differencing tool, pdiff [23], which was previously used as a test oracle [35],533

takes 9.3 seconds on the average per image pair comparison.534

We measured the time it takes to perform a data set training session. This535

is also the time spent in a single step of our grid search for fine-tuning system536

parameters. Overall, a full fine-tuning of our system takes approximately 4537

hours. We believe that this time cost is acceptable considering that (1) this538

level of fine-tuning is rarely necessary, and (2) if needed, it can be carried out539

overnight as part of a nightly-build system. Employees involved in the study540

also affirmed that this duration is acceptable and the need for recalibration541

of the tool is seldom.542

4.4. Threats to Validity543

Our evaluation is subject to external validity threats [36] since it is based544

on a single case study. More case studies can be conducted in different545

contexts to generalize the results. The type of image effects that take place in546

other applications might be different than those addressed by VISOR. Hence,547

some of the steps/filters in the current pipeline of VISOR can be skipped or548

new filters might have to be added to handle image effects other than scaling549

and translation. The level of detail in GUI screens may also be different from550

DTV screens. As a result, parameters of VISOR might have to be fine-tuned551

for other applications.552

29

Internal validity threats are either associated with participants or mea-553

surements. Our study does not involve human subjects. Internal threats554

imposed by measurements are mitigated by using real test cases that are ap-555

plied for a product being subjected to regular regression tests in the industry.556

Our work did not involve any change of the data set throughout the mea-557

surements. We directly used the test cases that are being used in production558

as is. We also kept the system unchanged throughout the case study.559

Conclusion and construct validity threats are mitigated by performing560

10-fold cross validation on our data set.561

4.5. Limitations of the Approach562

Results show that the ratio of FP cases that became TN is high (above563

90% in general) when we use VISOR. This is due to the fact that the majority564

of the FP cases are caused by scaling, shifting and/or anti-aliasing differences.565

Sample image pairs that are subject to these issues are provided in Figure 1.566

These image pairs are not evaluated as failures by VISOR and as such they567

do not lead to FP verdicts anymore.568

The ratio of TP cases that are retained as TP is also high (above 80%569

in general). However, some of these cases became FN when we used VI-570

SOR. In Figure 6, we give two image pairs taken from the TP data set.571

These are “tough” cases in which VISOR could not detect the error. The572

first row contains an accent character rendering problem. This causes a very573

small difference between the reference and captured images. VISOR is de-574

signed to tolerate scaling and translation differences between images. Thus,575

the difference triggered by the character rendering issue erodes in VISOR’s576

pipeline. The second row is a test that checks color saturation and trans-577

30

R
ef

er
en

ce
C

a
p
tu

re
d

D
iff

er
en

ce

Figure 6: Sample “tough” cases from the TP data set missed by VISOR.

parency. VISOR is not designed to look for such changes. Hence, this case578

goes undetected and becomes a false negative as well.579

There are also test cases that remain in the FP category. VISOR reported580

an error for each of these test cases, where in fact, an error does not exist581

according to the test engineer. Figure 2a shows one of these cases. Hereby,582

the GUI theme is different between the reference image and the captured583

image. Such cases are considered out-of-scope for our work. Likewise, there584

exist test cases in the FP category due to color and transparency differences.585

We consider the handling of such differences as future work.586

31

5. Related Work587

Testing of graphical user interfaces (GUI) has been studied for more than588

two decades [37]. An analysis of the existing work [37] reveals that only a few589

studies focus on testing GUIs of embedded devices such as mobile phones [38].590

These studies are mainly concerned with the modeling and verification of591

functional behavior rather than GUI appearance. In fact, the majority of592

the GUI testing approaches aim at testing the behavior of the system based593

on captured GUI elements and related event sequences at runtime [37].594

Test oracle automation based on image comparisons was mentioned as595

an alternative approach [39]; however, it did not gain attention until re-596

cently [10, 40, 35]. We adopted this approach due to the constraints imposed597

by the working context for testing consumer electronics, in particular Digital598

TVs. In this context, the tester does not have any access to the internal599

events during the execution of these systems. The GUI components (e.g.600

buttons, labels) or a document object model (e.g. as in HTML) are not601

available, either. The visual output that is observed on the screen is vali-602

dated in a black-box fashion. Hence, we employ image processing techniques603

to automate test oracles by evaluating snapshots of the GUI only. On the604

other hand, existing visual test automation tools [20, 21] run on the same ma-605

chine as the system under test and they have access to the GUI components606

of the system.607

Test oracle automation has been extensively studied for testing Web ap-608

plications, especially for detecting cross-browser issues [41]; however, the609

employed techniques mainly involve the analysis of the HTML code [42]. An610

image comparison technique was proposed by Selay et al. for detecting lay-611

32

out failures in Web applications [12]. The technique is domain-specific as612

it assumes the existence of contiguous regions that are subject to failure.613

This assumption is based on the observed failure patterns in browser layout614

issues. The study evaluates the effectiveness of adaptive random testing for615

selecting regions to be compared in image pairs. The mean time to detect a616

failure is decreased by comparing these regions only, rather than comparing617

all the pixels. Any difference in the selected regions is interpreted as a failure.618

Scaling and translation effects are not considered. In our problem context,619

however, we consider two images to be equivalent even when they differ, if620

the differences are caused by scaling and translation effects.621

Previously, pixel-to-pixel comparison was used by Mahajan and Halfond622

to detect HTML presentation failures [40]. This technique relies on a very623

strict comparison and as such it is fragile with respect to scaling, shifting,624

and color saturation issues. In our context, these issues come up often. In625

a successive study, Mahajan and Halfond employed perceptual image differ-626

encing [23] to compare images by taking spatial, luminance sensitivity into627

account [35]. The amount of sensitivity is specified as threshold parameters.628

They used an external tool, pdiff 5, for performing image comparison. This629

tool was originally introduced for assessing the quality of rendering algo-630

rithms. In our work, we implemented a complementary set of techniques for631

addressing the oracle automation problem in particular. Rather than uti-632

lizing an external tool for this purpose, we implemented a series of image633

transformations and image comparison as part of VISOR. In addition, VISOR634

5http://pdiff.sourceforge.net

33

http://pdiff.sourceforge.net

runs substantially faster than pdiff (see Section 4).635

Image processing and visual testing techniques have also been employed636

in automative industry for test oracle automation by Amalfitano et al. [43].637

This is performed by taking snapshots of the automobile driver’s interactive638

display at specific times during test execution. Amalfitano et al. focus on639

the Model-in-the-Loop step during software development. Therefore, their640

test execution takes place in a simulation environment, where captured im-641

ages are not subject to scaling and translation variations. We, on the other642

hand, focus on black-box testing of the actual products. In their work, each643

image is verified with respect to a specification. This specification defines the644

layout of the display and the information expected to be provided at defined645

areas of this layout. The expected information is extracted from a captured646

image with specialized techniques such as pixel-to-pixel comparison for icons,647

optical character recognition for textual parts of the display, or custom vi-648

sual feature extraction for more complex display items, such as the level of649

a gauge. In contrast, VISOR requires a reference image and possibly a mask650

image for verification rather than a layout description. VISOR is designed651

to explicitly address scaling and translation variations in captured images,652

which do not take place in simulation environments.653

Content-based image retrieval techniques have been previously used for654

test oracle automation [10, 44]. These techniques are used for measuring655

the similarity of images with respect to a reference image. The similarity656

measurement is defined based on a set of features extracted from the images.657

These features are mainly concerned with the color, texture, and shape of658

objects taking part in the images. The approach has been applied for desktop659

34

applications and Web applications. The consumer electronics domain intro-660

duces additional challenges that we previously mentioned. Our approach661

involves several image transformation steps followed by a comparison for de-662

tecting differences rather than relying on a similarity measure only.663

Sub-image searching was used in a visual testing tool called Sikuli [22],664

where test scripts and assertions can be specified via a set of keywords and665

images of GUI elements. These images are searched within a Web page, and666

assertions can lead to failure based on their (non-)existence.667

Based on a classification provided in a recent survey [6] on test oracles,668

our approach uses so-called specified test oracles. In our case, we use a vi-669

sual specification, involving a reference image and optionally a mask image670

for specifying regions within the reference image that should be included or671

excluded for comparison. Likewise, according to a previously made classifi-672

cation regarding test oracles for GUI [45], our approach can be considered as673

the adoption of visual assertions. Hereby, snapshots from the interface are674

recorded for known correct executions of the system first. Then, the tester675

visually specifies parts of this interface that should hold for all executions.676

6. Conclusion677

We introduced a test oracle automation approach that employs image pro-678

cessing techniques. Our approach is applicable to any system that produces679

visual output. We do not assume the existence of any access to the internals680

of the system. We aim at a context where a reference image is compared with681

a visual output that is possibly captured with an external camera. Hence, the682

output might be subject to several distortions due to scaling, shifting, and683

35

light reflections. Such differences result in too many false positives when an684

exact image matching approach is used. To this end, we implemented a tool,685

named VISOR, that employs an image processing pipeline to compare images686

in the presence of scaling and translation differences. Our tool is also de-687

signed to be very fast. We performed an industrial case study for automated688

regression testing of Digital TVs. We collected thousands of real-world test689

cases to form our data set. We obtained promising results indicating that690

our approach can significantly reduce false positives while causing a negli-691

gible decrease in the number of true positives. The evaluation of all the692

test cases finishes within seconds on a laptop computer. The full fine-tuning693

of the system takes 4 hours on the same computer. This involves training694

based on a data set of thousands of images and an exhaustive search of all695

the combinations of sampled parameter settings.696

Our future work aims at addressing the limitations listed in Section 4.5.697

In addition, application of the approach can be evaluated for different types698

of systems. VISOR is generically applicable for any type of system since it699

is based on images regarding the outer look of the tested system. However,700

we should note that we are just focusing on the test oracle automation. A701

dedicated test harness might have to be built for the tested device to be able702

to drive the test execution and capture screenshots at predefined points of703

execution. VISOR just compares the captured images with respect to the704

reference pictures assuming that they are supposed to be similar.705

VISOR can also be coupled with other (complementary) tools that can run706

in sequence or parallel. On one hand, this would allow joining the strengths707

of these tools to further improve the accuracy. On the other hand, this would708

36

prolong the test execution and analysis process. In this work, our goal was709

to provide a time-efficient tool that is also accurate at the same time.710

Acknowledgments711

We thank test engineers at Vestel Electronics, in particular İrfan Can and712

Ömer Faruk Erdil, for supporting our case study.713

References714

[1] B. Beizer, Software Testing Techniques, 2nd Edition, Van Nostrand715

Reinhold Co., New York, NY, USA, 1990.716

[2] G. Myers, T. Badgett, C. Sandler, The Art of Software Testing, 3rd717

Edition, John Wiley and Sons Inc., Hoboken, NJ, USA, 2012.718

[3] S. Berner, R. Weber, R. K. Keller, Observations and lessons learned from719

automated testing, in: Proceedings of the 27th International Conference720

on Software Engineering, 2005, pp. 571–579.721

[4] D. Rafi, K. Moses, K. Petersen, M. Mäntylä, Benefits and limitations722

of automated software testing: Systematic literature review and prac-723

titioner survey, in: Proceedings of the 7th International Workshop on724

Automation of Software Test, 2012, pp. 36–42.725

[5] W. Howden, Theoretical and empirical studies of program testing, IEEE726

Transactions on Software Engineering 4 (4) (1978) 293–298.727

37

[6] E. Barr, M. Harman, P. McMinn, M. Shahbaz, S. Yoo, The oracle prob-728

lem in software testing: A survey, IEEE Transactions on Software En-729

gineering 41 (5) (2015) 507 – 525.730

[7] B. Meyer, Eiffel: A language and environment for software engineering,731

Journal of Systems and Software 8 (3) (1988) 199–246.732

[8] S. Segura, G. Fraser, A. B. Sanchez, A. Ruiz-Corts, A survey on meta-733

morphic testing, IEEE Transactions on Software Engineering 42 (9)734

(2016) 805–824.735

[9] Z. Q. Zhou, S. Xiang, T. Y. Chen, Metamorphic testing for software736

quality assessment: A study of search engines, IEEE Transactions on737

Software Engineering 42 (3) (2016) 264–284.738

[10] M. Delamaro, F. de Lourdes dos Santos Nunes, R. A. P. de Oliveira,739

Using concepts of content-based image retrieval to implement graphi-740

cal testing oracles, Software Testing, Verification and Reliability 23 (3)741

(2013) 171–198.742

[11] V. Garousi, M. Mntyl, When and what to automate in software testing?743

a multi-vocal literature review, Information and Software Technology 76744

(2016) 92 – 117.745

[12] E. Selay, Z. Q. Zhou, J. Zou, Adaptive random testing for image com-746

parison in regression web testing, in: Proceedings of the International747

Conference on Digital Image Computing: Techniques and Applications748

(DICTA), 2014, pp. 1–7.749

38

[13] Y. D. Lin, J. F. Rojas, E. T. H. Chu, Y. C. Lai, On the accuracy,750

efficiency, and reusability of automated test oracles for android devices,751

IEEE Transactions on Software Engineering 40 (10) (2014) 957–970.752

[14] G. Sivaraman, P. Csar, P. Vuorimaa, System software for digital tele-753

vision applications, in: IEEE International Conference on Multimedia754

and Expo, 2001, pp. 784–787.755

[15] C. S. Gebizli, H. Sozer, Improving models for model-based testing based756

on exploratory testing, in: Proceedings of the 6th IEEE Workshop on757

Software Test Automation, 2014, pp. 656–661.758

[16] C. S. Gebizli, D. Metin, H. Sozer, Combining model-based and risk-759

based testing for effective test case generation, in: Proceedings of the 9th760

Workshop on Testing: Academic and Industrial Conference - Practice761

and Research Techniques, 2015, pp. 1–4.762

[17] C. S. Gebizli, H. Sozer, A. Ercan, Successive refinement of models for763

model-based testing to increase system test effectiveness, in: Proceed-764

ings of the 10th Workshop on Testing: Academic and Industrial Con-765

ference - Practice and Research Techniques, 2016, pp. 263–268.766

[18] A. Memon, M. Pollack, M. Soffa, Automated test oracles for GUIs,767

SIGSOFT Software Engineering Notes 25 (6) (2000) 30–39.768

[19] C. Eaton, A. Memon, An empirical approach to evaluating web appli-769

cation compliance across diverse client platform configurations, Int. J.770

on Web Engineering and Technology 3 (3) (2007) 227–253.771

39

[20] E. Alégroth, R. Feldt, L. Ryrholm, Visual GUI testing in practice: chal-772

lenges, problems and limitations, Empirical Software Engineering 20 (3)773

(2015) 694–744.774

[21] M. Leotta, D. Clerissi, F. Ricca, P. Tonella, Approaches and tools for775

automated end-to-end web testing, Vol. 101 of Advances in Computers,776

Elsevier, 2016, pp. 193 – 237.777

[22] T. Chang, T. Yeh, R. Miller, GUI testing using computer vision, in:778

Proceedings of the SIGCHI Conference on Human Factors in Computing779

Systems, 2010, pp. 1535–1544.780

[23] H. Yee, S. Pattanaik, D. Greenberg, Spatiotemporal sensitivity and vi-781

sual attention for efficient rendering of dynamic environments, ACM782

Transactions on Graphics 20 (1) (2001) 39–65.783

[24] H. Yee, Perceptual metric for production testing, Journal of Graphics784

Tools 9 (4) (2004) 33–40.785

[25] Y. Benezeth, P.-M. Jodoin, B. Emile, H. Laurent, C. Rosenberger, Com-786

parative study of background subtraction algorithms, Journal of Elec-787

tronic Imaging 19 (3) (2010) 033003–033003–12.788

[26] S. Wold, K. Esbensen, P. Geladi, Principal component analysis, Chemo-789

metrics and intelligent laboratory systems 2 (1-3) (1987) 37–52.790

[27] D.-S. Lee, Effective gaussian mixture learning for video background sub-791

traction, IEEE transactions on pattern analysis and machine intelligence792

27 (5) (2005) 827–832.793

40

[28] M. C. Motwani, M. C. Gadiya, R. C. Motwani, F. C. Harris, Survey of794

image denoising techniques, in: Proceedings of GSPX, 2004, pp. 27–30.795

[29] R. C. Gonzalez, R. E. Woods, Digital Image Processing, 3rd Edition,796

Prentice Hall, 2008.797

[30] S. Fadnavis, Image interpolation techniques in digital image processing:798

An overview, J. of Engineering Research and Applications 4 (2014) 70–799

73.800

[31] A. Giusti, D. C. Cireşan, J. Masci, L. M. Gambardella, J. Schmidhu-801

ber, Fast image scanning with deep max-pooling convolutional neural802

networks, arXiv:1302.1700.803

[32] D. Scherer, A. Müller, S. Behnke, Evaluation of pooling operations in804

convolutional architectures for object recognition, in: International Con-805

ference on Artificial Neural Networks, Springer, 2010, pp. 92–101.806

[33] J. Nagi, F. Ducatelle, G. A. Di Caro, D. Cireşan, U. Meier, A. Giusti,807

F. Nagi, J. Schmidhuber, L. M. Gambardella, Max-pooling convolutional808

neural networks for vision-based hand gesture recognition, in: Signal809

and Image Processing Applications (ICSIPA), 2011 IEEE International810

Conference on, IEEE, 2011, pp. 342–347.811

[34] Y.-L. Boureau, J. Ponce, Y. LeCun, A theoretical analysis of feature812

pooling in visual recognition, in: Proceedings of the 27th international813

conference on machine learning (ICML-10), 2010, pp. 111–118.814

[35] S. Mahajan, W. Halfond, Detection and localization of html presenta-815

tion failures using computer vision-based techniques, in: Proceedings of816

41

the 8th International Conference on Software Testing, Verification and817

Validation, 2015, pp. 1–10.818

[36] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell, A. Wesslen,819

Experimentation in Software Engineering, Springer-Verlag, Berlin, Hei-820

delberg, 2012.821

[37] I. Banerjee, B. Nguyen, V. Garousi, A. Memon, Graphical user inter-822

face (gui) testing: Systematic mapping and repository, Information and823

Software Technology 55 (10) (2013) 1679 – 1694.824

[38] A. Kervinen, M. Maunumaa, T. Pääkkönen, M. Katara, Model-based825

testing through a gui, in: W. Grieskamp, C. Weise (Eds.), Formal Ap-826

proaches to Software Testing: 5th International Workshop, 2005, Re-827

vised Selected Papers, Springer Berlin Heidelberg, 2006, pp. 16–31.828

[39] J. Takahashi, An automated oracle for verifying GUI objects, SIGSOFT829

Software Engineering Notes 26 (4) (2001) 83–88.830

[40] S. Mahajan, W. Halfond, Finding HTML presentation failures using831

image comparison techniques, in: ACM/IEEE International Conference832

on Automated Software Engineering, 2014, pp. 91–96.833

[41] S. Choudhary, M. Prasad, A. Orso, X-PERT: Accurate identification834

of cross-browser issues in web applications, in: Proceedings of the 2013835

International Conference on Software Engineering, 2013, pp. 702–711.836

[42] S. Sprenkle, L. Pollock, H. Esquivel, B. Hazelwood, S. Ecott, Automated837

oracle comparators for testingweb applications, in: Proceedings of the838

42

18th IEEE International Symposium on Software Reliability, 2007, pp.839

117–126.840

[43] D. Amalfitano, A. Fasolino, S. Scala, P. Tramontana, Towards automatic841

model-in-the-loop testing of electronic vehicle information centers, in:842

Proceedings of the 2014 International Workshop on Long-term Industrial843

Collaboration on Software Engineering, 2014, pp. 9–12.844

[44] R. Oliveira, A. Memon, V. Gil, F. Nunes, M. Delamaro, An extensible845

framework to implement test oracle for non-testable programs, in: Pro-846

ceedings of the 26th International Conference on Software Engineering847

and Knowledge Engineering, 2014, pp. 199–204.848

[45] Q. Xie, A. Memon, Designing and comparing automated test oracles for849

gui-based software applications, ACM Transactions on Software Engi-850

neering and Methodology 16 (1) (2007) 1–36, Article No. 4.851

43

	Introduction
	Industrial Case Study: Digital TV Systems
	The Current Practice
	Observed Issues Regarding Test Oracle Automation
	The Collected Data Set

	Test Oracle Automation with VISOR
	Background Color Removal
	Noise Removal
	Bounding Box Identification
	Up-Sampling
	Max-Pooling
	Image Differencing
	Luminance Quantization
	Evaluation of the Quantized Disparity
	Summary

	Evaluation and Results
	Research Questions
	Experimental Setup
	Parameter Settings

	Results and Discussion
	Accuracy
	Speed

	Threats to Validity
	Limitations of the Approach

	Related Work
	Conclusion

