
Shonan Challenge for Generative Programming
Short Position Paper

Baris Aktemur
Ozyegin University, Turkey

baris.aktemur@ozyegin.edu.tr

Yukiyoshi Kameyama
University of Tsukuba, Japan

kameyama@acm.org

Oleg Kiselyov

oleg@okmij.org

Chung-chieh Shan

ccshan@post.harvard.edu

Abstract
The appeal of generative programming is “abstraction without
guilt”1: eliminating the vexing trade-off between writing high-
level code and highly-performant code. Generative programming
also promises to formally capture the domain-specific knowl-
edge and heuristics used by high-performance computing (HPC)
experts. How far along are we in fulfilling these promises? To
gauge our progress, a recent Shonan Meeting on “bridging the
theory of staged programming languages and the practice of high-
performance computing” proposed to use a set of benchmarks,
dubbed “Shonan Challenge”.

Shonan Challenge is a collection of crisp problems posed by
HPC and domain experts, for which efficient implementations are
known but were tedious to write and modify. The challenge is
to generate a similar efficient implementation from the high-level
specification of a problem, performing the same optimizations, but
automatically. It should be easy to adjust optimizations and the
specification, maintaining confidence in the generated code.

We describe our initial set of benchmarks and provide three so-
lutions to two of the problems. We hope that the Shonan Challenge
will clarify the state of the art and stimulate the theory and technol-
ogy of staging just as the POPLmark challenge did for meta-theory
mechanization. Since each Shonan Challenge problem is a kernel
of a significant HPC application, each solution has an immediate
practical application.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Design, Languages, Performance

Keywords High-performance computing, generative program-
ming, staging, code generation, domain-specific languages

1. Introduction
Both the programming language (PL) and high-performance com-
puting (HPC) communities have come to realize the importance of
code generation, in particular, staging. Whereas PL theorists widely
regard staging as the leading approach to making modular software

1 This slogan was coined by Ken Kennedy.
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and expressive languages run fast, HPC practitioners widely regard
staging as the leading approach to making high-performance soft-
ware reusable and maintainable ([3] and references therein). The
recent NII Shonan Meeting [7] “Bridging the theory of staged pro-
gramming languages with the practice of high-performance com-
puting” gave a rare chance for PL researchers and the potential
consumers of their work to meet each other.

A particular area of current interest shared by PL and HPC
researchers is how to use domain-specific languages (DSLs) to
capture and automate patterns and techniques of code generation,
transformation, and optimization that recur in an application do-
main [8, 10]. For example, HPC has created and benefited from
expressive DSLs such as OpenMP directives, SPIRAL’s signal pro-
cessing language [8], and specialized languages for stencil com-
putations and domain decomposition. Moreover, staging helps to
build efficient and expressive DSLs because it assures that the gen-
erated code is correct in the form of precise static guarantees.

Alas, the communication between PL researchers working on
staging and HPC practitioners could be better. On one hand, HPC
practitioners often do not know what PL research offers. On the
other hand, PL researchers often do not know how much HPC prac-
titioners who write code generators value this or that theoretical
advance or pragmatic benefit – in other words, how the HPC wish
list is ranked by importance. Therefore, at the Shonan Meeting, we
sought real-world applications of assured code generation in HPC
that would drive PL research in meta-programming.

Specifically, we decided to collect examples of what staging
should express:

• a high-level specification that a high-performance programmer
should be able to write easily and
• a low-level efficient implementation that is known today but

typically optimized by hand tediously.

In response to each such challenge statement, staging researchers
can show how to carry out the same optimizations and derive a sim-
ilar efficient implementation automatically from a similar simple
specification. The benefits of such an interaction are bidirectional:

• HPC practitioners would obtain the efficient implementation
without writing tedious code by hand.
• PL researchers would obtain real-world applications to enhance

the theory and technology of staging.

§2 below details the selection criteria for the challenge problems
and the evaluation criteria for their solutions. §3 introduces the ini-
tial set of challenges collected by Kenichi Asai during the meeting.
To date, several solutions have already been submitted for several
challenges. §4 and §5 discuss solutions for the stencil and hidden
Markov model benchmarks, respectively. The submitted solutions
also show the still open problems in the theory of staged compu-
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tation, in particular, ensuring that the generated code is well-typed
and well-scoped. Bugs do occur that cause the generated code to
contain unbound variables, and the culprit is not trivial to find.

A public mailing list http://groups.google.com/group/
stagedhpc and a GitHub repository https://github.com/
StagedHPC/shonan-challenge have been set up for the Shonan
Challenge. Please submit new problems and new solutions.

2. Design of the benchmark
In this section we motivate the selection of the Shonan Challenge
problems and the criteria to evaluate solutions. In particular, we
describe how the Shonan Challenge differs from existing HPC
benchmarks.

The HPC community has developed many benchmark suites,
such as

NAS parallel benchmarks2 a set of pervasively common compu-
tational codes, designed to evaluate the performance of parallel
supercomputers;

Sandia Mantevo suite3 kernels and parameterizable applications
to mimic the performance of real production codes;

LLNL Sequoia suite4 simplified versions of real-life HPC appli-
cations, selected as tests of parallel efficiency, single-processor
performance, performance of various aspects of Message Pass-
ing Interface (MPI), as well as of quality of compiler optimiza-
tions;

DARPA HPC Challenge5 synthetic benchmarks to measure float-
ing point performance, memory bandwidth, latency and other
aspects of supercomputer performance.

Most of these benchmarks are intended for measuring hardware
performance or the quality of MPI implementations and of com-
piler optimizations. Since the benchmarks contain common HPC
algorithms, some of them could also be used for evaluating new
languages or programming models. They have not been specifically
designed for testing how easy it is to write or generate these codes
or adjust them for a new platform. For example, micro-benchmarks
contain fixed low-level code not intended for optimization. Some
other benchmarks are scaled-down versions of real-world applica-
tions like molecular dynamics simulations, whose specifications re-
quire extensive background to understand and whose implementa-
tions are significant research problems.

2.1 Problem selection criteria
For the Shonan Challenge, we want problems that are easy to de-
scribe at a high level, so that many PL researchers can contribute
their solutions. At the same time, to keep the problems relevant
to HPC applications, we want the problems to pose a variety of
commonly encountered challenges for code generation: generating
code with arbitrarily many new bindings, with simple and complex
loop transformations (splitting, merging, unrolling), with the elim-
ination of temporary arrays.

We have selected the following format for the Challenge prob-
lems:

1. A brief description of the problem;

2. A high-level specification of what to compute;

3. A high-level description of the desired optimizations;

2 http://www.nas.nasa.gov/publications/npb.html
3 https://software.sandia.gov/mantevo/
4 https://asc.llnl.gov/sequoia/benchmarks/
5 http://icl.cs.utk.edu/hpcc/

4. Sample optimized code (typically hand-written) along with
sample unit tests;

5. Variations of the problem: what other optimizations are worth
trying, which parameters could be changed (e.g., unrolling fac-
tors), what related problems can the same technique apply to.

We use this format to describe the submitted problems in §3 and we
request new submissions in this format.

2.2 Solution evaluation criteria
A natural evaluation criterion for an HPC program is performance.
After all, HPC practitioners are often viewed by outsiders as
(ab)using assembly and low-level tricks to squeeze out the last bit
of performance. However, time and again observations of real-life
HPC projects contradict that naive view: “Since one of the project
goals is to develop algorithms that will last across many machine
lifetimes, it’s not seen as productive to try to maximize the perfor-
mance on any particular platform. Instead, code changes are made
that will improve the performance on a wide range of platforms”
[5]. A desire for portable performance was likewise expressed by
the participants of the Shonan Meeting.

Therefore, respondents to the Shonan Challenge are not re-
quired to benchmark their code on a supercomputer. Likewise, the
responses are not required to match the hand-written code ver-
batim. Of course, the responses to the challenge must compute
the correct results, in particular, pass the unit tests. Any response
should implement all the optimizations desired in the challenge.
The solutions will be further evaluated by:

• how well they support the extensions, variations and general-
izations;
• which correctness assurance of the generated code they provide;
• how easy are they to use by domain or HPC experts:

the cost of entry how easy it is to obtain the programming
system that implements the optimizations on a variety of
platforms and how easy it is to learn to use the system or
extend the set of optimizations;

the ongoing overhead how easy it is to apply the automatic
optimizations compared to writing the code by hand.

3. Shonan Challenge problems
This section lists sample challenges.

3.1 Complex number representation
Reiji Suda, an HPC expert, posed a challenge of accommodat-
ing changes to data layout. Transforming array-of-structures to
structure-of-arrays is one of the most profitable optimizations for
massively parallel systems such as GPU [12].

High-level specification Compute the product of two complex
vectors bj and cj of length N element-wise:

aj = bj ? cj j = 0..N − 1

where the complex multiplication x ? y yielding z is defined as

<z = <x<y −=x=y
=z = <x=y + =x<y

and <x and =x are, respectively, the real and the imaginary parts
of the complex number x.

Desired optimizations A complex number is commonly repre-
sented as a structure (in C) with two fields for the real and imagi-
nary parts of a number:

typedef struct { double r , i ; } complex;
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A complex vector then is an array-of-structures. The function to
compute the complex product of two vectors b and c with the result
in a has the signature:

void aos cmul(int n, complex a[],
const complex b[], const complex c[])

(see the Github repository for the code.)
An alternative representation for a complex vector is a structure

of two real-valued vectors, collecting the real and the imaginary
parts of the complex vector and in the separate arrays:

typedef struct {double ∗rv; double ∗iv } complex vector;

This structure-of-arrays representation is especially suitable for
vector computers and GPU. The complex vector multiplication will
have the signature

void soa cmul(int n, complex vector a,
complex vector b, complex vector c)

Challenges

1. Generate code for aos cmul and soa cmul.

2. Generate data layout transformation functions

void soa to aos (int n, complex a[], const complex vector b)
void aos to soa (int n, complex vector a, const complex b[])

3. Suppose we are given the source code for aos cmul but our com-
plex vectors are represented as structures-of-arrays. We can still
use aos cmul if we apply soa to aos to the input vectors and
aos to soa to the output vector. Incorporate the layout transfor-
mation functions into the given code for aos cmul so to elimi-
nate intermediary arrays. Preferably, the resulting code should
match soa cmul written by hand.

Variations

1. Accommodate other representations of a complex array:
• double a[2∗N] with the first half of the array a containing

the real part of the vector, and the last half containing the
imaginary part;
• A complex vector of length N as a 2 × N or N × 2 real

matrix

and generate the code for the cmul functions and for the data
layout transformations.

2. Generate code for other complex vector operations (for exam-
ple, computing d ? bj + cj where d is a scalar). In short, write a
DSL for vector operations, supporting all mentioned data layout
formats and a number of vector operations.

3.2 Sparse vector representation
Vectors can be represented using various formats to save memory
space depending on their sparsity level. A vector operation has dif-
ferent implementations and optimization opportunities based on the
representation. It is typical to switch among different sparse for-
mats for different program runs [12]; the flexibility to quickly ad-
just the code assuring correctness and performance is important.
Reiji Suda submitted a challenge6 that requires automatic optimiza-
tion of code specified using high-level operations. Although formu-
lated for vectors, the challenge extends to sparse matrices as well.

6 https://github.com/StagedHPC/shonan-challenge/tree/
master/problems/spvec

High-level specification A standard dense vector, assuming
double-precision values, is represented by an array (double∗) to
store the elements and an integer for the length. BLAS libraries
provide a function named daxpy, with the signature below, that
computes the generalized vector-vector addition z ← a ∗ x + y
where a is a scalar. The function can be implemented using a
straightforward for-loop.

void daxpy(int n, double ∗z, double a, double ∗x, double ∗y)

A sparse vector is represented by the following structure:

typedef struct {
int n; // the length of the vector
int nnz; // the number of the non−zero elements
int ∗idx; // the indices of the non−zero elements
double ∗val ; // the values of the non−zero elements
} spv;

and can be converted to a dense vector by the following function
(assuming no two elements of v.idx are the same):

void spv2vec(double ∗u, spv v) {
for (int i =0; i< v.n; i ++)

u[i ] = 0.0;

for (int i =0; i< v.nnz; i ++)
u[v. idx [ i ]] = v.val [ i ];

}

Using the conversion function above, we can define the variants
of daxpy where one or two input vectors are sparse.

void daxpspy(int n, double ∗z, double a, double ∗x, spv y) {
double u[y. n];
spv2vec(u, y);
daxpy(n, z, a, x, u);
}

void daspxpy(int n, double ∗z, double a, spv x, double ∗y)
// similarly

void daspxpspy(int n, double ∗z, double a, spv x, spv y) {
double u[x. n], v[ y. n];
spv2vec(u, x);
spv2vec(v, y);
daxpy(n, z, a, u, v);
}

HPC programmers prefer specifying data format adjustments by
inserting transformation functions as above. The programmers then
proceed to hand-optimize the code, to eliminate extra function calls
and temporary arrays and to fuse loops.

Desired optimizations The implementations of daxpspy, daspxpy
and daspxpspy use temporary arrays to compose spv2vec and daxpy.
The optimizations must remove these intermediary arrays.

The function daspxpy is subject to a second optimization: detect
when z and y are the same array and generate code that updates
only x.nnz elements of z.

There are many other sparse representations possible. For exam-
ple, if the vector’s non-zero elements appear in (sufficiently large)
groups of contiguous elements, the format below can be used to fur-
ther reduce the required memory. The function to convert to dense
format is also given below.

typedef struct {
int n; // length
int ng; // number of groups
int ∗size g ; // sizes of groups
int ∗iidx g : // initial index of groups
double ∗∗val; // values
} spv g;
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void spv g2vec(double ∗z, spv g x) {
for (int i =0; i< x.n; i ++)

z[ i ] = 0;
for (int i =0; i< x.ng; i ++)

for (int j =0; j< x.size g [ i ]; j ++)
z[ j + x.iidx g [ i ]] = x.val [ i ][ j ];

}

Even more space can be saved by removing the group size array
if the group sizes are (multiples) of the constant BLOCKSIZE:
typedef struct {

int n; // length
int ng; // number of groups
int ∗iidx g : // initial index of groups
double ∗∗val; // values
} spv b;

void spv b2vec(double ∗z, spv b x) {
for (int i =0; i< x.n; i ++)

z[ i ] = 0;
for (int i =0; i< x.ng; i ++)

for (int j =0; j< BLOCKSIZE; j++)
z[ j + x.iidx g [ i ]] = x.val [ i ][ j ];

}

A separate daxpy function can be written for when x and/or y
is in one of the formats above. Again, temporary array allocations
must be optimized away. Furthermore, the inner loop in spv b2vec
must be fully unrolled to eliminate loop-nesting.

Finally, a vector v can be decomposed into the sum of multiple
other vectors to allow combination of various representations, e.g.
v = vb + vs where vb is in spv b and vs is in spv format. The same
optimization requirements apply when a decomposition is used.

Challenge The main challenge is to automatically remove the
temporal array definitions as explained above. The challenge can
be extended to include additional operations. For instance, given
a function vec2spv that converts dense vector to sparse format, the
daxpy of sparse vectors resulting in a sparse vector is
spv spdaxpy(double a, spv x, spv y) {

double xx[ x. n], yy[ y. n], zz[ x. n];
spv2vec(xx, x);
spv2vec(yy, y);
daxpy(zz, a, xx, yy);
return vec2spv(x. n, zz);
}

Again, temporal array allocations should be removed if possible.
Depending on whether the input vectors are nearly dense or very
sparse, a different algorithm to construct the output vector can be
used. It can be assumed that the indices of sparse vectors are sorted,
because the challenge becomes more complicated otherwise.

Inner product and element-wise multiplication of sparse vectors
can be defined similarly by composing conversion and dense-vector
operations. The challenge can be extended to include these opera-
tions as well.

3.3 Stencil
The main HPC challenge today is to overcome the memory bottle-
neck, reducing the amount of time the CPU (local node) spends
waiting for data. The speed disparity between the CPU and the
memory subsystem is often characterized by the byte/flop (B/F) ra-
tio: the number of bytes moved from or to the main memory during
a computation divided by the number of floating-point operations.
The challenge of the HPC code optimization is to reduce the B/F ra-
tio and the amount of needed local memory. Takayuki Muranushi,
an astrophysicist whose work depends on solving partial differen-
tial equations (PDEs) on huge meshes, submitted a challenge re-
garding typical PDE solvers and finite-element algorithms.

High-level specification Signal processing or finite-element al-
gorithms can often be stated as element-wise computations on
shifted arrays. The following is the running example in the chal-
lenge. It is depicted in Figure 1(a).

~w = ~a× S1~a

~b = ~a− ~w + S−1 ~w

Here ~a is a global input array,~b is a global output array, and ~w is a
working array. The operation Sn shifts the argument array by n (to
the left, if n is positive). All arithmetic operations on arrays (addi-
tion, subtraction, even multiplication) are element-wise. Global ar-
rays are shared or distributed throughout a supercomputer; reading
or writing them requires accessing off-the-chip memory or inter-
node communication.

Desired optimizations The naive implementation, neglecting for
now edge elements, can be written in C as

for (i =0; i < N−1; i++)
w[i ] = a[i ] ∗ a[ i +1];

for (i =1; i < N−1; i++)
b[i ] = a[i ] − w[i] + w[i−1];

Assuming w is a local array, the first loop reads 2(N−1) elements
from the global array a and does N−1 floating-point multiplica-
tions.7 The second loop reads N−2 elements from a, writes N−2
elements to b and performs 2(N−2) floating-point operations. With
8-byte floating-point values, the B/F ratio is 32 to 3. Current super-
computers can sustain a B/F ratio of about 1 to 2. Therefore, the
naive implementation will run an order of magnitude slower than
the peak performance, because global memory cannot keep up with
the CPU. The slow-down will likely be bigger since for large N the
array w will not fit into the local memory.

After the array computation finishes, the output array b becomes
the input array for the next ‘time step’, and the computation con-
tinues. To reduce the B/F ratio, we can unroll this outer loop and
compute two time steps at once:

~w1 = ~a× S1~a

~wm = ~a− ~w1 + S−1 ~w1

~w2 = ~wm × S1 ~wm

~b = ~wm − ~w2 + S−1 ~w2

This unrolling is depicted in Figure 1(b). The naive implementation
of the twice-unrolled loop body has a B/F ratio of 32 to 6 – a two-
fold improvement over the ratio before of 32 to 3. However, the
implementation requires three times more local memory.

It is easy to see that computing one value b[i] requires only the
values within a small window around a[i] – the stencil. The interme-
diate array w can be avoided then. To compute the next element of
the output array b[i+1], we ‘slide’ the stencil over a, reusing all but
one of the elements from the previous stencil. Building the shifted
stencil requires a single reading from the global array a. This com-
putation is depicted in Figure 1(c). Applying these optimizations
manually to the two-time-step algorithm gives the following code:

for (i = 2; i < N−2; ++i) {
a 1 = a 2; a 2 = a[i +2];
w1 0 = w1 1; w1 1 = a 1 ∗ a 2;
wm 0 = wm 1; wm 1 = a 1 − w1 1 + w1 0;
w2 m1 = w2 0; w2 0 = wm 0 ∗ wm 1;
b[i ] = wm 0 − w2 0 + w2 m1;

}

7 We assume that the elements of a are not cached, as for GPUs or Cray
XMT. If the read elements of the array are cached, the first loop accesses
the global array N times. Since the array is presumed long, when the second
loop begins the needed elements will already be evicted from the cache.
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~wm

~w1
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(a) high-level specification (b) twice-unrolled loop (c) sliding stencil

Figure 1. The running example for the stencil problem

We assume that the stencil, formed by local variables a 1, a 2,
etc., is appropriately initialized before the beginning of the loop.
Each iteration of the loop reads one floating-point value, writes one
floating-point value, and executes 6 floating-point operations. So
the B/F ratio is 16 to 6 – without using any local arrays. The code
is expected to run closer to the peak speed of the supercomputer.

Challenge and variations The basic challenge problem is to au-
tomatically apply the stencil optimization and generate local-array-
free code. The result does not have to look exactly like the hand
written code above, but it has to give the same outputs given the
same inputs, use no local arrays, perform only a single reading and
single writing to global arrays and 6 floating-point operations per it-
eration (the B/F ratio must be 16 to 6). To demonstrate flexibility of
the generator, the first variation asks to generate the optimal code
for the thrice-unrolled algorithm (in other words, compute three
time steps at once to further reduce the B/F ratio). The second vari-
ation is to generate optimal code for a different computation

~w2 = −S−1~a+ 2~a− S1~a

~w1 = −S−1~a+ S1~a

~b = ~a+ c1 ~w1 + c2 ~w2

where c1 and c2 are scalar constants.

3.4 Hidden Markov model
Alexander Schliep, a bioinformatics expert, posed a problem about
Hidden Markov Models (HMMs). HMMs are statistical models
widely used in machine learning and bioinformatics.

High-level specification Finding the probability of observing a
particular state as the next state in the HMM involves a matrix-
vector multiplication, where the matrix contains the state transition
probabilities. Depending on the sparsity level of this matrix, some
loops must be unrolled automatically (fully or partially), and the
transformations 0 ∗ x = 0 and 0 + x = x need to be performed.

Desired optimizations and Challenge Kenichi Asai posted a sim-
plified version of the HMM problem.8 Given a general matrix-
vector multiplication program

int ∗ f (int n, int ∗∗a, int ∗v) {
int ∗w = (int∗)calloc (n, sizeof (int ));
for (int i =0; i < n; i ++)

for (int j =0; j < n; j ++)
w[i ] += a[i][ j ] ∗ v[ j ];

return w;
}

that is used to compute the next state in HMM, a desired optimiza-
tion is to unfold the loop for each row of a particular adjacency ma-
trix if the number of elements of the row is below a certain thresh-
old value. For example, for the matrix given below on the left and
the threshold value 3, the desired output is on the right:

8 https://github.com/StagedHPC/shonan-challenge/tree/
master/problems/hmm


1 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 1 1 1
0 0 1 0 1



int ∗ f (int ∗v) {
int ∗w = (int∗)calloc (5, sizeof (int ));
w[0] = v[0] + v[3];
w[1] = v[2];
w[2] = v[1];
for (int j =0; j < 5; j ++)

w[3] += a[3][j] ∗ v[ j ];
w[4] = v[2] + v[4];
return w;
}

The challenge is to perform the unfoldings and to obtain the
desired output.

4. Sample solutions to the stencil problem
To answer the stencil challenge and its variations, this section de-
scribes a domain-specific language for element-wise computation
on shifted arrays and its two implementations, using MetaOCaml9

and Lightweight Modular Staging – the Scala framework for build-
ing DSLs [9]. Both implementations let the programmer automati-
cally apply the stencil optimization and attain the code that is equiv-
alent to the hand-optimized code shown in §3.3.

4.1 MetaOCaml solution
The key observation is that any element-wise computation on
shifted arrays can be implemented as a single loop, with all ar-
ray references within its body being of the form a[i+n] where i is
the loop variable and n is a small and statically known constant. A
stencil for an array a may be then thought of as a cache – a memo
table keyed by the offset n. When the element a[i+n] is needed,
we check the cache for the entry with the key n, loading it from
the array if it was missing. At the end of the iteration, we re-key
the cache: the element at the key, say, 0, will now have the key
−1. Temporary arrays like ~w = ~a ∗ S1~a are likewise cached: if an
entry, say w[i+1], is missing, it will be computed as a[i+1] ∗ a[i+2]
rather than loaded from memory. Temporary arrays therefore be-
come ephemeral: they never have to be allocated.

This memoization of array access is straightforwardly staged.
Since all memo table indices are statically known, the lookup can
be performed at code generation time and the memo table imple-
mented as a sequence of local variables. Such staged memoization
has been described in detail by Kameyama et al. [6]. The outcome
is reminiscent of the common scalar-promotion optimization.

The final piece of the solution is the handling of edge ele-
ments. Near the edge, computations on shifted arrays may gen-
erate references to non-existing elements (e.g., at the index −1).
Such references return ‘halo’ values set by the programmer. To
eliminate the index bounds check in the main loop, the loop over
i=0..N−1 is split into three loops, over i=0..n−1, i=n..N−m−1, and
i=N−m..N−1 where n and m are small constants chosen such that
all references in the middle, main loop, are definitely within the
array bounds. The first and the third loops are fully unrolled.

9 http://www.metaocaml.org
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The code10 develops the DSL for stencil computation in detail
and has many samples of generated code and numerical tests. For
illustration, here is the naive generator of the double-time-step
computation:

let t21 max bounded a b =
forlooph 2 min bounded max bounded (

let a = gref0 a in
let w1 = a ∗@ ashift 1 a in
let wm = a −@ w1 +@ ashift (−1) w1 in
let w2 = wm ∗@ ashift 1 wm in
b ←@ wm −@ w2 +@ ashift (−1) w2)

where +@, ∗@ etc. are element-wise addition, multiplication and
other operations on abstract arrays. An abstract array, unifying in-
memory, ephemeral and cached arrays, is a function from an index
to the code computing the value at that index. The operation Sn, or
ashift n in the code, offsets the index. The loop body is a function
from the index (loop variable) to the code for the computation at
that index; forlooph 2 generates the overall loop from min bounded,
currently 0, to max bounded, the statically unknown upper bound
for array indices. The generator unrolls the first two and the last
two iterations. For the optimal code, we merely stencil-memoize
all abstract array computations:

let t25 max bounded a b =
let p = new prompt () and q = new prompt () in
push prompt q (fun () →
forlooph 2 min bounded max bounded (with body prompt p (

let a = stencil memo q p (gref0 a) in
let w1 = stencil memo q p (a ∗@ ashift 1 a) in
let wm = stencil memo q p (a −@ w1 +@ ashift (−1) w1) in
let w2 = stencil memo q p (wm ∗@ ashift 1 wm) in
b ←@ wm −@ w2 +@ ashift (−1) w2)))

The memoizer needs to know the loop scope (to generate loop-local
bindings) and the scope outside the loop (to generate variables that
cache data across loop iterations: the stencil itself). These scopes
are denoted by the so-called prompts p and q. The generated code,
shown in the comments in stencil.ml, reads and writes a global array
once per iteration and does six floating-point operations, with B/F
of 16/6.

Evaluation The MetaOCaml EDSL answers the challenge: it lets
the programmer write element-wise computations on shifted arrays
at a high level and apply the stencil optimization. The generated
code has essentially the same loop body and the same B/F as the
hand-written code in §3.3. Incidentally, the first version of the hand-
written code left the elements b[0], b[1], and b[N−1] of the output
array uninitialized and read past the end of the input array. Getting
edge cases right is really difficult. The generated code has very
long and boring pieces of code before and after the main loop, to
properly compute the edge elements. Writing such tedious code by
hand is excruciatingly boring. Code generation truly helps.

Our DSL lets us program shifted array computations in the form
close to the mathematical notation. Generating the optimal three-
time-step code is as straightforward as transcribing the mathemat-
ical specification. The variations of the challenge are hence easily
satisfiable.

Alas, the correctness of the DSL (hence the correctness proper-
ties of the generated code) are not formally stated let alone inde-
pendently verified (e.g., by the type system or a theorem prover).
We just have to trust the DSL author. Although the type system
of (pure) MetaOCaml does assure that the generated code is al-
ways well-typed, the stencil challenge solution had to use effects
in code generation – in particular, effects that insert let-bindings
across other let-bindings. Such effects void MetaOCaml guaran-
tees and may lead to unbound variables in the generated code –

10 http://okmij.org/ftp/meta-programming/HPC.html#stencil

so-called scope extrusion. During the development of the DSL,
scope extrusion has indeed happened. Such problems are some-
times discounted: after all, the code with unbound variables will
not compile, so the problem clearly manifests itself well before the
run-time. The experience showed that looking through the gener-
ated code (which is typically rather messy with uninformative vari-
able names) trying to determine the culprit within the generator has
proved non-trivial. It remains an open problem, the subject of on-
going work, to develop a practical system that statically prevents
scope extrusion.

4.2 Scala solution
The Scala solution to the stencil challenge, submitted by Tiark
Rompf11, relies on many of the same key ideas described in the
previous section. It, too, regards a stencil as a sliding cache. It
uses a different approach, so called LMS [9, 11]. MetaOCaml
is purely generative: the generated code is treated as black-box,
never to be transformed or even looked into. LMS, in contrast,
produces the final code in a sequence of staging transformations.
The intermediate representation produced by one stage can be
examined and re-written by the next stage. Such an intensional
code analysis lets us implement the stencil through the common
subexpression elimination: the main driver generates the code for
the loop body with the loop indices i and i+1 and detects the
computations that can be shared.

The most visible difference between the two solutions comes
from extensive meta-programming framework built around Scala
[9]. The framework, which automatically performs many opera-
tions such as common-subexpression elimination, makes the de-
velopment of new embedded DSL almost trivial. For example, here
is the generator solving the baseline challenge:

def w1(j: Rep[Int]) = a(j) ∗ a(j +1)
def wm(j: Rep[Int]) = a(j) − w1(j) + w1(j−1)
def w2(j: Rep[Int]) = wm(j) ∗ wm(j+1)
def b(j : Rep[Int]) = wm(j) − w2(j) + w2(j−1)

for (i ← (2 until n−2).sliding ) {
output(i ) = b(i)

}

The DSL code looks almost exactly as the mathematical notation.
The stencil caching is activated by the .sliding method, which the
DSL author has to implement. The generated code matches the
hand-written one.

Evaluation Like the MetaOCaml solution, the Scala solution an-
swers the challenge. The variations of the challenge are hence like-
wise easily satisfiable. The Scala solution also provides no inde-
pendently verifiable correctness guarantees.

5. Sample solution to the HMM problem
Unfolding of the loops is not a brand new application of staging;
examples exist for vector-vector multiplication [2, 4]. Kenichi Asai
posted the first solution to the HMM problem, in MetaOCaml.12

Tiark Rompf submitted another solution, using the LMS framework
in Scala.13. For the lack of space, we show only the latter:

11 https://github.com/TiarkRompf/virtualization-lms-core/
blob/delite-develop2/test-src/epfl/test11-shonan/
TestStencil.scala
12 https://github.com/StagedHPC/shonan-challenge/blob/
master/problems/hmm/specification.pdf?raw=true
13 https://github.com/TiarkRompf/virtualization-lms-core/
blob/delite-develop2/test-src/epfl/test11-shonan/
TestHMM.scala
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def sparse mv prod(a: Array[ Array[ Int ]], v: Rep[Array[Int ]]) = {
val v1 = NewArray[Int](n)
for (i ← 0 until n: Range) {

if (( a(i ) filter ( != 0)). length < 3) {
for (j ← 0 until n: Range) {

if (a(i )( j ) != 0)
v1(i ) = v1(i) + a(i)( j ) ∗ v(j )}

} else {
for (j ← 0 until n: Rep[Range]) {

v1(i ) = v1(i) + (staticData(a(i )) apply j ) ∗ v(j ) } }
}
v1 }

It is rather straightforward, with the first if-statement deciding if
the i-th row of a has fewer than 3 non-zero elements. The types
tell which iterations are done at compile-time and which are left
for run-time. The input array a : Array[Array[Int]] and the global
n : Range have the Rep-free types, the types of values available at
code-generation time. Hence the loops until n: Range are done
at generation time. In contrast, v: Rep[Array[Int]] is the “code”
type, for an integer array. Therefore, a(i)(j) ∗ v(j) generates
code for multiplying the two values. Likewise, for (j ← 0 until
n:Rep[Range]) generates the code for the loop. Scala’s implicit co-
ercions transparently promote, or “lift”, statically known values to
the corresponding code, with one exception where the promotion
has to be coded explicitly using the staticData operator.

Evaluation The solution completely answers the challenge. It can
be written more concisely by abstracting the pattern of selected
loop unrolling in a combinator unrollIf – see the code at GitHub.

6. Conclusions
There is an uncanny similarity between HPC and formal program-
ming language research, in that the optimal HPC code, like a formal
programming language proof, is very tedious, straightforward but
with lots of details, with a small mistake invalidating large amount
of work. Just as formal programming language research can bene-
fit from proof assistants, HPC can benefit from meta-programming
tools and research to build the tools. The similarity between the
two areas is so strong that the motivation of the POPLmark chal-
lenge [1] applies to HPC modulo replacement of ‘PL designers’
with ‘HPC practitioners’ and ‘developers of automated proof assis-
tance’ with ‘staging programmers’.

It is fitting therefore to conclude by paraphrasing the abstract of
the POPLmark challenge paper [1]:

How close are we to a world where
• every paper on high-performance computing is accom-

panied by an electronic appendix with machine program
generators?
• natural-science grad students no longer need to translate

their high-level formulas into Fortran?

We propose an initial set of benchmarks for measuring
progress in this area. These benchmarks embody many
aspects of HPC that require domain knowledge and diffi-
cult, for non-compiler experts, to perform with correctness
guarantees: generating code with arbitrary number of new
bindings, with complex loop transformations. We hope that
these benchmarks will help clarify the current state of the
art, provide a basis for comparing competing technologies,
and motivate further research.

It remains to build the system that assures the generated code is
well-typed (and free from array bound access problems, etc) and is
also convenient to use. Proposed solutions have also been posted to
HPC practitioners for their evaluation.
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