
A Comparative Study of Techniques to Write Customizable
Libraries

Baris Aktemur
University of Illinois at Urbana-Champaign, USA

aktemur@illinois.edu

Sam Kamin
University of Illinois at Urbana-Champaign, USA

kamin@illinois.edu

ABSTRACT
Code libraries are characterized by feature-richness — and,
consequently, high overhead. The library specialization prob-
lem is the problem of obtaining a low-overhead version of li-
brary code when the rich feature set is not needed. A version
of that problem is this: Given a class with certain core func-
tionality and some “optional” features, how can we offer the
client a menu of features such that the specific class answer-
ing this request is unencumbered by fields or computation
not needed for the requested features? This paper presents
a comparative study of several approaches to this version
of the library specialization problem. We evaluate object-
oriented programming, feature-oriented programming, col-
ored IDE, aspect-oriented programming, C-style preproces-
sor directives, and fragment-oriented program generation.
We find that all of these techniques have shortcomings.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Software libraries; D.3.4 [Programming Languages]:
Processors—Code generation

General Terms
Design, Languages

Keywords
library specialization, feature-oriented programming, pro-
gram generation

1. LIBRARY SPECIALIZATION
Libraries come enriched with many features and thus carry

high overhead. The Library specialization problem is the
problem of obtaining a low-overhead version of library code
when only a subset of the features is needed. To put it dif-
ferently, the question is this: Given a class with certain core
functionality, some “optional” features, and the user’s selec-
tion of features, how can we make the class free of fields and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

computation incurred by unwanted features? This problem
is important especially in resource-constrained settings.

In this paper we provide a comparative evaluation of sev-
eral techniques that can address this problem: Object-Ori-
ented Programming (OOP), Feature-Oriented Programming
(FOP), Colored IDE (CIDE), Aspect-Oriented Programming
(AOP), C-style preprocessor directives (PP), and Fragment-
Oriented Program Generation (FOPG). We find that OOP,
FOP and AOP have problems in handling fine-grained fea-
tures that affect code in the middle of a method or that
depend on local variables. The importance of such features
is emphasized in [12]; see section 6. While the other tech-
niques provide better support for fine-granularity, they have
problems in other dimensions.

Our method is experimental. We posit a specific special-
ization problem and attempt to solve it with various tech-
niques. The problem is inspired by the C# collection library
C5 [14], which provides classes such as list, bag, and tree,
enriched with advanced features (e.g. updatable&slidable
views, snapshots, event listeners).

In C5, every collection class comes with all these features
(or all that make sense for the particular type of collection),
and pays the price in additional space and time overhead.
There is no such thing as a “plain linked-list.” That is what
gives rise to the library specialization problem.

We base our study on a simplified example inspired by C5.
This is a collection library with two basic implementations
— linked-list and array-list — and two optional features:

View feature: The classes provide the ability to create
views (i.e. sublists) of them. A view keeps a reference
to its underlying list. A regular list keeps references of
its views.

Counter feature: The classes contain a field, counter, to
keep track of the number of list operations performed
on the list, such as add, reverse, etc. A method call on
a view causes both the view’s and its underlying list’s
counters to be incremented.

The View feature comes directly from C5. The Counter
feature we chose is the simplest feature we could think of
that still illustrates some aspects of interest for this problem.

We first describe the two implementations of the list in
Java-like syntax. The base versions with no optional fea-
tures are given in Figure 1. We refer to these codes as the
core functionality. The fully-loaded implementations are
shown in Figures 2 and 3, respectively. In each, the lines
that have feature-related logic are annotated with V and C

522

1 interface L i s t {
2 void add (Object item) ;
3 . . .
4 void r e v e r s e () ;
5 }
6
7 class ArrayList implements L i s t {
8 Object [] i tems ;
9 int s i z e ;

10
11 void add (Object item) {
12 i f (s i z e == items . l ength)
13 expand () ;
14 items [s i z e] = item ;
15 s i z e ++;
16 }
17 . . .
18 void r e v e r s e () {
19 int l ength=s i z e /2 ;
20 int end=s i z e −1;
21 for (int i =0; i < l ength ; i++) {
22 Object swap = items [i] ;
23 items [i] = items [end−i] ;
24 items [end−i] = swap ;
25 }
26 }
27 }
28
29 class LinkedList implements L i s t {
30 Node f i r s t , l a s t ; // This is a doubly linked list
31 int s i z e ;
32
33 void add (Object item) {
34 Node newnode = new Node(item) ;
35 newnode . next = l a s t ;
36 newnode . prev = l a s t . prev ;
37 l a s t . prev . next = newnode ;
38 l a s t . prev = newnode ;
39 s i z e ++;
40 }
41 . . .
42 void r e v e r s e () {
43 Node a = f i r s t . next , b = l a s t . prev ;
44 for (int i =0; i<s i z e /2 ; i++) {
45 Object swap = a . item ;
46 a . item = b . item ; b . item = swap ;
47 a = a . next ; b = b . prev ;
48 }
49 }
50 }
51 class Node {
52 Node prev , next ; Object item ;
53 Node (Object i){ item = i ; }
54 }

Figure 1: The List interface and the plain ArrayList
and LinkedList classes.

markers. C5 has similar ArrayList and LinkedList classes,
but extended with several advanced features.

In principle, the user might want any of eight possible
classes: each implementation with each subset of the above
two features. We have shown four of these. Our question is
how to describe all eight (keeping in mind that the number
of classes grows exponentially with the number of features).

We must state at the outset that we are interested in man-
ual techniques, where the programmer explicitly writes code
to create specialized libraries. Automated techniques, such
as backwards slicing, to filter out the unused features, would
be most convenient. But such techniques always have their
limitations: can they handle aliasing, unknown or native
methods, and other complex language features? Further-
more, they necessarily require a whole-program analysis,
which is often impossible to provide in an object-oriented

1 class ArrayList implements L i s t {
2 Object [] i tems ;
3 int s i z e ;
4 C int counter = 0 ;
5 V ArrayList under ly ing ;
6 V ArrayList [] views ;
7 V int o f f s e t ;
8
9 void add (Object item) {

10 C counter++;
11 CV i f (under ly ing != null) under ly ing . counter++;
12 V i f ((under ly ing != null ? under ly ing : this) . s i z e
13 == items . l ength)
14 expand () ;
15 V i tems [o f f s e t+s i z e] = item ;
16 V (under ly ing != null ? under ly ing : this) . s i z e ++;
17 V f i x V i e w s A f t e r I n s e r t i o n () ;
18 }
19 V void f i x V i e w s A f t e r I n s e r t i o n () { do the fixing }
20 . . .
21 void r e v e r s e () {
22 C counter++;
23 CV i f (under ly ing != null) under ly ing . counter++;
24 int l ength=s i z e /2 ;
25 V int end=o f f s e t+s i z e −1;
26 for (int i =0; i < l ength ; i++) {
27 V Object swap = items [o f f s e t+i] ;
28 V i tems [o f f s e t+i] = items [end−i] ;
29 items [end−i] = swap ;
30 }
31 V disposeOver lappingViews () ;
32 }
33 V void disposeOver lappingViews () { . . . }
34 }

Figure 2: The ArrayList class enriched with two fea-
tures. C and V denote the lines added or modified
by the Counter and View features, respectively.

setting. For this study we consider methods that can be
applied by a library writer right now.

The most naive approach would be to provide all the pos-
sible implementations. But, as noted above, the number of
implementations is exponential in the number of features,
and a substantial amount of code would be duplicated; we
clearly want to avoid this.

Organization of the paper : We first provide a terminology in
Section 2 to help us in the evaluation. This is followed by in-
troduction of the evaluation criteria in Section 3. Sections 4
through 9 apply and evaluate the six techniques listed above.
We finally conclude and give future directions in Section 10.

Throughout this paper, we use a Java-like syntax. We
ignore visibility modifiers (e.g. public, private) for brevity.
We use sans serif font when referring to source code in text.

2. CLASSIFICATION OF FEATURE CODE
When a feature is included, it affects the core code in sev-

eral places. Any such effect is called an impact. We provide
the list below to classify an impact. The referenced line
numbers are from Figure 3.

Kind:

Code adder: The impact brings in a new piece of code, with-
out changing the original code. e.g. lines 4, 35.

Modifier: The impact modifies a part of the original code.
e.g. line 17 (compare to line 39 in Figure 1).

Position:

Member: The code introduced by the impact is a field or a

523

1 class LinkedList implements L i s t {
2 Node f i r s t , l a s t ;
3 int s i z e = 0 ;
4 C int counter = 0 ;
5 V LinkedList under ly ing ;
6 V LinkedList [] views ;
7 V int o f f s e t ;
8
9 void add (Object item) {

10 C counter++;
11 CV i f (under ly ing != null) under ly ing . counter++;
12 Node newnode = new Node(item) ;
13 newnode . next = l a s t ;
14 newnode . prev = l a s t . prev ;
15 l a s t . prev . next = newnode ;
16 l a s t . prev = newnode ;
17 V (under ly ing != null ? under ly ing : this) . s i z e ++;
18 V f i x V i e w s A f t e r I n s e r t i o n (newnode) ;
19 }
20 V void f i x V i e w s A f t e r I n s e r t i o n (Node newnode) {
21 V do the fixing // uses offset
22 V }
23 . . .
24 void r e v e r s e () {
25 C counter++;
26 CV i f (under ly ing != null) under ly ing . counter++;
27
28 V foreach view in views
29 V check and arrange the position of view for reversal
30
31 Node a = f i r s t . next , b = l a s t . prev ;
32 for (int i =0; i<s i z e /2 ; i++) {
33 Object swap = a . item ;
34 a . item = b . item ; b . item = swap ;
35 V mirrorViewSent ine l s (a , b , i) ;
36 a = a . next ; b = b . prev ;
37 }
38 V i f (s i z e%2 != 0) mir rorViewSent ine l s (a , b , s i z e / 2) ;
39 }
40 V void mirrorViewSent ine l s (Node a , Node b , int i) {
41 V do the mirroring
42 V }
43 }

Figure 3: The LinkedList class enriched with two fea-
tures. C and V denote the lines added or modified
by the Counter and View features, respectively.

method. Therefore it can be placed anywhere at the class
member level. e.g. line 4.

Prefix/Suffix: The code introduced by the impact is either
before or after a method body. Hence, only newly intro-
duced code can be a prefix/suffix. e.g. line 10.

Interleaved: The impact is located inside a method body.
e.g. line 35.

Dependence:

Non-dependent: The free variables of the impact are only
the fields of the core functionality or the fields introduced
by other impacts of the same feature. e.g. line 17.

Local-dependent: The impact refers to variables that are lo-
cally defined in the surrounding method of the impact’s lo-
cation. e.g. lines 35 and 38.

Feature-dependent: The impact refers to variables that are
defined by other features. e.g. line 11.

These impacts have varying degree of complexity. More-
over, not every combination is meaningful. For each ap-
proach we evaluate, we show which impacts cause difficulty.

3. EVALUATION CRITERIA
We would like a solution to the library specialization prob-

lem to have several properties. We will evaluate the ap-
proaches based on the following criteria:

Expressibility: Can any impact be expressed? Does han-
dling an impact require extra fields or method calls?

Modularity: Can the features and the core code be sep-
arated to their own modules? How much are the features
and the core code isolated from the rest of the library?

Reusability: Can a feature be reused on another core code,
if appropriate? Note that modularity is necessary to have
reusability.

Extensibility: How easy is it to add a new feature?

Binary operability: Many libraries are shipped to users
as binaries for security reasons. Can the technique work at
binary level, without requiring the existence of the source?

We will make a note when the technique we are evaluating
has a problematic issue not covered by the list above.

We view expressibility as the primary criterion, because
it asks whether the job can be done: can the method pro-
duce the correct (i.e. minimal) code for the given subset
of features? It is not enough to say, the given method pro-
duces the same functional effect as what we would like — the
version with all features already accomplishes that! Further-
more, we take it as given that if a method is unable to satisfy
this goal on our example, then this shortcoming will become
even more pronounced on larger examples. On the other
hand, a method may be capable of producing nearly the
correct code, and possess distinct advantages in the other
criteria; that is, expressibility cannot be the only criterion.

4. OBJECT-ORIENTED PROGRAMMING
Object-oriented programming languages are designed for

modularity, and inheritance is a way of adding or modifying
functionality non-destructively. Yet OOP cannot satisfacto-
rily solve the problem, for reasons that are widely known.

A natural attempt is to start with the plain ArrayList and
LinkedList classes, as given in Figure 1, and add the features.
Assuming a single-inheritance model, one can subclass the
plain classes and add the Counter and View features, result-
ing in two new subclasses for each plain class.

A problem here is that features are “embedded” in the
subclasses and hence are not reusable. Keeping the feature
impacts in a separate module (i.e. a class) and using them
via aggregation increases reusability. However, aggregation
requires adding extra fields. This conflicts with the main
motivation of the library specialization problem. Multiple
inheritance gets around this problem by allowing extending
both the plain class and the feature. Nonetheless, multiple
inheritance has its own well-known problems [20].

The second problem of OOP is that we still need to write
a class for each viable subset of the features — potentially
as many as 2n classes.

The third problem is about expressibility. Because the ex-
tension mechanism in OOP is method overriding, expressing
interleaved or modifier impacts requires introducing artifi-
cial method calls so that these methods can be overridden
appropriately to achieve the behaviour of the impact. Simi-
larly, local-dependent impacts require adding artificial meth-
ods to make the local variables accessible to the subclass.

524

In contrast to these problems, OOP can make features
reusable via generics. Note that the fields of the View fea-
ture in ArrayList and LinkedList classes are the same except
their types. By using generics, we can parameterize the
View feature on the type of the fields. The feature can then
be used for both ArrayList and LinkedList by passing the ap-
propriate type name.

Evaluation of OOP
We base our evaluation on the single inheritance model.

Expressibility: Interleaved, local-dependent and modifier
impacts are problematic. Attempting to improve feature
reuse via aggregation necessitates additional fields. The
number of classes that need to be implemented is exponen-
tial in the number of features.

Modularity: Limited. It can be improved by using ag-
gregation instead of inheritance but at the price of sacrific-
ing expressibility. Modifier impacts decrease isolation of the
core code because of introduction of artificial method calls
as “hook” points.

Reusability: Limited. Again, aggregation can be used for
improvement at the price of expressibility loss. Support for
generics provides better reusability.

Extensibility: Addition of a new feature may require code
duplication because of the exponential growth problem.

Binary operability: Supported.

5. FEATURE-ORIENTED PROGRAMMING
The library specialization problem is a favorite and well-

studied case in Feature-Oriented Programming (FOP) [4, 2,
17, 21, 12]. The main idea is to modularize the core func-
tionality, and extend it with features in a step-wise fashion.

An attempt to add the Counter feature to ArrayList and
LinkedList using Prehofer’s FOP [17] is shown in Figure 4. In
this approach, features and the core code are defined in their
own modules. How features interact with core functionality
and other features is defined by writing lifters which spec-
ify the impacts of features. It is assumed that features in
general interact with each other in a pair-wise fashion. This
keeps the number of lifters quadratic, instead of exponential,
in terms of the number of features. Prehofer gives two trans-
lations based on inheritance and aggregation, to convert a
feature-oriented program to plain OOP.

As illustrated by this example, FOP improves feature mod-
ularity and reuse over OOP. At its essence, however, FOP’s
mechanism to extend code with a feature is the same as
OOP’s method overriding mechanism. As a result, although
prefix/suffix and code adder impacts are expressed straight-
forwardly, FOP suffers from the same problems related to
the interleaved or local-dependent impacts as discussed in
the OOP section. Therefore we omit the implementation of
the View feature.

Batory’s FOP approach is based on mixin-layers where
each layer is a refinement of the upper layer [3, 2]. A refine-
ment may override existing methods in classes or add new
methods and fields. We do not give a proposed solution
because of space concerns.

Including both features requires implementation of an-
other lifter or layer, depending on the approach being used.

Traits [20, 19] is another structuring mechanism poten-
tially applicable to library specialization. However, for this

feature Counter {
int counter = 0 ;
void i nc () { counter++; }

}

feature Counter
l i f t s ArrayList {

void add (Object ob){
this . i nc () ;
super . add (ob) ;

}
. . .
void r e v e r s e (){

this . i nc () ;
super . r e v e r s e () ;

}
}

feature Counter
l i f t s LinkedList {

void add (Object ob){
this . i nc () ;
super . add (ob) ;

}
. . .
void r e v e r s e (){

this . i nc () ;
super . r e v e r s e () ;

}
}

Figure 4: Defining the Counter feature in Prehofer’s
FOP.

application, it is very similar to FOP; modularity and reuse
are improved as compared to OOP, but the same express-
ibility problems exist. Hence we omit a solution attempt.

Evaluation of FOP
Expressibility: Interleaved, local-dependent and modifier
impacts are problematic due to the extension mechanism
being the same as OOP’s method overriding; extra method
calls may be needed.

Modularity: Better modularity than OOP is provided for
both the features and the core code.

Reusability: It is possible to reuse a feature when it is
sensible. The Counter feature in Figure 4 is an example.

Extensibility: A new feature can be added by defining new
lifters or by implementing a new mixin-layer.

Binary operability: Depends on the system.

6. COLORED IDE (CIDE)
In [12], Kästner et al. take a legacy code (Berkeley DB)

with the goal of extracting out the features to make the ap-
plication customizable. They find that features having fine-
granularity — meaning the impacts modify the core code at
the expression or statement level — are very common, and
they identify the inability of OOP and FOP to express these
impacts. To address this challenge, they develop the Col-
ored Integrated Development Environment (CIDE), where
feature impacts can be marked manually with a particular
color in the source code. The color annotations are used
as a mask to include or exclude impacts. A type system to
guarantee type-safety of the produced code is also given [11].
A sample coloring for the reverse () method is below, where
medium gray denotes the Counter feature, light gray de-

notes View, and dark gray is their overlap.

void reverse() {
counter++;

if(underlying != null) underlying.counter++;

foreach view in views

check and arrange the positions of views

Node a = first.next, b = last.prev;
...

}

525

Evaluation of CIDE
Expressibility: Support for modifier impacts is not pro-
vided. Other impacts can be expressed.

Modularity: All the annotations are made on the original
source code. Hence, there is no modularity.

Reusability: Not supported as there is no modularity.

Extensibility: Access to the source code is required.

Binary operability: Not supported. Requires the IDE
and the source code.

7. ASPECT-ORIENTED PROGRAMMING
We now consider Aspect-Oriented Programming (AOP)

to address the library specialization problem. We use As-
pectJ [1], the most popular AOP language. An implemen-
tation of the Counter feature is below.

interface CounterI {}

abstract aspect CounterAspect<T extends List> {
// introduce the new field
int CounterI . counter = 0 ;
declare parents : T implements CounterI ;

// match method executions of T
pointcut methodExec (T s e l f) : this (s e l f) &&

(execution (∗ T. add (. .)) | |
execution (∗ T. r e v e r s e (. .)) | | and other methods) ;

// increment the counter before a method execution
before (T s) : methodExec (s){ ((CounterI) s) . counter++;}

}
aspect LLCounter extends CounterAspect<LinkedList >{}
aspect ALCounter extends CounterAspect<ArrayList >{}

We first implement the feature as an abstract aspect pa-
rameterized on type T, a subtype of List . T is then made
a subtype of an interface to which the counter field is intro-
duced by an inter-type member declaration1. Appropriate
methods of T are advised to increment the counter before
execution. The Counter feature is added to the list classes
by extending the abstract aspect with concrete parameters.
Using a generic aspect allows for modularization and reuse
of the Counter feature. When the same code piece goes into
several places that can be expressed with a single pointcut,
it is called homogeneous advising [6]. The Counter feature
is an example of this. AOP is very effective for this case.

The code to enrich LinkedList with View is given in Figure
5. We omit the case for ArrayList since it is similar. Better
reuse can be obtained for the common parts using a generic
aspect as done for the Counter feature. In contrast to the
homogeneous advising nature of the Counter, in View, we
have heterogeneous advising : weaving a piece of code to a
single point in the program [6]. This may raise a problem,
because now we need to define a unique pointcut for the
code-to-be-woven. For prefix/suffix impacts, this is easy to
do with the execution joinpoint and the after or before ad-
vices. However, it is more serious for interleaved code such
as the call to the mirrorViewSentinels method inside the for-
loop in LinkedList . It is not clear how one could specify
a unique pointcut for that particular execution point. A
finer-grained pointcut mechanism than AspectJ such as in
[18] might be needed. Moreover, preserving the uniqueness
of the pointcut as the code evolves may be a problem, espe-
cially when the number of heterogeneous advices is high.
1AspectJ does not allow directly introducing the counter
field to T.

aspect View {
// introduce new fields and methods
LinkedList L inkedList . under ly ing ;
L inkedList [] L inkedList . views ;
int LinkedList . o f f s e t ;

void LinkedList . mi r rorViewSent ine l s (Node a ,
Node b , int i) { . . . }

void LinkedList . f i x V i e w s A f t e r I n s e r t i o n (Node newnode)
{ . . . }

// Convert line 39 of Fig. 1 to line 17 of Fig 3
pointcut s i z e I n c (LinkedList s e l f) :

specification of the size field’s incrementation
&& this (s e l f) ;

void around (L inkedList s) : s i z e I n c (s) {
(s . under ly ing !=null ? s . under ly ing : s) . s i z e ++;

}

// Insert the line 18 of Figure 3
after (L inkedList s) :
execution (void LinkedList . add (Object)) && this (s)
{ s . f i x V i e w s A f t e r I n s e r t i o n (How to access newnode ?) ; }

// Insert the line 35 of Figure 3
pointcut i n s i d eReve r s e (L inkedList s e l f) :

uniquely capture the point to do mirroring inside the for-loop

&& this (s e l f) ;
before (L inkedList s) : i n s id eReve r s e (s)
{ s . mi r rorViewSent ine l s (How to access a,b and i ?) ; }

. . . //and other impacts...
}

Figure 5: Adding the View feature to LinkedList using
an aspect. Problematic places are underlined.

Another problem is with local-dependent impacts. Al-
though advised code can access the fields of the class it is
being woven into — both existing fields and fields that are
introduced by the advice’s aspect are visible — it cannot
access the local variables that become accessible after weav-
ing. Ad-hoc solutions need to be invented for each case to
overcome this problem.

Let us now look at how to combine the two features. We
consider only the LinkedList class. The case for ArrayList is
similar. The aspect is below.

aspect CounterAndView {
// increment the underlying list’s counter
// using the same pointcut from the Counter aspect
before (L inkedList s e l f) :
Counter<LinkedList >.methodExec (s e l f){

i f (s e l f . under ly ing != null)
((CounterI) s e l f . under ly ing) . counter++;

}
// enforce the order because two aspects compete
declare precedence : Counter , CounterAndView ;

}

Since CounterAspect and CounterAndView both weave code
to the same pointcut, the pointcut definition from Counter-
Aspect is reused. This requires declaring an order to control
which aspect is woven first. In our example, inclusion of
both features adds a new piece of code to the core without
changing the features’ existing impacts. If the combination
required a change in one of the impacts of the individual
features, a more complicated solution would be needed.

We finally note that AOP requires the programmer to
learn a new language beyond the basic language used to
implement the library. By contrast, other techniques involve
extensions that are relatively modest.

526

Evaluation of AOP
Expressibility: Interleaved and local-dependent impacts
are problematic. Specifying pointcuts uniquely can be hard.
Ad-hoc and tricky solutions or introducing artificial method
calls may be needed to declare the desired pointcuts.

AspectJ handles pointcuts and advices by introducing sev-
eral auxiliary methods to the woven class. This may bring a
runtime overhead. Yiihaw [9] is an aspect-weaver that does
not add any extra computation other than the woven ad-
vice. It may be used to avoid the runtime overhead.

Modularity: Supported in general. The core code is mostly
oblivious of the features. Problems with expressibility may
force modularity loss, though.

Reusability: Use of generics improves reusability, such as
the case with the Counter aspect.

Extensibility: Extra care needed to not break uniqueness
of existing pointcuts when introducing a new feature.

Binary operability: Depends on the system. AspectJ sup-
ports weaving into bytecode.

8. C-STYLE PREPROCESSOR DIRECTIVES
We next discuss the preprocessor (PP) directives as found

in C. A snippet of a possible solution is given in Figure 6.
Pieces of code can be conditionally included using #ifdef
directives. Since this is a text-based approach at very fine-
granularity, any impact can be expressed. The #else direc-
tive allows for expressing modifier impacts. Defining macros
improves reuse of impacts. Macros can be parameterized for
better reuse, as done with VW FIELDS in Figure 6.

Preprocessor directives, however, provide no semantic or
syntactic guarantees for the produced code. They also make
the code very hard to read.

Evaluation of PP Directives
Expressibility: Any impact can be expressed. Exact de-
sired code can be produced.

Modularity: The core is not oblivious of the features. Im-
pacts of a feature are not modularized, but grouped in the
same module.

Reusability: Impacts can be reused whenever sensible.
Macros allow for increased reuse.

Extensibility: New features can be added by introducing
new preprocessor directives and by referring to them in the
core code.

Binary operability: Not supported. Source code needed
for preprocessing.

9. FRAGMENT-ORIENTED PROGRAM
GENERATION

Another technique one may consider using to solve the li-
brary specialization problem is Fragment-Oriented Program
Generation (FOPG), which is a program generation method-
ology where pieces of code are combined and composed to
form a complete program. Several FOPG systems exist in
the literature [10, 25, 15, 16, 22, 7]. Although each of these
differs by the generality, flexibility, and safety that it offers
to the programmer, they all have a quotation syntax to de-
fine the program fragments, and an anti-quotation syntax

// remove/keep these two defs to exclude/include features
#define COUNTER
#define VIEW
// Counter feature

#ifdef COUNTER
#define CNT FIELD int counter = 0 ;
#define CNT INC counter++;
#else
#define CNT FIELD // empty
#define CNT INC // empty
#endif

// View feature
#ifdef VIEW
#define VW FIELDS(TYPE) TYPE under ly ing ;\

TYPE[] views ; \
int o f f s e t ;

. . . // and other View macros
#else
#define VW FIELDS(TYPE) // empty
. . . // and other View macros
#endif

// the common impact
#define UNDERLYING CNT INC // empty
#ifdef VIEW
#ifdef COUNTER
// redefine the macro

#define UNDERLYING CNT INC \
i f (under ly ing != null) under ly ing . counter++;

#endif
#endif

c lass LinkedList implements L i s t {
Node f i r s t , l a s t ;
int s i z e = 0 ;
CNT FIELD
VW FIELDS(LinkedList)

void add (Object item) {
CNT INC
UNDERLYING CNT INC
Node newnode = new Node(item) ;
. . .

Figure 6: Feature impacts defined as macros.

to mark the holes inside those fragments. Quotations have
been inspired from the quasiquotations in Lisp [5]. In this
paper we will use Jumbo [10] as the FOPG language be-
cause it provides general-purpose program generation using
a real-world language: Java. In Jumbo, $< and >$ are used
to mark the start and end of a program fragment (i.e. a
“quoted fragment”). Backquote (8) is the syntax for declar-
ing holes. Holes are filled in with other code fragments.

To address the library specialization problem with FOPG,
we first write a function, shown in Figure 7, that takes
two features as parameters and uses them to generate a
LinkedList class where locations of impacts are marked with
holes that are filled in with impact codes. This generator
can be compared to the original LinkedList class from Figure
3. We omit the generator for ArrayList .

Figure 8 shows the implementations of the features. In
this approach, a feature is a set of code fragments (or, more
generally, a set of fragment-producing functions) to be in-
serted into holes in the LinkedList generator. Each feature
has at least two implementations: one for when the feature
is included, one for when it is not. The desired class can
be generated by passing the generator method appropriate
instances of the feature classes. A possible invocation that
generates a LinkedList class with the View feature but not
the Counter is genLinkedList(new NoCounter(), new View()).
Variations of a feature can be created by subclassing and

527

Code genLinkedList (Counter counter , View view) {
return $<

class LinkedList implements L i s t {
Node f i r s t , l a s t ;
int s i z e = 0 ;
8 (counter . f i e l d s ())
8 (view . f i e l d s ($< LinkedList >$))

void add (Object item) {
8 (counter . inc ())
8 (counter . under ly ingCounter ())
Node newnode = new Node(item) ;
newnode . next = l a s t ;
newnode . prev = l a s t . prev ;
l a s t . prev . next = newnode ;
l a s t . prev = newnode ;
8 (view . t a r g e t L i s t ()) . s i z e ++;
8 (view . f ixViews ())

}
. . .
void r e v e r s e () {

8 (counter . inc ())
8 (counter . under ly ingCounter ())

8 (view . forEachView ())
Node a = f i r s t . next , b = l a s t . prev ;
for (int i =0; i<s i z e /2 ; i++) {

Object swap = a . item ;
a . item = b . item ; b . item = swap ;
8 (view . mirror1 ())
a = a . next ; b = b . prev ;

}
8 (view . mirror2 ())

}
} >$;

}

Figure 7: Writing a library generator in FOPG. A
LinkedList class enriched with features according to
the given arguments is generated.

overriding certain methods, such as in the CounterWithView
class, whose instance should be used as the Counter feature
if the View feature is enabled.

The fields() method of the View feature uses its parameter
as the types of the fields that will be returned. Thus, it is
possible to use the method in both ArrayList and LinkedList
generators by passing the appropriate type as the argument.
The Counter feature also is reusable by both generators.

With the help of the flexibility that FOPG provides in def-
inition of fragments, which are first-class citizens, the most
problematic impacts (i.e. interleaving local-dependent) can
be expressed without difficulty. Similar to the preprocessor
approach, FOPG can produce the exact desired code.

On the other hand, the core functionality is not obliv-
ious of the features. To extend the library with a new
feature, the generator has to be annotated with necessary
anti-quotations to specify the locations of feature impacts.
Furthermore, although the FOPG system we assumed here,
Jumbo [10], guarantees parsability of the produced code, it
does not provide type-safety. There are several FOPG type
systems in the literature [15, 22, 7, 8, 13]. However, none
of them, to our knowledge, is general and strong enough to
type-check the library generator presented here. Type sys-
tems that require fragments to be closed, such as [23, 24],
can type-check the generators if the features and impacts
are implemented as higher-order functions, but this may be
inconvenient for library developers. We do not go into more
details due to space constraints.

class Counter {
Code f i e l d s () { return $< int counter = 0 ; >$; }
Code inc () { return $< counter++; >$; }
Code under ly ingCounter () { return $< >$; }

}
class NoCounter extends Counter {

Code f i e l d s () { return $< >$; }
Code inc () { return $< >$; }

}
class CounterWithView extends Counter {

Code under ly ingCounter () {
return $< i f (under ly ing != null)

under ly ing . counter++; >$;
}

}

class View {
Code f i e l d s (Code type) {

return $< 8 (type) under ly ing ;
8 (type) [] views ;
int o f f s e t ; >$;

}
Code t a r g e t L i s t () {

return $< (under ly ing !=null ? under ly ing : this) >$;
}
Code mirror1 () {

return $< mirrorViewSent ine l s (a , b , i) ; >$;
}
. . . // and other impacts

}
class NoView extends View {

Code f i e l d s () { return $< >$; }
Code t a r g e t L i s t () { return $< this >$; }
Code mirror1 () { return $< >$; }
. . . // and other impacts

}

Figure 8: Defining the features in FOPG.

Evaluation of FOPG
Expressibility: Any impact can be expressed. Exact de-
sired code can be generated.

Modularity: Features are modularized, but the core code
is not isolated; it contains hook points for features.

Reusability: Fragments are first-class citizens; they can
be freely passed around. Fragment-producing methods of
features can be parameterized over other fragments. These
allow for reusability.

Extensibility: Core source is needed to introduce new
holes at the locations of the new feature’s impacts.

Binary operability: Supported by Jumbo [10].

10. CONCLUSION AND FUTURE DIREC-
TIONS

Library specialization is the problem of customizing a li-
brary according to the needs of the user. A feature of the
library is to be excluded if it is not going to be used, so
that a more efficient version of the library can be produced.
We have started our study of the problem from a real-world
implementation of collections library, C5 [14]. We have seen
that features add new or modify existing pieces of code, as
well as introduce new fields to the class they are enriching.
The piece of code that is added or modified can be any-
where: at the beginning, middle, or end of a method. It
may refer to the fields introduced by the feature, the fields
of the class, or the local variables that are visible at the
impact location. This fine-granulated character of impacts

528

OOP FOP AOP (5) CIDE PP (6) FOPG (7)
Expressibility H# H# H# (1) (1)
Modularity H# # H#
Reusability H# #
Extensibility H# (2) (2) (3)H#(3)(3)H#(3) (3)H#(3)
Binary
operability

 (4)H#(4) # #

(1) Modifier impacts are not supported, but this is a technical

issue rather than fundamental.

(2) Preserving the uniqueness of pointcuts requires extra care.

(3) Source code has to be available to add annotations for the

new feature.

(4) Depends on the system.

(5) Requires learning a new language.

(6) No syntactic or semantic safety provided for the produced

code.

(7) Guaranteeing type-safety of the generated code has problems.

Table 1: A summary of the evaluation of techniques.
denotes no support, H# denotes partial support,
and denotes good support.

was previously identified in [12]. All these properties affect
how a feature is handled by a particular technique.

We have evaluated six techniques. A summary of the eval-
uation is given in Table 1. None of the techniques offers a
completely satisfactory solution to the library specialization
problem. It appears that an ideal methodology would be
a mixture of these techniques. CIDE, FOPG and Prepro-
cessor directives have better expressibility than OOP, FOP,
and AOP. However, they cannot make the core code obliv-
ious of the features as well as AOP, which also is very suc-
cessful for homogeneous advicing. AOP, on the other hand,
achieves obliviousness at the price of the unique pointcut
problem. FOPG provides better modularity and reusabil-
ity than CIDE or PP, but it has problems in type-checking.
A middle-ground approach between FOPG and AOP that
supports modularity and reuse of impacts via first-class frag-
ments, but also supports homogeneous advising via (implic-
itly) defined locations could provide a satisfactory solution.
The feasibility and effectiveness of the combination of these
strengths, however, is a future research problem.

Acknowledgments
We thank Peter Sestoft for introducing us to the library
specialization problem in the context of C5.

11. REFERENCES
[1] Aspectj web site. http://www.aspectj.org.

[2] D. Batory. A tutorial on feature oriented
programming and the ahead tool suite. In GTTSE’05,
volume 4143 of LNCS, pages 3–35. Springer, 2006.

[3] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
step-wise refinement. IEEE TSE, 30(6):355–371, 2004.

[4] D. Batory, V. Singhal, M. Sirkin, and J. Thomas.
Scalable software libraries. In FSE’93, pages 191–199.
ACM Press, 1993.

[5] A. Bawden. Quasiquotation in lisp. In PEPM, pages
4–12, 1999.

[6] A. Colyer, A. Rashid, and G. Blair. The separation of
concerns in program families. Technical report,

Computing Department, Lancaster University,
January 2004.

[7] S. S. Huang, D. Zook, and Y. Smaragdakis. Statically
safe program generation with safegen. In GPCE’05,
volume 3676 of LNCS, pages 309-326. Springer, 2005.

[8] S. S. Huang, D. Zook, and Y. Smaragdakis. cj:
Enhancing java with safe type conditions. In
AOSD’07, pages 185–198. ACM Press, 2007.

[9] R. Johansen, P. Sestoft, and S. Spangenberg.
Zero-overhead composable aspects for .net. In
Proceedings of Lipari 2007 Summer School, Italy, 2007.

[10] S. Kamin, L. Clausen, and A. Jarvis. Jumbo: run-time
code generation for java and its applications. In CGO
’03, pages 48–56. IEEE Computer Society, 2003.

[11] C. Kästner and S. Apel. Type-checking software
product lines - a formal approach. In ASE’08. IEEE
Computer Society, Sept. 2008.

[12] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in software product lines. In ICSE ’08, pages 311–320.
ACM, 2008.

[13] I.-S. Kim, K. Yi, and C. Calcagno. A polymorphic
modal type system for lisp-like multi-staged
languages. In POPL’06, pages 257–268. ACM, 2006.

[14] N. Kokholm and P. Sestoft. The c5 generic collection
library. http://www.itu.dk/research/c5/.

[15] Y. Oiwa, H. Masuhara, and A. Yonezawa. Dynjava:
Type safe dynamic code generation in java. In The 3rd
JSSST Workshop on Programming and Programming
Languages (PPL2001), March 2001.

[16] M. Poletto, W. C. Hsieh, D. R. Engler, and M. F.
Kaashoek. ’C and tcc: a language and compiler for
dynamic code generation. ACM TOPLAS,
21(2):324–369, 1999.

[17] C. Prehofer. Feature-oriented programming: A fresh
look at objects. In ECOOP’97, volume 1241 of LNCS,
Finland, 1997. Springer.

[18] T. Rho, G. Kniesel, and M. Appeltauer. Fine-grained
generic aspects. In FOAL’06, Bonn, Germany, 2006.

[19] Scala language. http://www.scala-lang.org.

[20] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black.
Traits: Composable units of behavior. In ECOOP’03,
volume 2743 of LNCS, pages 248–274. Springer, 2003.

[21] Y. Smaragdakis and D. Batory. Implementing layered
designs with mixin layers. In ECOOP’98, volume 1445
of LNCS, pages 550–570, London, UK, 1998. Springer.

[22] F. Smith, D. Grossman, G. Morrisett, L. Hornof, and
T. Jim. Compiling for template-based run-time code
generation. JFP, 13(3):677–708, 2003.

[23] W. Taha and T. Sheard. Metaml and multi-stage
programming with explicit annotations. TCS,
248(1–2):211–242, 2000.

[24] Y. Yuse and A. Igarashi. A modal type system for
multi-level generating extensions with persistent code.
In PPDP’06, pages 201–212, New York, 2006. ACM.

[25] D. Zook, S. S. Huang, and Y. Smaragdakis.
Generating aspectj programs with meta-aspectj. In
GPCE’04, volume 3286 of LNCS, pages 1–18,
Vancouver, Canada, October 2004. Springer.

529

