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Abstract. In service-oriented architectures, composite services depend
on a set of partner services to perform the required tasks. These partner
services may become unavailable due to system and/or network faults,
leading to an increased error rate for the composite service. In this pa-
per, we propose an approach to prevent the occurrence of errors that
result from the unavailability of partner services. We introduce an ex-
ternal Web service, FAS (Fault Avoidance Service), to which composite
services can register at will. After registration, FAS periodically checks
the partner links, detects unavailable partner services, and updates the
composite service with available alternatives. Thus, in case of a partner
service error, the composite service will have been updated before invok-
ing the partner service. We provide mathematical analysis regarding the
error rate and the ratio of false positives with respect to the monitoring
frequency of FAS for different partner service availabilities. We also pro-
vide empirical results regarding these metrics based on several tests we
performed using the Amazon Elastic Compute Cloud.

1 Introduction

In service-oriented architectures [14], composite services depend on a set of part-
ner services to perform the required tasks. Some of the partner services can cease
to be available due to system and/or network faults, which have been shown in
recent experimental studies [28] to be very common. These faults result in an
error and possibly a failure of the composite service that relies on the availabil-
ity of its partner services. Preferably, the composite service should discover and
utilize alternative services to tolerate such external faults. As such, there have
been several service fault tolerance approaches proposed in the literature [25,
27, 17]. However, fault tolerance increases the response time due to the addi-
tional time it takes to detect errors and recover from them3. The consequential

3 If the composite service employs the Active fault tolerance strategy (i.e., connects
to all of the partner services in parallel and proceeds immediately after receiving a
response from a partner), occurrence of a fault in a partner service would not affect
the composite service. However, this is not possible in many cases due to constraints
imposed by unavailable resources or the problem domain.



delay can be very significant especially for composite services that utilize many
other services [4]. Therefore, external faults should be avoided (if possible) to
improve the dependability and performance of service-oriented systems. One way
to avoid partner service faults is to execute the service selection process per each
request [3, 7] or per each flow of requests [2]. However, a partner service might
be accessed multiple times during the processing of a request and it can cease to
be available at any time. Moreover, executing the service selection process per
each request/flow also introduces an overhead, just like the overhead of error
detection and recovery.

Research efforts so far have mainly focused on providing service brokers [6,
7], middleware [26, 13, 27] and framework support [10, 12, 5, 17] to compose de-
pendable services. In this paper, we propose fault avoidance as a service, whose
utilization does not require a particular composite service model. We introduce
an external Web service, FAS(Fault Avoidance Service), to which a compos-
ite service registers the set of its partner services. FAS periodically checks the
availability of the registered partner services and locates the alternatives when
they are unavailable. Here, our goal is not to provide health monitoring or fault
tolerance, for which many approaches have already been proposed [28, 27, 17]. In-
stead, FAS aims at proactively updating composite services and as such, avoiding
faults. Faults are avoided by updating the links for unavailable partner services
with available alternatives before they are invoked by the composite service. This
reduces the error-rate.

We studied the impact of the monitoring frequency of FAS on the effective-
ness of our approach. In particular, we defined analytical metrics regarding the
error rate and the false positive rate for different monitoring frequencies and
partner service availabilities. We performed several tests using a prototype im-
plementation deployed on the Amazon Elastic Compute Cloud (EC2) [1]. Our
measurements confirmed the accuracy of our analytical metrics, which can be
used for determining an optimal monitoring frequency depending on varying
partner service availabilities.

Contributions of this paper are twofold. First, we propose the implementation
of forecasting, detection and the handling of external faults as external services.
In this way, a set of services can provide dependability support for other services,
i.e., Dependability as a Service (DaaS). To our knowledge, so far this concept has
only been realized in the context of software/service testing (Testing as a Service
- TaaS). Second, we provide analytical metrics regarding the impact of monitor-
ing frequency on the error rate and the false positive rate. We also validate these
metrics with empirical results for various partner service availabilities. We have
not encountered such an analysis in the literature although service monitoring
has been employed in many studies.

Organization: Section 2 presents the problem statement. Section 3 introduces
our solution approach. In Section 4, we introduce analytical metrics and related
mathematical analysis. In Section 5, we present our experimental setup, results
and evaluation. In Section 6, related previous studies are summarized. Finally,
in Section 7 we discuss some future work issues and provide the conclusions.



2 Background and the Problem Statement

A typical process in service-oriented systems involves a service requester and a
service provider, which communicate with each other through service requests
[14]. Usually a service provider registers its services at a service broker that
maintains a registry of “available” services [14]; a service requester can look up
and discover these services through the service broker. For instance, a UDDI [23]
service registry is a specialized type of service broker [14]. The service requester
can select any service provider among the ones that are discovered from a registry
service. In some cases, a service provider can request services of several other
service providers to perform a task. Such services are called composite services.
Usually, they are defined by service aggregators as a composition of a number of
partner services. Composition languages (e.g., WS-BPEL [16]) introduce special
structures called partner links, through which partner services can be accessed.

After registering itself to the service registry, or after being discovered by
the composite service, or even after being successfully invoked several times, a
partner service can become unavailable due to system and/or network faults.
In fact, recent experimental studies [28] show that the majority of service invo-
cation failures are caused by these types of faults (connection timeout, service
unavailablity, etc.). As a result, the invocation attempt leads to an error. In turn,
the composite service can i) report a failure to its service requester, or ii) dis-
cover and utilize alternative services to recover from the error. Figure 1 presents
a scenario for the second case. In this scenario, the previously designated partner
service fails and becomes unavailable. Hereby, MTTF and MTTR correspond
to the mean time to failure and the mean time to recover for this service, re-
spectively. After the failure and before the recovery of the partner service, the
composite service makes an invocation without success. The composite service
waits for a timeout duration (ttimeout) to decide whether the partner service
is available or not. Once it is deemed to be unavailable, the composite service
discovers an alternative service from the service registry. The duration of this dis-
covery is tlookup. In case there is already a designated alternative service (might
be hardcoded in the source code or the WS-BPEL description, or it might be
stored in an external cache), tlookup will be negligibly small. In any case, a new
invocation has to be made to the designated/discovered alternative service. The
total time that is necessary to recover from the error is toverhead.

Failure of a partner service is an external fault from the perspective of the
composite service that tries to utilize the failed service. A composite service can
be exposed to many such external faults and for each of these faults, toverhead
will be added to its overall response time as a cost of fault tolerance. The con-
sequential delay can be significant especially for composite services that utilize
many other services [4] to perform their tasks. In the following, we introduce an
approach, where these external faults are avoided to improve the dependability
and performance of composite services.
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Fig. 1: An error recovery scenario.

3 The Solution Approach

In our approach, we introduce a Web service for avoiding faults. We name this
service as Fault Avoidance Service (FAS). A composite service first determines
the list of partner services that are going to be utilized, and registers this list
of services to FAS. FAS periodically checks the availability of these services. In
case a partner service becomes unavailable, FAS locates alternatives and updates
the associated partner link of the composite service accordingly. When needed,
the composite service uses the updated partner links during invocation. This
prevents composite service from trying to reach unavailable partner services, as
such reduces the error rate and the overall response time of the process. To be
able to incorporate partner link updates, a registered composite service exposes
a callback method to receive updates from FAS.

Figure 2 depicts our overall approach. FAS stores a partner service list that
is provided by the composite service as the list of services to be monitored. This
list is used by the error detection module to check if the invocation of these
services can cause an error due to system/network faults that make the services
unavailable. The detected errors are reported to the fault handling module. This
module is responsible for preventing the detected errors at the composite service
by updating its partner links associated with the unavailable partner services.
As such, the composite service becomes oblivious to the faults rooted at its part-
ner services. The fault handling module may make use of a service cache and
occasionally the service registry to locate alternative and available services. If
a faulty service becomes available again, FAS updates the composite service’s
partner link back to its original setting. FAS checks the availability of the reg-
istered partner links periodically. In the following section, we analyze the effect
of FAS checking frequency on the error rate and the false positive rate.



composite 
service

partner 
services

service
registry

[2] lookup [1] registration

[5] invocation

fault
handling

error
detection

partner 
service 

list

service
cache

FAS

[3] registration

[4]
availability
         check

    [4.2]
update

[4.1] lookup

KEY: FAS boundary data flow among
the FAS components

one-time actions

latent actionsrepetitive actions

Fig. 2: The overall approach.

4 Mathematical Analysis

In an ideal situation, FAS will immediately detect whenever the partner service
becomes unavailable or available. This way, the composite service can be notified
right away so that no request from the composite service will fail (i.e., no errors)
and no request will be unnecessarily forwarded to the secondary service (i.e.,
no false positives). However, in real life, there will be cases where the composite
service sends its request to the partner service before FAS notices that the service
is down, or the cases where the composite service still uses the secondary service
because FAS did not notice yet that the partner service is back in life. The
error rate and the number of false positives depend on the frequency of requests
sent from the composite service, the frequency of FAS checks, and the chance
of a FAS check occurring right after a partner service status change. Increasing
the frequency of FAS checks would obviously decrease the error rate and false
positives, however, an increased frequency means more load and resource usage.
Being aware of this trade-off is vital for system administrators in adjusting the
checking period for FAS. In this section we provide the mathematical analysis of
the expected values of the error rate and the false positive rate.

Figure 3 shows the important events in a system using FAS. In this scenario,
we assume that the composite service (CS) periodically sends requests at some
frequency C, FAS checks availability of the partner service at a frequency F , and
the partner service becomes unavailable for a certain period of its lifetime TU .
For simplicity, we assume that the requests, checks and partner service up/down
events are instantaneous. The duration between the moment the partner service
becomes unavailable and the time FAS detects this, is the period of errors, be-
cause any request sent from the CS during this period will fail. Similarly, the



Fig. 3: A scenario showing the important events in a system that uses FAS. This
scenario also illustrates the case where 1/F ≤ TU .

duration between the moment the partner service becomes available again and
the time FAS detects this, is the period of false positives, because any request sent
from the CS during this period will unnecessarily be forwarded to the secondary
service. For example, the third CS request in Figure 3 fails because FAS has not
notified the CS for the unavailability of the partner service yet. After the third
FAS check, FAS notifies the CS, the fourth CS request is succesfully forwarded
to the secondary service and the potential error is avoided. However, the fifth
request will still be forwarded even though the partner service is back to life,
resulting in a false positive. This is because the fourth FAS check occurs after
the fifth CS request.

The question we look into at this moment is the expected rate of errors that
are not avoided and the false positive rate. The smaller these values are, the
more useful FAS is. To calculate these values, we first list the metrics and units
we use.

– A (%): Availability of the partner service.

– F (1/s): Frequency of FAS checks.

– C (1/s): Frequency of CS requests.

– T (s): Total lifetime of the system.

– TU : Period of unavailability of the partner service, i.e., TU = (1−A)T .

– TE (s): Period of errors.

– TF (s): Period of false positives.

– ER: Error rate, calculated as the ratio of the number of errors to the total
number of requests.

– FP : False positive rate, calculated as the ratio of the number of false positives
to the total number of requests.

Based on these terms, the expected error rate is calculated using the following
formulae:

E[ER] =
Expected number of errors

Total number of requests
=

Expected length of TE

Duration between two CS checks
Total lifetime

Duration between two CS checks

= E[TE ]/T



up

down
Partner service

FAS checks

CS requests

1 2 3 4 5

1 2

up

down
Partner service

FAS checks

CS requests

1 2 3 4 5

1 2

Fig. 4: Two scenarios for when the duration between two FAS checks is larger
than the period of unavailability (i.e., 1/F > TU ). In this case, a FAS check may
or may not occur during unavailability.

Similarly,

E[FP ] = E[TF ]/T

E[TE ] and E[TF ] are calculated according to a case analysis as follows.

– Case 1 : 1/F ≤ TU . In this case there is at least one FAS check that occurs
during the period of unavailability; Figure 3 is a depiction of this case. In
this scenario, the minimum value of TE can be 0 (if a FAS check occurs
immediately after the partner service goes down), the maximum value can
be 1/F (if a FAS check occurs immediately before the partner service goes
down). Assuming that the starting time of FAS is uniformly distributed,

E[TE ] = (1/F )/2 =
1

2F

Similarly, the minimum value of TF can be 0, the maximum value can be
1/F . Assuming uniform distribution,

E[TF ] = (1/F )/2 =
1

2F

– Case 2 : 1/F > TU . In this case, a FAS check may or may not occur during
the period of unavailability. Illustration of both cases is given in Figure 4.

• Case 2.1 : A FAS check occurs. In this case, the value of TE is between 0
and TU ; the value of TF is between 1/F −TU and 1/F . Hence, assuming
uniform distribution,

E[TE ] = (TU − 0)/2 = TU/2

E[TF ] = (1/F − (1/F − TU ))/2 = TU/2

• Case 2.2 : A FAS check does not occur. In this scenario, FAS misses the
unavailability of the partner service; CS is never notified by FAS. Hence,
there are no false positives and all the requests that occur during TU

result in error:

E[TE ] = TU E[TF ] = 0
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Again assuming uniform distribution, Case 2.1 may occur with probability
P2.1 = TU/(1/F ) = F TU ; Case 2.2 may occur with probability P2.2 =
1− F TU . Thus, the expected values in Case 2 are calculated as below:

E[TE ] = P2.1 × TU/2 + P2.2 × TU

= F T 2
U/2 + TU − F T 2

U

= TU − F T 2
U/2

E[TF ] = P2.1 × TU/2 + P2.2 × 0
= F T 2

U/2

Putting the cases together, we have

E[ER] =

{
1/(2FT ), if 1/F ≤ TU

(TU − F T 2
U/2)/T, otherwise

E[FP ] =

{
1/(2FT ), if 1/F ≤ TU

F T 2
U/(2T ), otherwise

Note that the expected error and false positive rates are inversely propor-
tional to T . This means, the advantage of using FAS will be higher in longer-
running systems.

Following a similar case analysis, below are the upperbounds to ER and FP .
The plots of the expected and maximum values are given in Figure 5 for when
T = 200 s and TU = 20 s (i.e., A = 90%).

Max[ER] =

{
1/(FT ), if 1/F ≤ TU

TU/T, otherwise

Max[FP ] =

{
1/(FT ), if 1/F ≤ TU

F T 2
U/T, otherwise



5 Evaluation

We performed several tests to evaluate our approach and analysis. In the fol-
lowing subsections, we discuss the realization of our approach, the experimental
setup and the results.

5.1 Realization of the Approach

We developed FAS in Java as a Web service that provides an interface to compos-
ite services for registration at start-up. During registration, composite services
convey two types of information: i) a callback method to be used by FAS to
perform partner link updates, and ii) a list of partner services and methods
to be monitored. FAS uses high-level (service-level) transactions to monitor the
partner services. This is to guarantee that the target Web service is functional
and reachable. Other, low-level mechanisms (e.g., ping requests) can be used for
confirming the availability of a system, however, this does not necessarily imply
the functional availability of services. For sending updates, FAS uses nonblock-
ing Web service invocation. Hence, in principle, FAS should be able to handle
multiple clients simultaneously without significant delay.

The utilization of FAS does not require the use of a platform/middleware
or any composite service model. However, composite services should have i)
a FAS registration process as part of their initialization, and ii) an interface
implemented for receiving partner link updates. In accordance with these two
requirements, we developed a composite service in Java. We did not use WS-
BPEL because it does not directly support stateful (i.e., persistent and global)
data. Therefore, partner link updates in a FAS instance cannot be reflected to the
other, subsequently created instances. In principle, our approach is agnostic to
the composite service implementation and the employed composition language.
It is also possible to utilize WS-BPEL, for instance, using the extension proposed
by Wu et al. [24].

We also implemented a partner service and replicated it. If FAS updates the
partner link before the (unavailable) first replica is invoked, composite service
sends the request directly to the second replica. If not, the composite service
tries to invoke the first replica. In case of an error, the second replica is invoked
and the received response is returned to the client.

5.2 Experimental Setup

We used Axis v2.0 [20] and Tomcat v7.0 [22] to develop and deploy Web services
in our experiments. We globally distributed these services using the Amazon
EC2 [1]. We utilized micro instances [1] and used identical machines, each of
which has one CPU core with one EC2 Compute Unit [1], 613 MB memory and
8 GB of storage. All instances were running 32-bit Linux operating system. We
deployed a composite service and two replicas of our partner service. Partner
service replicas were deployed in Ireland and Tokyo, while composite service was
in North California and FAS was in Sao Paulo, Brazil. Tests were conducted and



controlled with a PC located in Istanbul, Turkey. The PC had Intel(R) Core 2
Duo P8600 at 2.40 Ghz with 4G RAM. As the client to the composite service,
JMeter v2.4 [21] was used for executing different test scenarios and collecting
measurements automatically.

Throughout our tests, we varied availability (A) only for the first replica
of the partner service. The second replica is configured to be 100% available
for all tests. Hence, it is assumed that an available replica always exists in the
environment.

We varied A between 60% and 95%, whereas F was varied between 0.02 (1/s)
and 0.5 (1/s). We performed tests for combinations of these parameters. For each
combination, the tests were repeated 20 times; ER and FP were calculated
by taking the average of measurements made over these repetitions. During a
test, the client sends 100 requests to the composite service at a frequency of
0.25 (1/s). Hence, for each parameter combination, 2000 requests were sent in
total for calculating the ER and FP . The results are presented in the following
subsection.

5.3 Results and Discussion

In this subsection, we present and discuss the results of our tests for different
parameter settings. In Figure 6, E[ER] and Max[ER] are plotted together with
the measured error rate (Measured[ER]) with respect to F . Results are shown
when A is 60%, 70%, 80%, 85%, 90%, 92%, 94% and 95%. Figure 7 shows E[FP ],
Max[FP ], and the measured false positive rate (Measured[FP ]) for the same
range and settings of F and A.

It can be seen from the figures that E[ER] and Max[ER] values are consis-
tent with respect to the measured error rates. Likewise, the measured false pos-
itive rates confirm the accuracy of our mathematical analysis regarding E[FP ]
and Max[FP ]. We could also observe the difference in the change of ER and
FP depending on if 1/F ≤ TU as shown in Figure 5. See for instance the change
of Measured[FP ] in Figure 7(h) when F is just less than 0.05. As an inter-
esting observation, we noticed that in many cases Measured[ER] converges to
Max[ER] as F increases. We could not observe the same trend consistently for
Measured[FP ].

The rate of change of ER and FP with respect to F provides us a trade-off
curve, which can be utilized for selecting an (pareto-)optimal F for FAS. For
our experimental setup and parameter settings for instance, F = 0.1 could be
a reasonable trade-off point. In general, we can calculate F depending on the
value of A and how much we decide to compromise between ER and the load on
FAS. The partial derivative of the E[ER] function with respect to F defines the
rate of change of E[ER] with respect to F . If we want to balance the objectives
of minimizing ER and minimizing the load on FAS for instance, we can find the
value of F for which this rate of change (i.e., slope) is -1, e.g., for 1/F ≤ TU ,
E[ER] = 1/2FT ⇒ ∂(1/2FT )/∂F = −1/2TF 2 = −1⇒ F =

√
1/2T .
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Fig. 6: E[ER], Max[ER], and the measured error rate (Measured[ER]) with
respect to F , when A is 60%, 70%, 80%, 85%, 90%, 92%, 94% and 95%.
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Fig. 7: E[FP ], Max[FP ], and the measured false positive rate (Measured[FP ])
with respect to F , when A is 60%, 70%, 80%, 85%, 90%, 92%, 94% and 95%.



5.4 Threats to validity

In our approach, we assume the availability of at least one replica of the partner
service. Accordingly, we deployed a partner service replica with 100% availability
in our experimental setup. There might be cases where i) there is no alternative
partner service, ii) the alternative service is also unavailable, or iii) the alter-
native service cannot be directly substituted due to stateful properties [13]. We
ignored these cases in this work.

The availability of partner services are being monitored from the perspective
of FAS, which might possibly mismatch the experience of the composite service.
Complementary mediators [9] can be incorporated to monitor the dependability
characteristics of partner services from composite services’ perspectives.

6 Related Work

So far, research efforts for improving the dependability of service-oriented sys-
tems have mainly focused on service fault tolerance [17, 12, 10]. We focus on fault
avoidance instead. An analysis of the literature also reveals that dependability
improvement has been mainly facilitated by means of frameworks [15, 12], archi-
tectural methods [8, 4], reliable service connectors [18], proxies [11] and service
dispatchers [19]. We propose implementing a standalone service to which other
services can register for improving their dependability.

There exist service brokers and architectural frameworks [6] that are re-
sponsible for the creation/composition as well as the adaptation of a composite
service. As an advantage of this approach, structural changes (i.e., architecture
selection) can also be applied to the composite service [6]. However, such ap-
proaches are inherently coupled with the adapted composite service based on a
composite service model. FAS does not change the structure and the behavior of
the composite service and it does not assume any composite service model.

In this work, we assumed the existence of alternative services that can be
directly substituted with unavailable services. However, dynamic service substi-
tution can be problematic in case of stateful services. As a complementary work,
SIROCO middleware [13] was introduced to tackle this problem by enabling
semantic-based service substitution.

Zheng and Lyu [27] introduce a middleware for composite services to keep
track of the QoS information regarding the utilized services. This information
is updated at each use of a service and sent occasionally to a common server.
The collected QoS information is used for dynamically selecting the most appro-
priate fault tolerance strategy in case of an error. Empirical results show that
their dynamic selection approach performs better than sticking to a statically
determined strategy. The differences with their approach to ours are: i) They
use a middleware; we propose implementing a standalone service to which other
services can register. ii) Our service actively monitors the replicas. Their mon-
itor is passive; it only stores data. iii) We update the user’s list of preferred
replicas, whereas they update the user’s preferred fault tolerance strategy.



7 Conclusions and Future Work

We introduced an approach for avoiding faults during the invocation of partner
services and as such, preventing errors in composite services. We developed FAS,
an external fault avoidance service that periodically checks the availability of
a set of partner services that are registered by a composite service. If one of
the partner services ceases to be available, FAS locates alternative services and
sends an update to the corresponding composite service, before the faulty partner
service is invoked.

We defined analytical metrics for the error rate and the ratio of false positives
for different monitoring frequencies of FAS and partner service availabilities. We
performed several tests using a prototype implementation deployed on the Ama-
zon EC2. Our measurements confirmed the accuracy of our analytical metrics,
which can be used for configuring FAS based on varying partner service avail-
abilities. Our analysis also revealed that FAS is expected to be more effective in
reducing the error rate for long-running systems.

In the future, we are planning to enhance FAS so that it can adapt the service
checking period at runtime, based on the monitored failure/usage frequencies and
response times. We will evaluate the effectiveness of adaptive FAS in the context
of an industrial case study for improving the dependability of Smart TVs that
utilize many external services.
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also thank Dr. Ali Özer Ercan for his help in the derivation of analytical metrics.

References

1. Amazon.com: Elastic Compute Cloud (EC2) (2012), http://aws.amazon.com/ec2
2. Ardagna, D., Mirandola, R.: Per-flow optimal service selection for web services

based processes. Journal of Systems and Software 83(8), 1512–1523 (2010)
3. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE

Transactions on Software Engineering 33, 369–384 (2007)
4. Baresi, L., Ghezzi, C.: Towards self-healing service compositions. Proceedings of

the 1st Conference on the Principles of Software Engineering pp. 27–46 (2004)
5. Canfora, G., Penta, M.D., Esposito, R., Villani, M.: A framework for QoS-aware

binding and re-binding of composite web services. Journal of Systems and Software
81(10), 1754–1769 (2008)

6. Cardellini, V., Casalicchio, E., Grassi, V., Presti, F.L., Mirandola, R.: Architecting
dependable systems vi. chap. Towards Self-adaptation for Dependable Service-
Oriented Systems, pp. 24–48. Springer-Verlag, Berlin, Heidelberg (2009)

7. Cardellini, V., Valerio, V.D., Grassi, V., Iannucci, S., Presti, F.L.: A new approach
to QoS driven service selection in service oriented architectures. In: Proceedings of
the 6th IEEE International Symposium on Service Oriented System Engineering.
pp. 102 –113 (2011)



8. Chen, I., Ni, G., Kuo, C., Lin, C.Y.: A BPEL-Based fault-handling architecture
for telecom operation support systems. Journal of Advanced Computational Intel-
ligence and Intelligent Informatics 14(5), 523–530 (2010)

9. Chen, Y., Romanovsky, A.: WS-Mediator for improving the dependability of web
services integration. Journal of IT Professionals 10(3), 29–35 (2008)

10. Dobson, G.: Using WS-BPEL to implement software fault tolerance for Web ser-
vices. In: Proceedings of the 32nd EUROMICRO Conference on Software Engi-
neering and Advanced Applications. pp. 126–133 (2006)

11. Ezenwoye, O., Sadjadi, S.: A proxy-based approach to enhancing the autonomic
behavior in composite services. Journal of Networks 3(5), 42–53 (2008)

12. Fang, C.L., Liang, D., Lin, F., Lin, C.C.: Fault tolerant Web services. Journal of
System Architure 53(1), 21–38 (2007)

13. Fredj, M., Georgantas, N., Issarny, V., Zarras, A.: Dynamic service substitution in
service-oriented architectures. In: Proceedings of the IEEE Congress on Services.
pp. 101–104 (2008)

14. Georgakopoulos, D., Papazoglu, M. (eds.): Service-Oriented Computing. MIT Press
(2009)

15. Gorbenko, A., Iraj, E.K., Kharchenko, V.S., Mikhaylichenko, A.: Exception anal-
ysis in service-oriented architecture. In: Information Systems Technology and its
Applications. pp. 228–233 (2007)

16. Jordan, D., Evdemon, J.: Web services business process execution language version
2.0 (2009), http://docs.oasis-open.org/wsbpel/2.0/serviceref, oASIS Standard

17. Liu, A., Li, Q., Huang, L., Xiao, M.: FACTS: A framework for fault-tolerant com-
position of transactional web services. IEEE Transactions on Services Computing
3(1), 46 –59 (2010)

18. N. Salatge, N., Fabre, J.C.: Fault tolerance connectors for unreliable Web services.
In: Proceedings of the 37th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks. pp. 51–60 (2007)

19. Santos, G., Lung, L., Montez, C.: FTWeb: A fault tolerant infrastructure for Web
services. In: Proceedings of the 9th IEEE International Conference on Enterprise
Computing. pp. 95–105 (2005)

20. The Apache Software Foundation: Axis (2012), http://axis.apache.org/
21. The Apache Software Foundation: JMeter (2012), http://jmeter.apache.org/
22. The Apache Software Foundation: Tomcat (2012), http://tomcat.apache.org/
23. Tsalgatidou, A., Pilioura, T.: An overview of standards and related technology in

Web services. Distributed Parallel Databases 12(2), 135–162 (2002)
24. Wu, G., Wei, J., Huang, T.: Flexible pattern monitoring for WS-BPEL through

stateful aspect extension. In: Proceedings of the IEEE International Conference on
Web Services. pp. 577–584 (2008)

25. Zarras, A., Fredj, M., Georgantas, N., Issarny, V.: Rigorous development of complex
fault-tolerant systems. In: Engineering Reconfigurable Distributed Systems: Issues
Arising for Pervasive Computing. pp. 364–386. No. LNCS 4157, Springer-Verlag,
Berlin, Heidelberg (2006)

26. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
aware middleware for web services composition. IEEE Transactions on Software
Engineering 30(5), 311–327 (2004)

27. Zheng, Z., Lyu, M.: An adaptive QoS aware fault tolerance strategy for web ser-
vices. Journal of Empirical Software Engineering 15(4), 323–345 (2010)

28. Zheng, Z., Zhang, Y., Lyu, M.: Distributed QoS evaluation for real-world web
services. In: Proceedings of the IEEE International Conference on Web Services.
pp. 83–90 (2010)


