
Adaptive Domain-Specific Service Monitoring

Arda Ahmet Ünsal1, Görkem Sazara1, Barış Aktemur2, and Hasan Sözer2

1 VESTEK R&D Corporation, Istanbul, Turkey
{arda.unsal,gorkem.sazara}@vestel.com.tr

2 Ozyegin University, Istanbul, Turkey,
{baris.aktemur,hasan.sozer}@ozyegin.edu.tr

Abstract. We propose an adaptive and domain-specific service moni-
toring approach to detect partner service errors in a cost-effective man-
ner. Hereby, we not only consider generic errors such as file not found or
connection timed out, but also take domain-specific errors into account.
The detection of each type of error entails a different monitoring cost in
terms of the consumed resources. To reduce costs, we adapt the moni-
toring frequency for each service and for each type of error based on the
measured error rates and a cost model. We introduce an industrial case
study from the broadcasting and content-delivery domain for improving
the user-perceived reliability of Smart TV systems. We demonstrate the
effectiveness of our approach with real data collected to be relevant for
a commercial TV portal application. We present empirical results re-
garding the trade-off between monitoring overhead and error detection
accuracy. Our results show that each service is usually subject to various
types of errors with different error rates and exploiting this variation can
reduce monitoring costs by up to 30% with negligible compromise on the
quality of monitoring.

1 Introduction

Service-oriented architecture (SOA) allows composing loosely-coupled services to
build software; a typical SOA may utilize several third-party services. However,
relying on external services comes with a price; if a service fails or has degraded
quality, an error or an unsatisfactory quality can be observed by the users. To
remedy this problem, a monitoring approach [24, 28, 23, 27, 1] can be utilized to
tolerate [16] or avoid/mask [11] detected errors and to measure service quality.
These approaches are dedicated to monitoring basic quality factors such as avail-
ability, and they detect only common errors such as file not found or connection
timed out. However, there also exist certain types of errors that are specific and
highly relevant to particular application domains. For example, services that
provide audio/video content over broadband connection might be subject to a
variety of content-related errors such as wrong URLs, faulty feeds (e.g. unsup-
ported formats and codecs), or undesired quality (e.g. low resolution). These
problems may result in fatal errors, audio/video freezes, long buffering periods,
synchronization errors, and poor customer satisfaction. Detecting each type of

error entails a different monitoring cost in terms of the consumed computational
resources. For instance, on one hand, a simple ping request is sufficient to check
system availability. On the other hand, to detect a codec-related error in a video
file, the file should be partially downloaded and the header of the video must be
examined. Our work in this paper is built on top of this observation: different
error types have different monitoring costs. This variation of cost has not been
considered by the service-monitoring approaches proposed so far.

We motivate our work based on the architecture and use-case of so-called
“Smart TVs”. Smart TVs enjoy the existence of broadband connection that
has become available to TV systems. Various third-party services are used in
Smart TVs, including video content providers, popular social media platforms,
and games. In particular, video-audio content is considered to be among the
most important services for Smart TVs [17]. In this work, we investigated a
Smart TV portal application developed by Vestek3, a group company of Vestel,
which is one of the largest TV manufacturers in Europe. The portal application
is being utilized by Vestel as an online television service platform in Turkey.
There are more than 200 third-party services in the portal, providing audio/video
content, news, weather and finance information, games, social networking, etc.
70% of these services stream video content. The mostly-used applications are
also video-streaming applications like Youtube, BBCiPlayer, Netflix, and Turkish
national channels. The portal has currently more than 150,000 connected TVs.
This number increases by about 7000 every week.

Smart TV market is very competitive; companies strive to provide richer
content and more features to their customers by extremely strict deadlines. This
pressure magnifies the importance of customer satisfaction. Because the Smart
TV portal relies heavily on third-party providers, availability and quality of ex-
ternal services is vital to Smart TV systems. Vestek executes a test application
daily to monitor the third-party services. The test application visits the given
URLs, checks their availability, downloads and plays a portion of the audio/video
content, and reports the findings so that broken links can be fixed, and unsup-
ported content types can be replaced. Some of the content providers frequently
change their APIs and migrate/delete their contents without an effective notifi-
cation mechanism. Therefore, it is common that the test application finds several
errors — most typically missing content and video codec errors.

Previously, we provided empirical data that motivated the need for adapt-
ing the monitoring for each service based on availability to reduce monitoring
costs [12]. However, availability is only one part of the story. It is common to
face domain-specific errors such as codec problems that cannot be detected only
by availability checks. The detection of such errors is much more demanding in
terms of resources; for instance, to check codec validity, a part of the content
has to be downloaded and fed into a player that parses the header of the data
and plays it. Therefore, extending the monitoring service with the capability to
perform domain-specific error checking — in addition to just availability check-
ing — may significantly increase the cost of monitoring. Thus, we propose an

3 http://vestek.com.tr

adaptive strategy based on not only the service availability, but also different
types of errors relevant for the service.

Adapting the frequency of monitoring is not a new idea; the novelty in our
work is based on the observation that there are certain error types specific to
the domain that require separate treatment. We expect cost-reduction benefits
from this adaptation to be significant, because although third-party services
usually have high availability rates, they have much lower scores when it comes
to domain-specific problems. This is because an unsupported codec or a URL
change, for instance, are types of errors that occur at the user-side, not at the
provider-side. Hence, providers usually fix these problems only when reported
by the users. From the customer’s point of view [26], however, a codec error is
just as disturbing as unavailability because what is observed in both cases is the
same: a video playback error.

Contributions: In this work we make the following contributions.

– We propose domain-specific adaptation of the monitoring frequency based
on the temporal history and the error rate for a particular partner service
and error type.

– We formulate a cost model to measure the cost of monitoring. Our cost
model is based on the price of paid resources consumed by the monitor in
the cloud.

– We present an industrial case study from the broadcasting domain, where the
utilization of third party Web services become predominant. We provide a
data set collected by using the Amazon Elastic Compute Cloud (EC2) [3] to
monitor dozens of services from different locations for more than one month.
We evaluate the effectiveness of adaptive domain-specific monitoring on this
real-world data, using the cost model we derived. We also share our data set
with the research community to enable further analysis.

Our results show that each service is indeed subject to various types of errors
with different error rates. We exploit this variation in the broadcasting domain
and show that monitoring costs can be reduced by up to 30% by compromising
error detection accuracy negligibly.

Here, we focus on the Smart TV domain and take codec-checking as a domain-
specific monitoring action. However, the approach we present is not limited to
this domain, nor tied particularly to codec-checks. The adaptation approach we
propose is applicable to any domain where various error types are experienced,
and monitoring of each error type incurs a different cost.

Organization: The remainder of this paper is organized as follows. Section 2
describes our experimental setup. In Section 3 and 4, we describe our approach
and present evaluation results, respectively. In Section 5, related previous work is
summarized. Finally, in Section 6 we provide our conclusions and discuss future
work directions.

2 Experimental Setup and Data Collection

For five weeks, we monitored a set of third-party services used by Vestel’s Smart
TV portal to collect real-world data regarding errors. We then applied various
monitoring approaches to these data as offline processes. We compared the ap-
proaches according to the cost savings they offer, and the compromise they make
on the quality of monitoring. In this section we explain the experimental setup
we used, and provide statistical information.

2.1 Vestel Smart TV Portal

There exist around 80,000 daily connections to the Vestel Smart TV portal
from 25,000 different TV’s. These connections are related with various types of
services, of which about 52% are based on image and video content, 15% are
life-style and social networking applications, 9% provide text-based information.
Services that are dedicated to sports, music, and games constitute 3%, 3%,
and 2% of the whole set of services, respectively. The remaining 16% include
miscellaneous services. 75% of all the services are paid, whereas the rest of the
services are available for free.

2.2 Data Collection Process

We identified the 6 mostly-used service providers that provide content for free
on the Vestel Smart TV portal. Half of these service providers are associated
with nation-wide TV channels in Turkey, and they stream video. The other half
provide short videos and text-based content.

We developed a data collection application (DCA) to monitor the selected
services and to create our data set for offline processing. We ran DCA on three
different machines, deployed to Amazon’s Elastic Compute Cloud (EC2) [3].
Amazon instances were located in the USA, Ireland, and Japan. We wanted to
collect data from geographically far-away locations, because each DCA has its
own view of the network. We wanted to see whether the results from different
locations are consistent with each other. Each instance on Amazon EC2 ran
DCA individually and independent from the others. They queried each service
with a period of about 40 minutes. Each DCA had its own database where the
results are stored.

For text-based services, DCA checks the availability over HTTP. If the service
returns HTTP 200 (OK), the response time is logged into the database. In
case of an error, the error stack trace along with the error code is stored. The
video services return a page in JSON or XML format where the video links are
included. DCA parses the contents, obtains video URLs, and puts these URLs
into the list of URLs to be checked. A video service potentially returns a different
list of videos each time it is queried (e.g., the video links returned for the category
of “cats” are likely to be updated frequently). Hence, the set of videos monitored
in each period may have differences when compared to the preceding period.

For each video link, DCA first checks the video’s codec type, which is included
in the first 1024 Kbytes of the video request response. If no proper codec is
found in this header, an error message is logged for the corresponding service.
If a proper codec is found, DCA attempts to play the first three seconds of the
video4 using the Windows Media Player API. If the video player successfully
plays the video, DCA logs the successful response in the database along with
the video duration, file size, resolution and bit rate information. If any problem
is encountered during video replay, the error message raised from the player is
logged in the database.

2.3 Collected Data Set

The three DCA instances ran on the Amazon EC2 for five weeks. We observed
that the data collected from different geographical locations were consistent with
each other. This was confirmed by the cosine similarity measures of error rates
between data sets collected from each pair of locations: Japan-Ireland (0.99),
Japan-USA (0.98) and Ireland-USA (0.97). Therefore, we used the results from
one of the DCA instances only. We selected the DCA instance deployed in Ireland
since it is the closest geographical location to Turkey. The data we collected are
publicly available at http://srl.ozyegin.edu.tr/projects/fathoms/.

The collected data revealed that in total 132,532 requests were made to 51
different services of the selected 6 service providers. Among these requests, 8127
requests were subject to “HTTP 404 not found” error and 9079 requests were
subject to a “codec error”.

3 Adaptive Domain-Specific Monitoring

The aim of monitoring a third-party service is to detect when it raises errors
and notify the client so that the client may omit using the service or may be
directed to an alternative service, and hence avoid the error. A monitor that
notifies the clients as soon as a service state change occurs is considered to be
high quality. To achieve high quality, monitoring should be done very frequently.
However, frequent monitoring puts a high load on the monitoring server. To
reduce the associated costs, frequency should be kept as low as possible. This
raises a trade-off between the quality and cost of monitoring.

To answer the question of how frequent monitoring should be done, we take
a domain-specific, adaptive approach. In Section 2.2 we explained how a video
codec error checking is different from checking a text-based service. The associ-
ated costs also differ significantly as the former requires downloading a piece of
the video and playing it. We adapt the frequency of monitoring by taking into
account the history of the occurrence of particular errors for a particular service.
If a service has been relatively healthy for a certain error check, following the

4 Even if the file header is fine, the content can be inconsistent with the header. Such
cases can be revealed by actually playing the video.

temporal locality principle, we decrease the corresponding frequency of monitor-
ing in anticipation that the service will continue to be in good status regarding
the same error type. When considering the history of a service, we put more
value on the recent past than the older history, and make this adjustable via a
parameter.

In the following we first present the model we used to calculate the costs
incurred by monitoring, followed by the parameters we used for adaptation.

3.1 Cost Model

The goal of our work is to reduce the cost of monitoring. Text-based services
consume very little of the network bandwidth, and require almost no computa-
tion. Therefore, their cost is negligible when compared to video-based services.
Checking a video service consumes resources in two dimensions: (1) part of the
video is downloaded, using the network connection, (2) the downloaded video is
played, consuming CPU time. Hence, the cost of a video service check, Cvideo, is

Cvideo = (Size× Cnet) + (Duration× Ccpu)

where

Size is the size of the downloaded piece of the video

Cnet is the cost of network usage per unit size

Duration is the duration of the video

Ccpu is the cost of using the CPU or GPU per unit time

In our case, the Duration parameter is fixed as 3 seconds (recall that we
only play the first 3 seconds of the video). The size of a video is on the average
705 Kbytes for 3 seconds of video content, and the file header is 1024 bytes,
adding up to 706 Kbytes in total. The parameters Cnet and Ccpu depend on the
cloud provider and the allocated instances. For instance, Ccpu is currently around
$0.15 per hour, based on the pricing of Amazon [3], Microsoft Azure [19] and
Google Cloud [10]. If a service has a charge, it should also be included in the
formula; in our case all the services are free, therefore we ignore this issue.

Under these assumptions, the total cost of monitoring, denoted as C, is

C = (# of videos checked)× Cvideo

Hence, C is directly proportional to the number of video checks performed.
Undetected client-side errors affect customer satisfaction and thus indirectly

incur costs (e.g., by influencing the customers’ perception of the brand). Because
measuring this effect is outside the scope of our study, we do not include cus-
tomer satisfaction in our cost model; instead, we define the quality of monitoring,
denoted Q, as

Q = # of detected errors

The more number of errors monitoring detects, the better the quality of moni-
toring is. The quality gets compromised as more errors are left undetected and
as such, the error detection accuracy is degraded.

In our evaluation of adaptation, we present the reduction of total cost along
with the change in the quality of monitoring.

3.2 Adaptation of Monitoring Frequency

We adapt the frequency of monitoring a service against a particular error type
based on the history of occurrence of that error type for that service. To refer
to the past, time is divided into enumerated periods (e.g., day 1, day 2, etc.).
To keep the discussion straightforward and without loss of generality, we limit
ourselves to two types of errors, availability and codec, with the following counts:

Vi is the total number of video checks during the time period i.

Eavaili is the number of availability errors during the time period i.

Ecodeci is the number of codec errors during the time period i.

Note that an availability check is a prerequisite to a codec check: if a video
is unavailable, no codec validation can be made. So, the codec error rate at time
period i, denoted as Êcodeci , is defined as

Êcodeci =
Ecodeci

Vi − Eavaili

Based on these, the accumulated error rate (AER) for codec errors, at the
end of the time period n, denoted as AERcodec

n , is

AERcodec
n =

{
Êcodec0 if n = 0

α×AERcodec
n−1 + (1− α)× Êcodecn if (n > 0)

where α is a coefficient (0 ≤ α ≤ 1) that allows us adjust the weight of the
calculated past AER values on calculating the current one. If α is 0, calculation
of AER does not depend on the past AER values but is completely determined
by the error rate measured in the latest time period. As α gets closer to 1,
previously calculated AER values have more influence on the future. Also note
that according to this formulation, a relatively older error rate has less influence
on the current value than a more recent error rate. This means, the effect of a
measured error rate gradually diminishes as time goes by. The value of α must
be determined per error type and per application domain. An informed decision
can be made based on past experiences by performing what-if analysis to observe
the effects of variation of error rate in time.

At the end of each time period, AER is calculated according to the formula
above. Then, the monitoring frequency is adjusted based on this AER. The
new frequency is used during the next time period. Frequencies are set using
a frequency pattern. A frequency pattern is a circular bit-value sequence read

Scheme Accumulated error rate cutoff values (%)
F0 - - - - 0 ∞
F1 - - - 0 0.001 ∞
F2 - - 0 0.001 0.002 ∞
F3 - 0 0.001 0.002 0.003 ∞
F4 0 0.001 0.002 0.003 0.004 ∞
F5 0.001 0.002 0.003 0.004 0.005 ∞
F6 0.01 0.02 0.03 0.04 0.05 ∞
F7 0.05 0.1 0.15 0.2 0.25 ∞
F8 0.1 0.2 0.3 0.4 0.5 ∞
F9 1 2 3 4 5 ∞
Frequency
pattern

1000 100 10 110 1110 1

Table 1. Adaptation schemes for the monitoring frequency based on accumulated error
rates.

from left to right where each bit value denotes whether to skip the corresponding
test. For instance, the bit pattern 1110 means that for every four checks, the last
codec check shall be skipped, resulting in 25% reduction compared to the original
number of codec checks. Availability checks are always performed, regardless of
the adopted pattern.

Frequency mappings with regard to AER values are given in Table 1. The
table is interpreted as follows. For instance, if frequency scheme F8 is in effect,
frequency pattern 1000 is used when AER is less than or equal to 0.1%; pattern
100 is used when AER is larger than 0.1% but less than or equal to 0.2%, and so
on. For AER values that are larger than 0.5%, the full frequency pattern is used.
Frequency schemes have a varying level of conservatism. On one hand, F0 is very
conservative; it uses frequency pattern 1110 (and hence reduces corresponding
frequency by 25%) only for extremely reliable services where AER = 0. On
the other hand, F9 is the most aggressive/optimistic approach; it reduces the
frequency of monitoring for any service that has an AER value of 5% or less.
In the following section, we evaluate how these frequency schemes compare in
terms of cost savings and quality of monitoring.

4 Evaluation

We evaluate the effectiveness of frequency adaptation by simulating an adaptive
monitor according to the original data collected during our five-week testing (see
Section 2.2). Recall that the data contain responses of services to requests sent
in periods of approximately 40 minutes. We call a single 40-minute period a test
batch. Based on the frequency pattern associated with a service, the simulator
may skip monitoring the service in a particular test batch. If the pattern requires
the service to be monitored, the simulator reads the response from the collected
data instead of sending an HTTP request to the service. This way, our simulator

 0

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
k
ip

p
e
d
 c

o
d
e
c
 c

h
e
c
k
s
 (

%
)

α

F0
F1
F2
F3
F4
F5
F6
F7
F8
F9

Fig. 1. The change in the ratio of skipped codec checks to the number of checks in the
original monitor. Recall that the number of codec checks is directly proportional to the
cost of monitoring; hence, this graph illustrates cost savings.

behaves like a second monitor that would have been monitoring requests at
exactly the same time as the actual monitor. The only difference is that some
subset of the test batches for certain services would have been skipped. Hence,
the results of the simulator are perfectly comparable with the actual data.

During the simulation, for each service, we calculate AERcodec at the end of
each day. The current error rate, Êcodeci , is calculated over the last three days.

The graph in Figure 1 shows the ratio of skipped codec checks to the number
of checks in the original monitor. Recall that the more codec checks we skip,
the more we can save on the cost of monitoring; therefore, larger numbers mean
more savings. It is not surprising to see that conservative schemes provide less
savings (as little as ∼1% skipped checks in F0), whereas significant savings can
be obtained when the scheme is more liberal (57% omitted checks in F9). Also
notice that savings gradually decrease as we increase α, that is, as we decrease the
role of current error rate and put more weight in older history when determining
the new frequency pattern.

Figure 2 shows the ratio of undetected codec errors to the number of codec
errors in the original monitor. Recall that the fewer errors we miss, the higher
the quality of monitoring. Therefore, smaller numbers mean better quality. Not
surprisingly, conservative schemes miss fewer errors; at the extreme, F0 misses
no errors when the α value is between 0.1 and 0.9. On the other hand, in our
most optimistic scheme F9, up to 3.8% of the codec errors go unnoticed. The

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

U
n
d
e
te

c
te

d
 c

o
d
e
c
 e

rr
o
rs

 (
%

)

α

F0
F1
F2
F3
F4
F5
F6
F7
F8
F9

Fig. 2. Ratio of undetected codec errors to the number of codec errors in the original
monitor. Recall that the number of undetected codec errors is inversely proportional
to the quality of monitoring.

most interesting observation from this graph is that as the α value increases,
undetected error rate gradually decreases for all schemes but F9.

Finally we consider the combination of cost savings and quality. Ideally, one
would like to cut costs as much as possible while keeping the quality high. The
two are competing factors; to reduce costs, we need to decrease the frequency,
which results in worse quality by failing to detect errors. To be able to find an
optimum case, we define the following function to give an effectiveness score,
denoted as F , to a monitoring configuration.

F = (rate of skipped checks)− β × (rate of undetected errors) (1)

In this formulation, the effectiveness depends on how much weight, via the β
parameter, is given to the undetected errors as opposed to skipped checks. If the
calculated score is negative, we conclude that the corresponding configuration is
not feasible because the quality of the monitor has been compromised beyond
the acceptable limits by failing to detect errors.

Figures 3, 4 and 5 show the effectiveness score of monitoring when β is set
to 10, 30, and 50, respectively. As illustrated, more liberal schemes lose ranking
as the quality of monitoring is given more weight. In Figure 4, for instance, F9
is not even in the window of positive scores, hence it is not an acceptable choice;
in Figure 5, F4 is below the 0-line when α < 0.3.

Recall that previously measured error rates are less effective in determining
the monitoring frequency when α is closer to 0. In our data set, this results

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
ff
e
c
ti
v
e
n
e
s
s
 s

c
o
re

α

F0

F1

F2

F3

F4

F5

F6

F7

F8

F9

Fig. 3. Effectiveness scores, calculated according to Equation 1 when β = 10.

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
ff
e
c
ti
v
e
n
e
s
s
 s

c
o
re

α

F0

F1

F2

F3

F4

F5

F6

F7

F8

F9

Fig. 4. Effectiveness scores, calculated according to Equation 1 when β = 30.

in an increased rate of undetected errors. The penalty for undetected errors is
amplified as β increases. Hence, effectiveness score plots become more curvy
as β is increased; when β = 50, F5 scheme for α = 0.6 is the most effective
configuration. In this case, the cost of monitoring can be reduced by a significant

 0

 5

 10

 15

 20

 25

 30

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
ff
e
c
ti
v
e
n
e
s
s
 s

c
o
re

α

F0

F1

F2

F3

F4

F5

F6

F7

F8

F9

Fig. 5. Effectiveness scores, calculated according to Equation 1 when β = 50.

amount of 34% by compromising the error detection accuracy by 0.14%. Even
when F1 scheme is adopted for α = 0.6, the monitoring cost is reduced by more
than 10%, while the ratio of undetected errors is 0.04%. Hence, significant cost
savings can be made by compromising the monitoring quality (i.e. error detection
accuracy) negligibly.

5 Related Work

There have been many service monitoring approaches [24, 28, 23, 27, 1] proposed
in the literature to tolerate [28] or avoid/mask [12] detected errors in external
services. Techniques and tools have been introduced to automatically generate
online monitors based on Service Level Agreement (SLA) specifications [22].
These approaches mainly adopt reactive monitoring. Hence, an adaptation can
occur only after observing a failure. Online testing of Web services [18] was intro-
duced for facilitating pro-active adaptation. This approach employs functional
testing where test cases are generated and executed based on a functional spec-
ification [4]. In general, service monitoring approaches proposed so far rely on
such standard specifications (or SLAs) and they consider only common quality
attributes such as reliability, throughput and latency. However, standard spec-
ifications fall short to express domain-specific errors (e.g., codec-related errors
while using a video content delivery service) to detect them and to facilitate run-
time adaptation with respect to these error types. We have previously studied
adaptive service monitoring for cost-effectiveness [12] but the scope of the study

was only a single monitor that considers a single quality attribute (availability)
regarding services.

There have been also other approaches that utilize adaptive monitoring; how-
ever, the majority of these [2, 7, 8, 13, 14] are concerned with the monitoring of
hardware resources such as memory, disk, and CPU. Other adaptive approaches
[6] mainly focus on general properties of web services such as the availability and
response time. There are a few studies, where domain-specific cases are consid-
ered. For instance, adaptive monitoring was discussed for dynamic data streams
[9]. In this domain, each user has a varying interest in each type of informa-
tion. The approach exploits this fact and adapts the monitoring mechanism for
each user. Another approach for monitoring streaming data [21] was proposed
for providing adaptivity based on changes in the content of data. Hereby, they
propose an algorithm to detect changes in data. The monitoring frequency is
adapted based on the detected changes. A similar approach was proposed for
adaptive process monitoring [15] as well.

Domain-specific quality attributes have been taken into account in a recent
study [20] for service selection. However, the proposed service selection approach
considers service monitoring to be out-of-scope and the selection of services is
performed based on monitoring results assumed to be available. A toolset and
ontology have been previously proposed [25] to express and monitor custom
quality attributes regarding Web services. The toolset enables the specification of
custom quality metrics but these metrics are defined in terms of only a standard
set of service properties and measurements including, for instance, price, delay,
throughput, the number of packets lost and availability. The approach does not
support the incorporation of custom domain-specific service properties or errors.
Similarly, previously proposed customizable service selection policies [5] rely on
reactive monitoring of common service properties such as service cost (price),
bandwidth and availability.

6 Conclusion

We introduced a novel domain-specific service monitoring approach. We instan-
tiated our approach for detecting errors specific to the services in the broad-
casting and content-delivery domain. We developed a cost model for calculating
the monitoring overhead in terms of the consumed resources in the cloud. The
monitoring frequency for each type of error is dynamically adapted based on this
cost model and the measured error rates. We prepared an extensive data set by
monitoring services used in a commercial Smart TV from a monitor deployed in
the cloud. We observed more than 30% reduction in monitoring costs without
compromising the error detection accuracy significantly.

Our approach can be applied to other application domains as well. In the
future, we plan to develop a plug-in architecture to provide a generic framework
that can be extended with custom monitor implementations. The execution of
these monitors will be managed by the framework based on a configurable cost
model.

Acknowledgments

This work is supported by Vestel Electronics and the Turkish Ministry of Science,
Industry and Technology (00995.STZ.2011-2). The contents of this paper reflect
the ideas and positions of the authors and do not necessarily reflect the ideas
or positions of Vestel Electronics and the Turkish Ministry of Science, Industry
and Technology.

References

1. Aceto, G., Botta, A., de Donato, W., Pescap, A.: Cloud monitoring: A survey.
Computer Networks 57(9), 2093 – 2115 (2013)

2. Alcaraz Calero, J., Gutierrez Aguado, J.: Monpaas: An adaptive monitoring plat-
form as a service for cloud computing infrastructures and services. IEEE Transac-
tions on Services Computing (2014), to appear

3. Amazon.com: Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2, ac-
cessed in May 2014

4. Bai, X., Dong, W., Tsai, W., Chen, Y.: WSDL-based automatic test case generation
for web services testing. In: Proceedings of the IEEE International Workshop on
Service-Oriented Systems. pp. 215–220 (2005)

5. Bart Verheecke, Maria Agustina Cibran, V.J.: Aspect-Oriented Programming for
Dynamic Web Service Monitoring and Selection. Springer Berlin Heidelberg (2004)

6. Clark, K., Warnier, M., Brazier, F.M.T.: Self-adaptive service monitoring. In: Pro-
ceedings of the Second International Conference on Adaptive and Intelligent Sys-
tems. pp. 119–130 (2011)

7. Clark, K., Warnier, M., Brazier, F.: Self-adaptive service monitoring. In:
Bouchachia, A. (ed.) Adaptive and Intelligent Systems, Lecture Notes in Com-
puter Science, vol. 6943, pp. 119–130. Springer Berlin Heidelberg (2011)

8. Deepak Jeswani, R. K. Ghosh, M.N.: Adaptive monitoring: A hybrid approach
for monitoring using probing. In: International Conference on High Performance
Computing (HiPC) (2010)

9. Duc, B.L., Collet, P., Malenfant, J., Rivierre, N.: A QoI-aware Framework for
Adaptive Monitoring. In: 2nd International Conference on Adaptive and Self-
adaptive Systems and Applications. pp. 133–141. IEEE (2010)

10. Google: Google Cloud, https://cloud.google.com, accessed in May 2014
11. Gulcu, K., Sozer, H., Aktemur, B.: FAS: Introducing a service for avoiding faults in

composite services. In: Proceedings of the 4th International Workshop on Software
Engineering for Resilient Systems. pp. 106–120. Pisa, Italy (2012)

12. Gulcu, K., Sozer, H., Aktemur, B., Ercan, A.: Fault masking as a service. Software:
Practice and Experience 44(7), 835–854 (2014)

13. Jeswani, D., Natu, M., Ghosh, R.: Adaptive monitoring: A framework to adapt pas-
sive monitoring using probing. In: Proceedings of the 8th international conference
and workshop on systems virtualiztion management. pp. 350–356 (2012)

14. Kwon, S., Choi, J.: An agent-based adaptive monitoring system. In: Shi, Z.Z.,
Sadananda, R. (eds.) Agent Computing and Multi-Agent Systems, Lecture Notes
in Computer Science, vol. 4088, pp. 672–677. Springer Berlin Heidelberg (2006)

15. Li, W., Yue, H., Valle-Cervantes, S., Qin, S.: Recursive PCA for adaptive process
monitoring. Journal of Process Control 10(5), 471 – 486 (2000)

16. Liu, A., Li, Q., Huang, L., Xiao, M.: FACTS: A framework for fault-tolerant com-
position of transactional web services. IEEE Transactions on Services Computing
3(1), 46–59 (2010)

17. Lo, T.: Trends in the Smart TV industry (2012), http://www.digitimes.com/

news/a20121025RS400.html, technical Report. accessed in May 2014
18. Metzger, A., Sammodi, O., Pohl, K., Rzepka, M.: Towards pro-active adaptation

with confidence: augmenting service monitoring with online testing. In: Proceedings
of the Workshop on Software Engineering for Adaptive and Self-Managing Systems.
pp. 20– 28 (2010)

19. Microsoft: Windows Azure, http://www.windowsazure.com, accessed in May 2014
20. Moser, O., Rosenberg, F., Dustdar, S.: Domain-specific service selection for com-

posite services. IEEE Transactions on Software Engineering 38(4), 828–843 (2012)
21. Puttagunta, V., Kalpakis, K.: Adaptive methods for activity monitoring of stream-

ing data. In: Proceedigns of the 11th International Conference on Machine Learning
and Applications. pp. 197–203 (2002)

22. Raimondi, F., Skene, J., Emmerich, W.: Efficient online monitoring of web-service
SLAs. In: Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. pp. 170–180 (2008)

23. Robinson, W., Purao, S.: Monitoring service systems from a language-action per-
spective. IEEE Transactions on Services Computing 4(1), 17 –30 (2011)

24. Simmonds, J., Yuan, G., Chechik, M., Nejati, S., O’Farrell, B., Litani, E., Water-
house, J.: Runtime monitoring of web service conversations. IEEE Transactions on
Services Computing 2(3), 223 –244 (2009)

25. Tian, M., Gramm, A., Ritter, H., Schiller, J., Reichert, M.: Efficient selection
and monitoring of qos-aware web services with the ws-qos framework. In: WI ’04
Proceedings of the 2004 IEEE/WIC/ACM International Conference on Web Intel-
ligence. pp. 152–158 (2004)

26. de Visser, I.: Analyzing User Perceived Failure Severity in Consumer Electron-
ics Products. Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The
Netherlands (2008)

27. Wei, Y., Blake, M.: An agent-based services framework with adaptive monitor-
ing in cloud environments. In: Proceedings of the 21st International Workshop
on Enabling Technologies: Infrastructure for Collaborative Enterprises. pp. 4–9.
Toulouse, France (2012)

28. Zheng, Z., Lyu, M.: An adaptive QoS aware fault tolerance strategy for web ser-
vices. Journal of Empirical Software Engineering 15(4), 323–345 (2010)

