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SUMMARY

In service-oriented architectures, composite services depend on a set of partner services to perform their
tasks. These partner services may become unavailable due to system and/or network faults, leading to
an increased error rate for the composite service. In this paper, we propose an approach to prevent the
occurrence of errors that result from the unavailability of partner services. We introduce an external Web
service, dubbed FAS (Fault Avoidance Service), to which composite services can register at will. After
registration, FAS periodically checks the partner links, detects unavailable partner services, and updates
the composite service with available alternatives. Thus, in case of a partner service error, the composite
service will have been updated before attempting an ill-destined request. We provide mathematical analysis
regarding the error rate and the false positive rate with respect to the monitoring frequency of FAS for two
models. We obtained empirical results by conducting several tests on the Amazon Elastic Compute Cloud
to evaluate our mathematical analyses. We also introduce an industrial case study for improving the quality
of a service-oriented system from the broadcasting and content delivery domain. Copyright c© 2013 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Service-oriented architectures and cloud computing facilitates the development of distributed
software systems based on loosely-coupled and self-contained services in heterogeneous
environments [1, 2]. These services can be discovered and composed with each other to provide
more sophisticated, higher-level, so-called composite services [3]. Composite services are usually
defined by means of specialized composition languages such as WS-BPEL [4] and they invoke
other services via so-called partner links. Hence, the services that are utilized by a composite
service are named partner services. Some of the partner services can cease to be available due
to system and/or network faults, which have been shown in recent experimental studies to be very
common [5]. These faults result in an error and possibly a failure of the composite service that
relies on the availability of its partner services. Preferably, the composite service should discover
and utilize alternative services to tolerate such external faults. As such, there have been several
fault tolerance approaches proposed in the literature [6, 7, 8]. However, error detection and system
recovery increase the response time due to the extra overhead they incur. The consequential delay
can be significant especially for composite services that utilize many other services [9]. Therefore,
faults should be avoided (if possible) to improve the dependability and performance of service-
oriented systems. One can employ an Active fault tolerance strategy (i.e., connect to all of the partner
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services simultaneously and proceed with the fastest response) to avoid faults. However, this is not
possible in many cases due to constraints imposed by limited resources or the problem domain.
Another way is to perform service selection process per each request [10, 11] or per each flow of
requests [12]. However, a partner service might be accessed multiple times during the processing
of a request and it can cease to be available at any time. Moreover, executing the service selection
process per each request/flow also introduces an overhead, just like the overhead of error detection
and recovery.

Research efforts so far have mainly focused on providing service brokers [13, 11], middleware
[14, 15, 7] and framework support [16, 17, 18, 8] to compose dependable services. In our previous
work [19], we proposed the implementation of forecasting, detection and handling of external faults
as external services. In this way, a set of services can provide dependability support for other
services, i.e., Dependability as a Service (DaaS). To our knowledge, this concept has only been
realized in the context of software/service testing (Testing as a Service - TaaS [20]) so far. Our
experiments showed that fault masking could be realized as a service. We have introduced a Web
service, FAS (Fault Avoidance Service) [19], to which a composite service registers the set of its
partner services. FAS periodically and independently checks the availability of the registered partner
services and compensates for their unavailability. FAS does not just provide health monitoring or
error handling, but aims at fault avoidance by proactively reconfiguring composite services and as
such, masking [21] faults. Faults are avoided by updating the links for unavailable partner services
with available alternatives before they are invoked by the composite service. This reduces the error-
rate. We studied the impact of the monitoring frequency of FAS on the effectiveness of our approach.
In particular, we defined analytical metrics regarding the error rate and the false positive rate for
various monitoring frequencies and partner service availabilities [19].

Contributions This paper presents two novel contributions with respect to our previous work [19].
First, we refine our analytical metrics regarding the impact of monitoring frequency on the error rate
and the false positive rate. We eliminate major assumptions to propose a more realistic model. We
performed several tests using a prototype implementation deployed in the Amazon Elastic Compute
Cloud (EC2) [22]. Our measurements confirmed the accuracy of our analytical metrics, which can be
used for determining an optimal monitoring frequency. We have not encountered such an analysis
in the literature although service monitoring has been employed in many studies [23, 24, 7, 25].
Second, we present an industrial case study from the broadcasting domain, where the utilization of
third party Web services become predominant. We discuss the deployment of FAS in this context
and evaluate the effectiveness of fault masking based on real data regarding the availability of third-
party content providers.

Organization The remainder of this paper is organized as follows. Section 2 presents the problem
statement and our solution approach. In Section 3, we introduce a set of analytical metrics and
related mathematical analysis. We present an experimental evaluation of our analysis results in
Section 4. Section 5 presents an industrial case study for improving the availability of services
employed in Smart TVs. In Section 6, related previous work is summarized. Finally, in Section 7
we provide the conclusions.

2. PROBLEM STATEMENT AND THE SOLUTION APPROACH

In service-oriented systems, a typical process involves a service requester and a service provider that
communicate with each other through service requests [1]. Usually a service provider registers its
services at a service broker that maintains a registry of “available” services [1]; a service requester
can look up and discover these services through the service broker. For instance, a UDDI [26]
service registry is a specialized type of service broker.

After registering itself to the service registry, or after being discovered by the composite service,
or even after being successfully invoked several times, a partner service can become unavailable
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Figure 1. An error recovery scenario.

due to system and/or network faults. In fact, recent experimental studies [5] show that the majority
of service invocation failures are caused by these types of faults (connection timeout, service
unavailability, etc.). As a result, the invocation attempt leads to an error. In turn, the composite
service can i) report a failure to its service requester, or ii) discover and utilize alternative services
(might be hard-coded in the source code, UDDI and WS-BPEL description, or it might be stored in
an external cache) to recover from the error. Figure 1 presents a scenario for the second case where
it is assumed that there is an available alternative service in the environment. In this scenario, the
previously designated partner service fails and becomes unavailable. After the failure and before
the recovery of the partner service, the composite service makes an invocation without success. The
composite service waits for a timeout duration (ttimeout) to decide whether the partner service is
available or not. Once it is deemed to be unavailable, the composite service discovers an alternative
service from the service registry. The duration of this discovery is tlookup. In case there is already a
designated alternative service, tlookup will be negligibly small. In any case, a new invocation has to
be made to the designated/discovered alternative service. The total time that is necessary to recover
from the error is toverhead ≈ ttimeout + tlookup.

Failure of a partner service is an external fault from the the composite service’s perspective which
invokes the failed service. A composite service can be exposed to many external faults each of
which increases the overall response time by an additional toverhead. The consequential delay can be
significant especially for composite services that utilize many partner services [9]. In the following,
we introduce a fault masking approach, where these external faults are handled to improve the
dependability and performance of composite services.

Overview of the Approach We introduce a Web service for masking faults. We name this
service as Fault Avoidance Service (FAS). A composite service first determines the list of partner
services that are going to be utilized, and registers this list to FAS. FAS periodically checks the
availability of these services. Once a partner service becomes unavailable, FAS locates alternatives
and reconfigures the composite service accordingly. When needed, the composite service uses the
updated partner links. This prevents composite service from trying to invoke erroneous partner
services, as such reduces the error rate and the overall response time of the process. To be able
to incorporate partner link updates, a registered composite service exposes a callback method to
receive updates from FAS.

Figure 2 depicts our overall approach. FAS stores a partner service list that is provided by the
composite service to be monitored. This list is used by the error detection module to check if
the invocation of these services can cause an error due to system/network faults that make the
services unavailable. The detected faults are reported to the fault handling module. This module is
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Figure 2. The overall approach.

responsible for reconfiguring the composite service by updating its partner service links associated
with the unavailable partner services. As such, the composite service becomes oblivious to the
faults rooted at its partner services. The fault handling module may make use of a service cache and
occasionally the service registry to locate alternative partner services. If a faulty service becomes
available again, FAS updates the composite service’s partner link back to its original configuration.
FAS checks the availability of the registered partner links periodically.

In fact, FAS does not require a service composition to be applied. Systems comprising only
one partner service interaction can also exploit our approach. In this case, however, FAS would be
responsible for only one partner service. As the number of partner services increases, the impact
of external faults also increases. Hence, the benefits of fault masking would be more significant
in the context of service composition. Otherwise, our approach, as well as the mathematical
models, simulations and case studies are agnostic to the number of services that are monitored.
In the following section, we present mathematical analysis regarding the effect of FAS monitoring
frequency on the error rate and the false positive rate.

3. MATHEMATICAL ANALYSIS

In this section we first introduce a set of analytical metrics and related mathematical analysis. Then
we present simulation results and define an objective function for optimal monitoring frequency.

3.1. Derivation of Analytical Metrics

In an ideal situation, FAS will immediately detect whenever a partner service becomes unavailable
or available. This way, the composite service can be notified right away so that no request from
the composite service will fail (i.e., no errors) and no request will be unnecessarily forwarded to
the secondary service (i.e., no false positives). However, in real life, there will be cases where the
composite service sends its request to the partner service before FAS notices that the service is
down, or the cases where the composite service still uses the secondary service because FAS did
not notice yet that the partner service is back in life. If the service is down, it threatens the customer
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Figure 3. A scenario showing the important events in a system that uses FAS when 1/F ≤ TU .

satisfaction since the composite service will be trying to invoke an erroneous partner service. If the
primary service is back in life, using the secondary service can cause several problems depending
on the deployment. For instance, the second replica may have limited resources and a higher cost for
access. Hence, FAS should be utilized as effective as possible to avoid such unwanted consequences.
Increasing the frequency of FAS checks would decrease the error rate and false positives, however,
an increased frequency means more load and resource usage. Being aware of this trade-off is vital
for system administrators in adjusting the checking period for FAS. In this section we provide the
mathematical analysis focusing on the expected values of the error rate and the false positive rate.

Figure 3 shows the important events in a system using FAS. In this scenario, we assume that
the composite service (CS) periodically sends requests at some frequency C, FAS checks the
availability of the partner service at a frequency F , and the partner service becomes unavailable for a
certain period TU of its lifetime T . We assume that the requests, checks and partner service up/down
events are instantaneous. We also assume that an available replica always exists in the environment
in case the partner service is unavailable (further discussed in Section 4.3). The duration between
the moment the partner service becomes unavailable and the time FAS detects this, is the period
of errors, because any request sent from the CS during this period will fail. Similarly, the duration
between the moment the partner service becomes available again and the time FAS detects this,
is the period of false positives, because any request sent from the CS during this period will
unnecessarily be forwarded to the secondary service. For example, the third CS request in Figure
3 fails because FAS has not notified the CS for the unavailability of the partner service yet. After
the third FAS check, FAS notifies the CS, the fourth CS request is successfully forwarded to the
secondary service and the potential error is avoided. However, the fifth request will still be forwarded
even though the partner service is back to life, resulting in a false positive. This is because the fourth
FAS check occurs after the fifth CS request.

The question we look into at this moment is the expected rate of errors that are not avoided (ER)
and the false positive rate (FP). ER (resp. FP) is calculated as the ratio of the number of errors
(resp. false positives) to the total number of CS requests. The smaller these values are, the more
useful FAS is. In our previous work [19, 27], we performed an analysis by assuming that for a
given availability, TU is a fixed duration and its starting time is uniformly distributed over the total
lifetime. Based on this assumption, the expected error rate (E[ER]) and the expected false positive
rate (E[FP]) are calculated as follows.

E[ER] = E[FP] =

{
1/(2FT ), if 0 < 1/F ≤ TU
(TU − F T 2

U/2)/T, if 1/F > TU
(1)

Note that T is inversely proportional to the expected error and false positive rates. This means, the
advantage of using FAS will be higher in longer-running systems. We have also derived the upper
bounds for ER and FP, which reflect the worst case (maximum) values.

Max[ER] = Max[FP] =

{
1/(FT ), if 0 < 1/F ≤ TU
TU/T, if 1/F > TU

(2)
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Figure 4. Change of expected and maximum values of error and false positive rates with respect to
FAS frequency according to the mathematical model (1) and (2).

The plots of the expected and maximum values are given in Figure 4 for when T = 400 s
and TU = 40 s (i.e., Availability is 90%). We have validated the derived formulas by means
of simulations as well as controlled experiments on the Amazon EC2 [22]. Details regarding
our derivation and experimental results can be found in [27]. In the following, we provide a
complementary analysis, in which TU is not assumed to be a fixed duration.

Markov Chain-Based Partner Service Behavior We also analyzed a Markov Chain-based
partner service behavior model. According to this model, the partner service state X(t) is assumed
to be a continuous-time random process, where X(t) = 1 denotes the partner service is up at time t,
andX(t) = 0 denotes the service is down. For a first order analysis, we assumed that the future states
are conditionally independent of the past states, given the present state. This implies that X(t) is a
continuous-time Markov Chain [28], the state transition diagram of which is depicted in Figure 5.
There, the transition rates λ and µ refer to the reciprocals of Mean-Time-To-Recovery (MTTR) and
Mean-Time-To-Failure (MTTF), respectively. Thus, the availability = MTTF

MTTF+MTTR = λ
µ+λ

0 1

Figure 5. The continuous-time Markov Chain based partner service behavior model.

According to this model, the partner service stays in state 1 (resp. state 0) for an exponentially-
distributed random time with mean MTTF (resp. MTTR) and then switches to state 0 (resp. state
1), and this is repeated forever. A pseudo-algorithm that generates sample transition times and
corresponding states for this behavior is given in Algorithm 1. On Line 3, λ

µ+λ is the steady-state
probability of state = 1. On Line 10, the algorithm is drawing an exponential random variable with
parameter µ. A sample behavior generated with this algorithm for 300 units of time for MTTF=90
units and MTTR=10 units (i.e., availability = 90%) is given in Figure 6.

We calculate E[ER] and E[FP] according to this Markov Chain model as follows. Let Yi = 1 if
the ith CS check results in an error, and Yi = 0 otherwise.
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Algorithm 1 Partner Service Behavior Generator
Inputs: MTTR, MTTF
Outputs: transition times, states

1: λ← 1
MTTR

2: µ← 1
MTTF

3: state← (random() ≤ λ
µ+λ )

4: states← [ ]
5: transition times← [ ]
6: time← 0
7: while TRUE do
8: states← [states, state]
9: if state then

10: time in state← 1
µ ln(1− random())

11: else
12: time in state← 1

λ ln(1− random())
13: end if
14: time← time+ time in state
15: transition times← [transition times, time]
16: state← ¬state
17: end while

0 50 100 150 200 250 300

0

0.5

1

Time

S
ta

te

Figure 6. A sample partner service behavior with MTTF = 90 and MTTR = 10 units.
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FAS

time
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Figure 7. An example case where an error occurs.

Then, ER = 1
N

N∑
i=1

Yi, whereN is the total number of CS checks. Thus, E[ER] = 1
N

N∑
i=1

E[Yi] =

1

N

N∑
i=1

P (Yi = 1) =
1

N

N∑
i=1

P (Error) = P (Error) = P (CS=down, previous FAS=up). Hereby,

CS=down means that the CS check results in partner service being unavailable. FAS=up means
that the last FAS check results in partner service being available.
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Let the time between a CS check and the previous FAS check be the random variable TC (see
Figure 7) with probability distribution function fTC

(t). Then

E[ER] =

∫
P (CS=down, previous FAS=up, TC = t) dt

=

∫
P (CS=down|previous FAS=up, TC = t) P (previous FAS=up|TC = t) fTC

(t)dt

(a)
=

∫
P (CS=down|previous FAS=up, TC = t) P (previous FAS=up) fTC

(t)dt

=

∫
P (X(s+ t) = 0|X(s) = 1) P (X(s) = 1) fTC

(t)dt

(b)
=

∫
P (X(t) = 0|X(0) = 1)

λ

µ+ λ
fTC

(t)dt, (3)

where step (a) uses the fact that the result of the FAS check is independent of TC , and step (b)
assumes that the Markov Chain is time-homogeneous and in steady state. To find the first term in
the integral, consider the state transition probability matrix P (t) for this Markov Chain, which is
given by P (t) = etQ, where Q is the transition rate matrix [29]:

Q =

[
−λ µ
λ µ

]
.

Diagonalization of Q is given by

Q = V ΣV −1 =

[ µ
λ+µ

1
2

λ
λ+µ − 1

2

] [
0 0
0 −λ− µ

] [
1 1
2λ
λ+µ − 2µ

λ+µ

]
.

Thus

P (t) = etQ = V

[
1 0
0 e−(λ+µ)t

]
V −1

=

[ µ
λ+µ + λ

λ+µe
−(λ+µ)t µ

λ+µ −
µ

λ+µe
−(λ+µ)t

λ
λ+µ −

λ
λ+µe

−(λ+µ)t λ
λ+µ + µ

λ+µe
−(λ+µ)t

]
.

By definition, P (X(t) = 0|X(0) = 1) = P (t)0,1 = µ
λ+µ −

µ
λ+µe

−(λ+µ)t. Thus (3) becomes

E[ER] =

∫
µ

λ+ µ

(
1− e−(λ+µ)t

) λ

µ+ λ
fTC

(t)dt

=

∫
λµ

(λ+ µ)2

(
1− e−(λ+µ)t

)
fTC

(t)dt.

Note that the minimum value that TC can take is 0, while the maximum value is 1/F .We assume
TC is distributed uniformly in this interval, yielding:

E[ER] =

∫ 1/F

0

λµ

(λ+ µ)2

(
1− e−(λ+µ)t

)
Fdt

=
λµ

(λ+ µ)2

[
1− F

λ+ µ

(
1− e−(λ+µ)/F

)]
. (4)

A similar derivation yields the same formula for E[FP]:

E[FP] = P (CS=up, previous FAS=down)

=
λµ

(λ+ µ)2

[
1− F

λ+ µ

(
1− e−(λ+µ)/F

)]
. (5)
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Figure 8. The simulation results. The circles denote the average rates found and the error bars denote ±3
standard deviations of the total 50 runs. Here, MTTF=90, MTTR=10 and each simulation is done for 100,000

time units. The dashed lines denote the theoretical curves calculated by the equations (4) and (5).

3.2. Simulations

We tested the validity of equations (4) and (5) with simulations executed in Octave. We generated
sample partner service behaviors for a total duration of 100,000 units with MTTF=90 and MTTR=10
units according to Algorithm 1. Then for a constant CS check frequency of 0.25 and for varying
FAS check rates between 0.01 and 1, we counted the number of times error events and false positive
events happen. The ratio of these numbers to the total number of CS checks are the error rates and
the false positive rates found in the simulations. We repeated this experiment 50 times and found the
averages and standard deviations of these rates. The results are reported in Figure 8 by the circles
and error bars. On top of these, the theoretical graphs conforming to (4) and (5) are plotted in dashed
lines.

As seen from the figure, the theoretical values are generally within three standard deviations of the
averages. When (4) and (5) are not in ±3σ of the simulations, the reason is the uniform distribution
assumption on T not being valid. That is, for example consider the case when FAS check rate is
1 where the disagreement is most noticeable. Since CS check rate is 0.25, the CS check period is
an integer multiple of FAS check period. Since the checks in the simulations are periodic, the time
between each CS check and the previous FAS check is always constant during each run, rendering
the uniform distribution assumption invalid. However we can say simulations generally agree well
with the theoretical values. And also since in reality the CS checks are not going to be exactly
periodic, we believe formulae in (4) and (5) are realistic.

The simulations are performed on a local machine for probabilistic validation of our mathematical
analysis. There is no service creation or invocation during simulations (we discuss these experiments
in the next section). By simulations, we were able to conduct large amount of tests to measure
meaningful average rates. Standard deviations turn out to be too high for real-world implementations
which can not be tested long enough. Moreover, we isolated runtime effects, some of which might be
significant on the average values, to provide a more controlled approach for a first degree validation
of our mathematical analysis.

3.3. Optimal FAS Check Frequency

Equations (4) and (5) are monotonously decreasing functions of FAS check rate F . Thus, according
to the Markov Chain based partner service behavior, the more frequent the FAS checks are, the
less the errors and false positive rates are. There is no optimal FAS check rate value considering
only the error and false positive rates. On the other hand, there is an “energy” cost of more frequent
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Figure 9. Optimal FAS check frequency for the Markov Chain partner service behavior as a function of the
conversion rate α. The smaller the α is, the more one would be willing to incur the cost of higher F for

reductions in ER. Here, MTTR = 10, MTTF = 90 units.

FAS checks. One might think of a multi-objective cost function such as

COST = E[ER] + αF, (6)

where F is the FAS check frequency and α is the conversion rate between the cost of FAS checks
and error rate. In other words, α denotes for how much reduction in E[ER], one would be willing
to increase F by one unit. The smaller the α is, the more important reduction in E[ER] becomes,
thus one is willing to increase F by one unit for smaller reductions in E[ER]. Clearly, it is possible
to use a linear combination of E[ER] and E[FP] in the cost function (6), however, since ER and
FP are equal to each other in (4) and (5), this approach would be equivalent.

According to this cost function, the dashed curves in Figure 8 at the same time denote the trade-off
(i.e., the Pareto curve) between the E[ER] (or E[FP]) and the cost of FAS checks. Depending on the
conversion rate α, one can pick an optimal point on this curve. In Figure 9, we plotted the optimal
FAS check frequency as a function of α. As seen in the figure, the optimal frequency decreases as
α increases (when the cost of FAS checks become “more expensive”). Depending on the practical
situation, once α is determined, one can choose the optimal FAS check frequency using this graph.

We also analyzed the optimal F value based on our previous analysis, when TU is a fixed
duration and its starting time is uniformly distributed over the total lifetime [27]. We used the
same cost function (6) and set the parameter α = 1. E[ER] = 1

2FT for 1/F ≤ TU (1). Hence,
COST = 1

2FT + F . To find the optimal value of F, we solve

∂COST

∂F
= 0⇒ ∂

∂F
(

1

2FT
+ F ) = 0⇒ ∂

∂F
(

1

2FT
) + 1 = 0⇒ −1

2TF 2
= −1

As a result, we obtain the following equation, which can be used for calculating an optimal
monitoring frequency that is dependent on the parameter, T, i.e., total life time.

F =
√

1/2T (7)

To determine the value of the parameter T, we investigated real services from the broadcasting
domain. In Section 5, we discuss our obervations and strategies for adjusting this parameter. In the
following section, we explain our experimental evaluation and discuss the results.
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4. EXPERIMENTAL EVALUATION

In Section 3, we mathematically tested the validity of equations (4) and (5) with the aid of
Algorithm 1. The simulations are based on a probabilistic execution with no real service request
or invocation. Hence, they reflect ideal conditions where network delays, service deployment,
distribution and execution are absent. For an experimental evaluation of our mathematical analysis
and simulation results, we implemented a prototype [27] and performed several tests, which we
discuss in this section.

In our experimental setup, we developed FAS as a stand alone Web service that provides an
interface to composite services for registration at start-up. During registration, composite services
convey two types of information: i) a callback method to be used by FAS to send partner link
updates, and ii) a list of partner services and methods to be monitored. FAS uses high-level (service-
level) transactions to monitor the partner services. This is to guarantee that the target Web service
is functional and reachable. Other low-level mechanisms (e.g., ping requests) can be used for
confirming the availability of a system, however, this does not necessarily imply the functional
availability of services. For sending updates, FAS uses nonblocking Web service invocation. Hence,
in principle, FAS should be able to handle multiple clients simultaneously without significant delay.

The utilization of FAS does not require the use of a platform/middleware or any composite service
model. However, composite services should have i) a FAS registration process as part of their
initialization, and ii) an interface implemented for receiving partner link updates. In accordance
with these two requirements, we developed a composite service in Java. We did not use WS-BPEL
because it does not directly support stateful (i.e., persistent and global) data. Therefore, partner
link updates in a FAS instance cannot be reflected to the other, subsequently created instances.
In principle, our approach is agnostic to the composite service implementation and the employed
composition language. It is also possible to utilize WS-BPEL, for instance, using the extension
proposed by Wu et al. [30].

We also implemented a partner service and replicated it. If FAS updates the partner link before
the (unavailable) first replica is invoked, composite service sends the request directly to the second
replica. If not, the composite service tries to invoke the first replica. In case of an error, the second
replica is invoked and the received response is returned to the client.

4.1. Experimental Setup

We used Node.js [31] to develop and deploy Web services in our experiments. We globally
distributed these services using the Amazon EC2 [22]. We utilized micro instances [22] and used
identical machines, each of which has one CPU core with one EC2 Compute Unit [22], 613 MB
memory and 8 GB of storage. All instances were running 64-bit Linux operating system. We
deployed a composite service and two replicas of our partner service. Partner service replicas were
deployed in North Virginia and Tokyo, while composite service was in Ireland and FAS was in
Sao Paulo, Brazil. Tests were conducted and controlled from another instance located in Sydney,
Australia.

Throughout our tests, we generated a partner service life time by using Algorithm 1 and assigned
it to the first replica. The second replica is configured to be 100% available for all tests. We
generated sample partner service behaviors for a total duration of 2000 seconds with MTTF=90
and MTTR=10 units. Then for a constant CS check frequency of 0.25 and for varying FAS check
rates between 0.01 and 1 (between 0.01 and 0.1 with a 0.01 step size, between 0.1 and 1 with a 0.1
step size), we performed several tests and calculated error rates and false positive rates during the
experiments. Repeating each configuration 10 times, we obtained averages and standard deviations
of these metrics. The results are presented in the following subsection.

4.2. Results

Figure 10 depicts the results. In Figure 10(a),E[ER] is plotted together with the experimental results
(Measured[ER]) with respect to F . Figure 10(b) shows E[FP] and the measured false positive
rate (Measured[FP]) for the same range and settings of F and service availability. It can be seen
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Figure 10. Experimental results for ER and FP. The circles denote the measured average rates and the error
bars denote ±3 standard deviations of the total 10 runs. Here, MTTF=90 seconds, MTTR=10 seconds and
each experiment is done for 2,000 seconds. The dashed lines denote the theoretical curves calculated by the

equations (4) and (5).

from the figures that E[ER] is consistent with respect to the experimental results. Likewise, the
measured false positive rates confirm the accuracy of our mathematical analysis regarding E[FP].
By comparing the figures we can say that in higher availabilities, we obtain low ER even if we use
small F values. It is also worth noting that the measured values are almost always slightly larger than
the expected values. This can be due to communication delays that were ignored in our analysis. At
the practical side, this could be interpreted as a hint to system administrators that when configuring
their systems, they can choose to be pessimistic. Of course, this is only one dimension to consider
during system configuration; several other criteria [32] must also be taken into account for a full
deployment.

4.3. Threats to Validity

The service behavior model (Figure 5) is a statistical one that aims to model the partner service
behavior. That is, each realization of a partner service behavior will be different, and Figure 6 is an
example realization among infinitely many different possible ones. The continuous-time Markov
chain model in Figure 5 models the statistical properties of the ensemble of different possible
realizations. We use these statistical properties to calculate expected error and false positive rates.
In reality, there can be second-order effects that are not reflected in this model. For example, the
Markov assumption implies that the conditional distribution of the future states given the current
state and the past states is independent of the past states, and only depends on the current state [28].
A real partner service behavior might not exactly satisfy this assumption, however, Markov chains
are widely used to model and analyze system reliability [33]. Therefore we chose to use a Markov
chain-based model to be able to reflect the up-down behavior of the partner service statistically to a
first degree, while being able to calculate analytically the desired quantities such as expected error
and false positive rates. In the model, the parameters λ and µ are expected to be different for different
partner services and must be determined for each service by observingMTTF andMTTTR. Thus,
these parameters give the degrees-of-freedom to differentiate between services behaving differently.

Our analysis considers the existence of one service replica that is assumed to be always available.
In case multiple and possibly unavailable replicas exist, our analysis is still valid for the following
reasons: Assume each replica can be up or down according to the Markov-Chain model in Figure 5,
independently of the other replicas. FAS server will check these replicas and choose an available one
as the replica to be used by the composite service. An error will occur if the chosen service replica is
down at the time of CS request, independent of what happens at the other unchosen service replicas.
Thus, our error rate analysis still applies to this case. Similarly, if the original service is down during
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the FAS check, but happens to be up at the time of CS request, a false positive happens independent
of the other service replicas. Hence, the false positive rate analysis also is unaffected by the behavior
of the other replicas. However, there is one scenario that is not considered here, which is the case
when all replicas are down at the time of FAS check. This case leaves the FAS server unsuccessful
in designating a service replica for the composite service. If this case happens, the FAS server
might go to a different regime, for example, searching for an alternative available service replica
with much more frequent FAS checks, etc. This regime is out of scope of our analysis and for the
sake of illustration, we left this case out.

The availability of partner services are being monitored from the perspective of FAS, which
might possibly mismatch the experience of the composite service. Complementary mediators [34]
can be incorporated to monitor the dependability characteristics of partner services from composite
services’ perspectives.

There might be cases where extra logic is required to decide on partner service substitutions. Even
if the primary partner service becomes unavailable, the composite service might have a tolerance
margin for reconfiguration. Or it might be costly to substitute a critical partner service. Depending on
the process, composite services might need to communicate with FAS to update critical information,
service cache, notification interface/protocol as well. Finally, it is also possible that the alternative
service cannot be directly substituted for the original service due to stateful properties [15]. We did
not take these needs into account.

4.4. Experimental Evaluation vs. Simulation

Experimental evaluation is complementary to the simulations. By means of simulations, we were
able to eliminate unpredictable runtime effects such as network delays.

In our experiments, we used Algorithm 1 to generate partner service behaviours the same way
we did in the simulations. By implementing prototype services and deploying them in the cloud,
we were able to take the run-time effects into account, as illustrated by Figure 8 vs. Figure 10. By
experimentation, we observed the effect of service invocations and network delays on the average
values and deviations. Using the EC2 infrastructure enabled us to distribute our services globally.
This provided a more realistic evaluation of our approach; we were able to create a fully distributed
test environment and automate most of the data-gathering and post-processing jobs in the cloud.

5. INDUSTRIAL CASE STUDY

In this section, we introduce an industrial case study for improving the quality of a service-oriented
system from the broadcasting and content delivery domain. The system is an example of so-called
Smart TVs, which emerged after the introduction of broadband connection to TV systems. These
systems utilize various services such as third party video content providers, popular social media
platforms and games. In particular, we investigated a portal application (see Figure 11) developed
by Vestek,† a group company of Vestel which is one of the largest TV manufacturers in Europe. This
application is being utilized by Vestel as an online television service in Turkey. The application is
a platform comprising dozens of third party services, including the most popular Web applications,
audio/video streaming services and games. Among these, there are services that provide similar
content as well.

Services that provide audio/video content over broadband connection are considered to be among
the most important services for Smart TVs [35]. These services might be affected in various ways
depending on the type and location of faults. For instance, there might be content-related problems
that leave front-end devices unable to play (e.g., unsupported format) or server-side problems
that result in faulty feeds, wrong URLs or no response at all. Moreover, it is also possible to
experience intermittent network outages causing video and audio freezes, long buffering periods,
end-of-stream or lip-sync errors. In this case study, we are particularly interested in content-related

†http://vestek.com.tr, accessed in July 2013.
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Figure 11. A snapshot from a portal application.

faults that propagate through the portal application and affect the user experience negatively. We
investigate how we can use FAS to mask and avoid the faults threatening user satisfaction and
service availability. In the following, we first describe the realization of our approach in this context,
where different partner services roll into one composite service potentially being consumed by
millions of end users. Then, we discuss our experimental setup, observations and results.

5.1. Realization of the Approach

Figure 12 depicts a typical process when a client uses the portal application. Hereby, the client first
selects a partner service. If the selected service is a video provider, available categories are retrieved
on the server side by invoking the partner service. The response from the partner service is used for
the preparation of a page to convey available categories. This page appears on the client device. The
client picks a category and triggers another transaction. This time, the portal application invokes
the partner service to retrieve an up-to-date collection of video items for the selected category.
Categories are distinguished with a unique identifier that is passed as a parameter while using
the partner service’s APIs. If the request succeeds, video items are displayed with additional meta
information such as the thumbnail image, title, duration and popularity. Then the client chooses a
video item and starts streaming by directly communicating with the partner service.

To experiment with our approach, we implemented a prototype composite service taking the role
of the portal application. We kept the utilization of partner services and server side interactions as
original. However, we changed the format of the responses so that we can capture, log and analyze
them easier. We also implemented the required interfaces so that the portal can communicate with
FAS. We deployed FAS as a stand alone web application. We used several client applications to test
our prototype portal application. Implementation details can be found in [27].

Before the actual experiments, we first made a preliminary analysis to gather information
regarding the type and frequency of faults existing in the video services used by the portal
application. We implemented a test application that picked a random video item from a random
video category of a specified partner service to simulate a usage scenario. The video URL of the
selected item was sent to FAS in order to monitor and log the status of the video. We ran the system
for 11 days and collected data for approximately 1.6 million requests. For one of the services,
ServiceE‡, 60% of the requests were unsuccessful, i.e., the system detected anomaly.

Results pointed out two main observations: (i) If a video link was found to be erroneous, its status
never changed until removed from the service feed. (ii) The symptom was the HTTP 404 response

‡Due to confidentiality, we do not disclose the names of the utilized services.
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Figure 12. Sequence diagram of video streaming on the portal application.

code when a video link was found to be broken. Based on the first observation, we concluded
that faults associated with ServiceE were not intermittent network issues. Based on the second
observation, we understood that there was a server-side defect that caused broken links in the feeds.
As a result of these inferences, we concluded that it is possible to utilize the FAS service in order to
detect anomalies associated with the ServiceE feeds. We have designed our experimental setup as
described in the following subsection.

Our first observation also denotes that it is unlikely to see an alteration in the availability of any
video item until an update occurs. However, if there is an update observed, several outcomes are
possible: a broken video item may get fixed, a new broken video item may be introduced, or a video
item may be unloaded. In any case, FAS must check the content after every update and inform the
composite service accordingly. We implemented a test application that monitors the change behavior
on content providers [27]. We monitored 5 different video services available on the Vestek portal for
14 days. Figure 13 shows the results for ServiceE, Figure 14 for the others. It can be seen that every
service has a different content change behavior. For instance, the content provided by ServiceE is
changing less often compared to the others. In accordance with this observartion, we designed our
experimental setup as described in the following subsection.
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Figure 13. Content changes of ServiceE in a 14-day period.
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5.2. Experimental Setup

We configured FAS monitoring frequency (F ) according to the equation (7), which is dependent on
the parameter, T , i.e., total life time. We applied three different strategies for setting the value of this
parameter differently for each service according to its content change behavior:

(i) Average: Take T as the average period of time between two consecutive content changes.

(ii) Minimum: Take T as the minimum period of time between two consecutive changes.

(iii) Exponential back-off: Take the minimum period of time between two consecutive changes to
calculate the initial value of F and apply exponential back-off at the end of each period if there
is no content change.

For instance, there were 7 changes in 14 days in the ServiceE feed. Therefore we set 1/F to 588
seconds for the average strategy. We compared the durations between each consecutive changes
and found the minimum to be 60 seconds, which yields 11 seconds as the value of 1/F for the
minimum strategy. For the exponential back-off strategy, we used the minimum time difference
(i.e., 60 seconds) to calculate the initial value of F (i.e., F0), and employed the exponential back-
off algorithm to double 1/F each time when there is no change. That is, we used the formula
Fk+1 = Fk/2 to calculate the frequency where k is the number of iterations starting from the last
change. In this approach, we also bounded F by a predetermined limit.

We performed experiments for each strategy to observe and measure the effect of FAS on the
overall availability of the portal application. For this purpose, we deployed a client application
requesting content from the portal by selecting both the native replica and the rectified replica
at each iteration. After obtaining the responses, the client picks a video item randomly and tests
streaming by using the meta data from two different replicas. At each trial, it logs the time stamp,
video ID and test results for both partner services. The results give us a chance to compare and count
directly how many faulty video items are successfully detected and masked by the FAS service.

Tests were conducted using a PC with Intel(R) Core 2 Duo P8600 at 2.40 GHz processor and 4
GB RAM. The applications were run on Ubuntu 10.04 LTS and Python 2.6.5 Runtime Environment.
Results are discussed in the following subsection.

5.3. Results and Discussion

Table I shows the results of using the average strategy. We observed that 9368 streaming attempts
out of 55835 failed for the native replica. This corresponds to 16.78%. For the rectified replica, only
10 streaming attempts (∼0.02%), failed. There are two attempts that failed for the native replica
and the rectified replica at the same time, i.e. FAS was unable to detect and fix these. There are 8
attempts where the trial is successful from the native replica but the rectified replica failed.

The results of the minimum strategy are given in Table II. There are 9269 faults out of 54918
attempts for the native replica. This corresponds to 16.88%. However there are only 5 failing
requests, which make less than 0.01% for the rectified replica. There is only one failing request both
for the native and rectified replica. There are 4 attempts that are successful for the native replica but
failed for the rectified replica.

Table III shows the results for the exponential back-off strategy. For the native replica, 9490
failing attempts are detected out of 56200. This corresponds to 16.88%. Only 8 trials were
unsuccessful, which correspond to ∼0.01%. 2 attempts failed for both replicas at the same time.
There are 2 attempts failing for the rectified replica while succeeding for the native one.

Table IV sums up the results of the three monitoring strategies. The best service availability is
obtained with the minimum strategy, resulting slightly more than 99.99%. It is followed by the
exponential back-off with a difference less than 0.01%, and the average strategy with 99.98%
availability. On the other hand, the average strategy introduces the least overhead since network
and resource usage is directly proportional to the monitoring frequency. As we can see from Table I,
the average strategy increased the availability from 83.22% to 99.98%. Even though the monitoring
frequency of the minimum strategy is approximately 53 times greater than the average strategy,
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Service Number of Faults Total Number of Attempts Availability (%)
Native Replica 9368 55835 83.22

Rectified Replica 10 55835 99.98
Table I. Experiment results for the average strategy.

Service Number of Faults Total Number of Attempts Availability (%)
Native Replica 9269 54918 83.12

Rectified Replica 5 54918 �99.99
Table II. Experiment results for the minimum strategy.

Service Number of Faults Total Number of Attempts Availability (%)
Native Replica 9490 56200 83.12

Rectified Replica 8 56200 ≺99.99
Table III. Experiment results for the exponential back-off strategy.

Strategy 1/F (seconds) Number of Faults Availability (%)
Average 588 10 99.98

Minimum 11 5 �99.99
Exponential Back-off 2k ∗ 11 for k=0,1,2... 8 ≺99.99

Table IV. Comparison of the monitoring strategies.

service availability is only increased by 0.01%. This makes the average strategy more appealing,
assuming that the 0.01% difference in the availability is negligible.

We monitored five video services in total from the Vestek portal. We observed how often their
feeds changed for 14 days. We previously presented the results for ServiceE in Figure 13. Figure 14
shows the results for the other 4 services: ServiceA, ServiceB, ServiceC and ServiceD. We observed
that each service has its own change regime with some similarities as well. ServiceD and ServiceE
change very rarely compared to others. Hence, for these two services, we can consider a lightweight
monitoring strategy triggered with these changes. On the other hand, ServiceA has a much more
frequent change characteristic; as seen in Figure 14(a), it is rather stationary between 3:00 – 9:00 and
hectic after 18:00. A customized strategy can be utilized based on this daily pattern with different
monitoring frequencies per each time slice. ServiceB and ServiceC appear to have more uniform
distribution of change on a daily basis. A fixed monitoring frequency can be considered for these
services. Besides, ServiceB is slightly erratic between 3:00 – 5:00.

It is important to determine an efficient and suitable monitoring strategy while utilizing FAS. But
it can be seen that each service has its own regime which is subject to change. Our observation
was for 14 days; more accurate results can be obtained over a longer period of time. An additional
subsystem in FAS responsible for logging the history of services and determining an accurate and
adaptive monitoring strategy would hence be useful.

In this case study, we integrated FAS as a singular service whose responsibility is to monitor and
take necessary actions for all partner services (one-to-many). But there might be cases where a single
FAS system can fall short to handle enormous number of services. By abstracting out FAS from
the system and realizing it as a service facilitates scalability for such scenarios. It is possible to
replicate FAS on the cloud and divide up the monitoring responsibility. This can even be done across
clusters [36]. Thus, each replica can be deployed independently and distributed geographically,
monitoring a small portion of all partner services. At the extreme, a single FAS service can be
utilized per each partner service (one-to-one), or even multiple FAS services for a highly critical
partner service (many-to-one). This is the main motivation of externalizing fault masking subsystem
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Figure 14. Content changes in a 14-day period.

and considering it as a service. From our experience so far, our approach fits very well to cloud-based
implementation scenarios which makes it scalable.

6. RELATED WORK

Anatoliy et al.[37] categorize errors and failures specific to service-oriented systems. They introduce
three main categories: i) network and system failures, ii) service errors and failures, and iii) client-
side binding errors. Our approach focuses on network/system failures and client-side binding errors.
Our goal is to detect these errors/failures, and warn the services prior to invocation to increase
availability.

So far, research efforts for improving the dependability of service-oriented systems have focused
on variety of fault tolerance strategies [8, 17, 16]. We particularly focus on fault masking, a
distinctive strategy compared to others. An analysis of the literature also reveals that dependability
improvement has been mainly facilitated by means of frameworks [37, 17], architectural
methods [38, 9], reliable service connectors [39], proxies [23] and service dispatchers [40]. We
propose implementing a stand alone service to which other services can register for improving their
dependability.

There exist service brokers and architectural frameworks [13] that are responsible for the
creation/composition as well as the adaptation of a composite service. As an advantage of this
approach, structural changes (i.e., architecture selection) can also be applied to the composite
service [13]. However, such approaches are inherently coupled with the adapted composite service
based on a composite service model. FAS does not change the structure and the behavior of the
composite service and it does not assume any composite service model.

Previously, the use of a proxy Web service was proposed to replace failed or slow services with
alternative services [23]. Hereby, the quality monitoring is performed by the composite service. The
source code of the composite service is automatically instrumented to add this functionality. As a
drawback, there is a hard-coded primary service that is always tried first. The proxy service is used
for diverting to an alternative service only when/after a failure occurs. So, this approach tolerates
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faults that are detected when the composite service is demanded. However, we aim at detecting and
masking faults seamlessly by an external Web service before the composite service is demanded.

In this work, we assumed the existence of alternative services that can be directly substituted with
unavailable services. However, dynamic service substitution can be problematic in case of stateful
services. As a complementary work, SIROCO middleware [15] tackles this problem by enabling
semantic-based service substitution.

Zheng and Lyu [7] introduce a middleware for composite services to keep track of the QoS
information regarding the utilized services. This information is updated at each use of a service
and sent occasionally to a common server. The collected QoS information is used for dynamically
selecting the most appropriate fault tolerance strategy in case of an error. Empirical results show that
their dynamic selection approach performs better than sticking to a statically-determined strategy.
The differences of their approach to ours are: i) They use a middleware; we propose implementing a
standalone service to which other services can register. ii) Our service actively monitors the replicas.
Their monitor is passive; it only stores data. iii) We update the user’s list of preferred replicas,
whereas they update the user’s preferred fault tolerance strategy.

7. CONCLUSIONS

We introduced an approach for masking faults during the invocation of partner services and as such,
preventing errors in composite services. We developed FAS, an external fault masking service that
periodically checks the availability of a set of partner services that are registered by a composite
service. If one of the partner services ceases to be available, FAS locates alternative services and
sends an update to the corresponding composite service, before the faulty partner service is invoked.

We defined analytical metrics for the error rate and the false positive rate for different monitoring
frequencies of FAS and partner service availabilities. We performed several tests using a prototype
implementation deployed on the Amazon EC2. Our experimental results confirmed the accuracy
of our analytical metrics, which can be used for configuring FAS based on varying partner service
availabilities.

We examined an industrial use-case from the broadcasting domain. We investigated 5 video
services to reveal common error types and possible monitoring strategies while leveraging FAS.
We applied three different strategies for calculating the monitoring frequency. We conducted
several experiments and compared the effectiveness of these strategies. As expected, strategies that
employ higher monitoring frequencies resulted in higher availability. However, the improvement
in availability turned out to be insignificant with respect to the additional overhead of increased
monitoring frequency. Only 0.01% improvement in availability was observed, when the monitoring
frequency was increased 53 times. A strategy based on exponential back-off might provide an
acceptable trade-off point among the alternative strategies. The final choice would also depend on
the available resources and the importance of the content.
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