
Software Quality Journal manuscript No.
(will be inserted by the editor)

Automatically Learning Usage Behavior
and Generating Event Sequences
for Black-Box Testing of Reactive Systems

M. Furkan Kıraç · Barış Aktemur ·
Hasan Sözer · Ceren Şahin Gebizli

Received: date / Accepted: date

Abstract We propose a novel technique based on recurrent artificial neural
networks to generate test cases for black-box testing of reactive systems. We
combine functional testing inputs that are automatically generated from a
model together with manually-applied test cases for robustness testing. We
use this combination to train a Long Short-Term Memory (LSTM) network.
As a result, the network learns an implicit representation of the usage behavior
that is liable to failures. We use this network to generate new event sequences
as test cases. We applied our approach in the context of an industrial case
study for the black-box testing of a Digital TV system. LSTM-generated test
cases were able to reveal several faults, including critical ones, that were not
detected with existing automated or manual testing activities. Our approach
is complementary to model-based and exploratory testing, and the combined
approach outperforms random testing in terms of both fault coverage and
execution time.

Keywords test case generation, black-box testing, recurrent neural networks,
long short-term memory networks, learning usage behavior

1 Introduction

Reactive systems [1] refer to an important class of systems that repeatedly
react and respond to their environment. The size and complexity of software
that is employed in these systems are continuously growing due to the increas-
ing number and variety of interactions with the environment. For example,

M. Furkan Kıraç, Barış Aktemur, Hasan Sözer
Ozyegin University, İstanbul, Turkey
E-mail: {furkan.kirac, baris.aktemur, hasan.sozer}@ozyegin.edu.tr

Ceren Şahin Gebizli
Vestel Electronics, Manisa, Turkey
E-mail: ceren.sahin@vestel.com.tr

2 M. Furkan Kıraç et al.

Digital TV (DTV) systems [51] currently support web browsing, on-demand
streaming, home networking, and many other functionalities. As a result, com-
prehensively testing these systems becomes costly [34].

Test automation [7,47] is a typical approach to reduce costs. This involves
the automation of a set of various activities such as the generation of test cases,
execution of these cases on the system under test, and validation of the results.
In this work, we focus on the problem of automated test case generation for
reactive systems such as DTVs that are steered based on a set of input events.
Hereby, each test case is composed of a sequence of remote controller key press
events supplied to the system under test.

Model-based testing [42] is commonly used for black-box testing to au-
tomatically generate test cases. This technique relies on a test model that
specifies possible usage scenarios of the system under test. The main draw-
back of this approach is the model creation process, which is manual and
therefore error-prone and labor-intensive. There have been several techniques
introduced to automatically generate or extend test models [39,43]; these tech-
niques mostly explore the graphical user interface of a system to synthesize a
model of it [39,43]. They do not exploit the knowledge and experience of hu-
man testers, which is the main motivation behind exploratory testing [53,29,
30]. We previously introduced an approach [16] to automatically refine a test
model based on events recorded during exploratory testing activities. However,
one has to define a mapping of recorded low level events to abstract states of
the test model to apply the approach.

There have been several approaches [14,36,12] for leveraging existing test
suites to generate new tests. Some of these approaches combine black-box
and white-box testing to be able to infer a model of the application [14].
Then, new test cases can be generated based on this model. Learning-based
testing [36] is purely black-box; however, it requires a formal specification of
the requirements. Other black-box approaches [12] do not rely on any model.
They just combine or modify existing test cases to generate new ones.

In this work, we focus on black-box robustness testing, where the goal is
to find usage scenarios that trigger crash failures. Our work is motivated by
the testing practices of DTVs employed at Vestel1, which is one of the largest
TV manufacturers in Europe. For testing, besides automated execution of test
scripts, manual exploratory tests [29,30] are performed as a complementary
approach. These exploratory tests are not based on a predefined set of test
cases or check-lists, but are purely based on the practical knowledge, insight,
heuristics, and experience of the technician conducting the test. Test techni-
cians regularly reveal faults that are otherwise hard to detect using automated
techniques. During an exploratory testing session, the technician basically uses
a hand-held remote controller to send commands to the DTV just like a reg-
ular end-user. Technicians perform manual tests iteratively by learning about
the product, planning the testing work to be done, designing and executing
the tests, and finally, reporting the results.

1 http://www.vestel.com.tr

Automatically Generating Event Sequences for Black-Box Testing 3

The drawback of exploratory testing is its cost due to its manual and
human-centric nature. Nevertheless, they are an indispensable part of testing,
because critical faults are mostly detected during exploratory testing activi-
ties [16]. Experienced test technicians have the necessary insight and years of
domain knowledge to detect these faults. However, their knowledge and ex-
perience are unfortunately not documented. Hence, our work is driven by the
following question:

Can we capture the insight of experienced test technicians by automat-
ically learning from the actions they perform during manual testing?

Our ultimate goal is to be able to automatically generate representative test
cases as a result of this learning process, so that the cost of manual testing can
be alleviated without compromising the effectiveness of exploratory testing. To
this end, we propose a novel technique for test case generation by employing
artificial neural networks. In particular, we create a Long Short-Term Memory
(LSTM) network [25], which is proven to be effective in learning sequences [50]
(see Section 3). LSTM networks have been successfully applied to various
sequence prediction tasks [50]. However, to the best of our knowledge, they
have not been utilized for test case generation before.

We applied our approach in the context of an industrial case study to gen-
erate test cases for a DTV system. The code-base of this system is relatively
mature. So, it is challenging to find scenarios that trigger (new) crashes. Yet,
we obtained promising results by identifying several of those. We first trained
an LSTM network with test cases that are generated from a test model. We
used this network to generate new test cases. Then, we extended the train-
ing data with test cases that are recorded during manual exploratory testing
activities. We generated a new set of test cases after another training step per-
formed with this data. We observed that test efficiency is improved in terms
of the number of detected faults per unit of time. Our approach also outper-
formed random testing and model based testing, which are used as baseline
methods in our evaluation. In addition, we were able to detect several critical
faults, including new ones that were not detected with existing test suites or
manual testing activities, and also known faults that the test engineers had
not been able to reproduce.

In the next section, we explain our general approach. In Section 3, we
provide background information on LSTM networks and their use for sequence
modeling. We explain the industrial case study in Section 4. We provide the
details of our approach and evaluate the results in Section 5. We summarize the
related studies and position our work with respect to them in Section 6. Finally,
we provide concluding remarks and future work directions in Section 7.

2 Approach

Throughout the paper we use the term test case to refer to a finite sequence of
user events e1e2e3 . . . en that are transmitted to the system under test. In the

4 M. Furkan Kıraç et al.

e1e1e1e3 ...
e2e4...
e1e2e3 ...

System
Under
Test

KEY: tool data flow orderartifact

Test Technician

Test Automation
Tool

2.1

1.1

3.2

3.2
e2e4e1e1 ...
e1e1e2e3...
e1e2e4 ...

LSTM-generated
event sequences

LSTM network

1.2

3.1
Recorded

event sequences

Test
model

e2e1e1e1 ...
e2e4e3e3...
e1e1e1 ...

Model-based
generated

event
sequences

Model-based
Testing Tool

1.1

2.1 2.2

Fig. 1: The overall approach.

context of DTVs, a user event is a remote controller key press. A test case fails
if the system under test crashes/halts during test case execution. Hence, our
definition of faults include only crashes of the system under test. We defined a
system crash as “being unresponsive for 5 seconds”. Unresponsiveness of the
system can be automatically detected, and the sequence of events that caused
the unresponsiveness, hence crash, are logged for further inspection.

Our general approach is depicted in Figure 1. We compose two groups of
test cases to train the neural network. The first group of test cases (step 1.1) are
automatically generated from an existing high-level test model. (In principle,
this group can be replaced with any test suite that is either manually or
automatically created.) This group represents the general usage behavior of the
system under test, and are used for functional testing of the system. The second
group contains test cases recorded during exploratory testing activities (step
2.1); this set is used for robustness testing, and thus represents potentially
error-prone usage behavior. We combine all the test cases from the two groups
and feed into LSTM for training (steps 1.2 and 2.2). Then, we use the trained
network to generate new test cases (step 3.1), which can be executed on the
system under test (step 3.2).

Although the test cases from the exploratory testing sessions are expected
to be more “valuable” in the sense that they are supposedly more liable to
reveal faults, in our approach we do not solely use these test cases, but rather
combine them with test cases generated from a model as well. This is because
the size of the test cases recorded during exploratory testing is limited due to
the human-centric nature of this activity. Neural networks, however, require
a large amount of input for training; inputs that are too small lead to over-
fitting (i.e. memorization) problems. We remedy this problem by populating

Automatically Generating Event Sequences for Black-Box Testing 5

input

output

hidden
layer

(a) A traditional neural network

input

output

hidden
layer

(b) RNN

input0 input1 inputn

output0 output1 outputn

hidden
layer

(c) RNN in unfolded form

Fig. 2: Traditional vs. Recurrent Neural Networks (RNNs)

the data set with test cases generated from a model to a size that is reliably
large to be used for training the LSTM.

3 Background

In this section, we provide background information about long-short term
memory networks and training these networks for sequence modeling.

3.1 Long Short-Term Memory Network

Long Short-Term Memory (LSTM) network [25] is an artificial neural net-
work [23] that learns from the sequential input data. It is a type of Recurrent
Neural Network (RNN). As a difference from traditional feed-forward neural
networks [23], RNNs keep contextual information in the form of an internal
state. Figures 2(a) and 2(b) simply illustrate a traditional feed-forward neural
network and RNN, respectively, where the network in the latter has a feedback
loop from the hidden layer to itself. This feature makes RNNs very effective for
learning and predicting order/sequence of events. Figure 2(c) depicts the RNN
in Figure 2(b) in unfolded form. Neural networks employ custom modules that
transfer state information from one module to the next. These modules can
be considered as analogous to neurons in a human brain. They implement a
neuron activation function — typically a step function, a non-linear function
such as sigmoid [23], or more recently, rectified linear units [41]. When used in
RNNs, these neurons also transfer activation states of previous time steps of a
sequence. Although RNNs are effective for learning short-term dependencies,
they fall short for learning dependencies among elements of a sequence that
are far apart from each other. In other words, there is no guarantee for an
RNN to learn correlations of fed data that are relatively distant in time.

LSTM network is a special type of RNN that is capable of learning both
short term and long term dependencies among a sequence of inputs. This
capability is achieved by employing a sophisticated transfer function that
propagates state information [21]. This function is composed of multiple sub-
components, called gates. Each of these gates involves an independent vanilla

6 M. Furkan Kıraç et al.

+ f

KEY:
repeating
module

f
network layer as
activation function

+
sum
over
inputs

x
pointwise
multiplicationreplication

Traditional RNN module An LSTM module

output

input

recurrentrecurrent

+

output

input

recurrent

recurrent

x

+ f

x

f

f

forget
gate

output gate

input
gate

block
gate

f

x

Fig. 3: Traditional RNNs vs. LSTM Networks

neural network of its own, and it controls the state by filtering, adding, or up-
dating information during the state transfer. Altogether, based on the input
training data, an LSTM network learns what to forget, what to remember,
and for how long. In other words, the default behavior of an LSTM network is
to remember a context until it is automatically decided that it is no longer of
value, whereas a vanilla RNN has no default behavior for keeping the context.
Hence, RNNs tend to lose context when the sequences get lengthy.

The difference between a traditional RNN module and a typical transfer
module in LSTM is depicted in Figure 3. An RNN module combines the pre-
vious state information vector (i.e., recurrent) with the input vector, which is
fed to an activation function. The output of the function is used both as the
output and the state information to be propagated. On the other hand, an
LSTM module employs 4 network layers as activation functions. These net-
work layers are also trained along with the whole network for learning which
part of the input should be passed through or filtered out (forget gate), which
part should be added (input gate) to which part (block gate) of the current
state, and which part of this state should be reflected to the output (output
gate). There can be variations of an LSTM design [19,9,21] and there exist
several practical applications mainly concentrated on language modeling [18].
The implementation of Google Translate [61] can be provided as an example
for one of the most popular applications at the time of writing this paper.

Automatically Generating Event Sequences for Black-Box Testing 7

3.2 Training RNNs for Sequence Modeling

Sequence modeling has been a major topic in natural language processing
field. Natural languages have a predefined dictionary of words where words are
generally formed by a sequence of characters. Since the sequence of characters
for a specific word never changes, modeling the sequence can be simplified
by tokenizing every word in the dictionary. First, words are considered as
ordered in a predetermined fashion, usually the lexicographical order. Second,
a representative vector is assigned for every different word according to its
index in the ordered representation. If an ordered dictionary contains N words,
each word is represented by an N dimensional vector where all the dimensions
are set to zero but the dimension with the index corresponding to the word’s
order in the dictionary is set to 1. This vector is called a one-hot vector.

The major problem with one-hot representation is that the dimensionality
can be extremely high in some scenarios. Considering the English language
contains approximately 170k different words in its dictionary, one-hot rep-
resentation is clearly an infeasible method. For high dimensional problems,
word embeddings are used. Each word is, now, represented by a lower dimen-
sional embedding instead of an N dimensional one-hot vector. Briefly, one-hot
representation assigns a unique dimension per word whereas embedded repre-
sentations use a lower dimensional hyper-plane on which words are located as
distant as possible to other words.

In our case, we have a relatively small dictionary of events that we can
tokenize in such a way that each token can even be represented by a single-
byte character. Since we do not have high dimensional data, we choose to
directly use one-hot representation on a character level RNN.

Training an RNN by using a back-propagation algorithm is tedious since
RNNs are cyclic graphs. Having a cycle makes the standard procedures inap-
plicable to the training process. It turns out that we can always form a directed
acyclic graph (DAG) from a cyclic directed graph by a procedure called un-
folding through time. There is no need to store copies of weight matrices for
different time steps as they are the same at every step in the sequence. This
idea enables and facilitates the training by directly using the standard back-
propagation methodology on the unfolded network. Note that, the input to the
unfolded network becomes the input of the unfolded sequence all at once. This
widely established method for training an RNN is called Back-propagation
Through Time (BPTT) [55] as described in the following subsection.

3.3 Back-Propagation Through Time

The system under test (SUT) is supplied with a set of input events (volume-up,
power-on, go-right, etc. for a DTV system). These events form a sequence. This
sequence can be infinitely long. Looking at a cross-section of this sequence,
the question is “can we learn to predict only the next event”. For instance,
by looking at the first k events, can we guess the (k + 1)th event? Clearly,

8 M. Furkan Kıraç et al.

having a small k will limit our prediction ability. Optimally, one would want
to consider all the events coming before the last event in order to accurately
predict the next one. Looking through a long history of past events would
provide more information to learn from. Unfortunately, this comes with a
trade-off. Being able to predict by using all the previous historical data is
practically not tractable since it would require vast amounts of data storage
and high computational power for training in a generic manner. To remedy
this problem, we need to make a simplification. This simplification is to limit
the size of the history of events considered for prediction of the next event.

Back propagation (BP) is a training algorithm widely established due to its
efficiency. Unfortunately, RNNs are not suitable for using BP directly for train-
ing. In order to make an RNN suitable to be trained by BP, Back-propagation
Through Time (BPTT) method is used. Fortunately, BPTT method makes
the same simplification we described above. If the event history is limited to
a window of the last k events, then the RNN can be unfolded k times through
time and be converted to an equivalent standard neural network. An RNN
normally would require only one event input per its time step, but the un-
folded version of it requires a window of k events. Therefore, if we limit our
attention to a window of the last k events, we are able to convert the RNN to
an unfolded standard neural network on which the standard BP can be used
for training. This whole procedure is called BPTT. During a BPTT training,
we supply a window of k events plus the event that immediately follows this
window, and the network learns this last event as a function of the events in
the window. Therefore, supplying a window of events corresponds to supplying
a single sample to the RNN. Since, we do not want to skip training samples, a
legitimate way of training an unfolded network is to supply windows of events
that are shifted by one event at a time.

The input for the unfolded neural network is a window of k events from
the real sequence at any time step. The output is a prediction of the next
event by the neural network. In reality, at test time, we randomly supply our
RNN with a so-called burn-in sequence of k events for randomizing its initial
behavior. We then use the last k events for predicting the next one. Once we
have the next event, it is considered as a real event that just happened. We
then slide our window of last k events to include the lastly predicted event
and predict the next event. This can go on forever. This method is a widely
established way of generating a sequence of events.

In the following section, we introduce our problem statement in the context
of an industrial case study. Then, we describe our approach and the LSTM
design we used for addressing this problem.

4 Industrial Case Study

We evaluate our work in the context of black-box testing of DTVs at Vestel.
The company serves more than 900 customers covering ∼150 different brands
in 157 countries. There are approximately 100 software engineers and 100 test

Automatically Generating Event Sequences for Black-Box Testing 9

engineers/technicians employed in the R&D department. Vestel manufactures
about 10 million DTVs annually. The code base is approximately 5 million
LoC in total. There is a dedicated software test group in Vestel that performs
various types of tests such as performance tests, certification tests, and func-
tional tests. In this work, we focus on black-box robustness testing (named
as “torture tests” in Vestel), where the goal is to detect crash failures only.
There are hundreds of test suites being used for testing DTV systems. Some
of them are manually created, while some others are automatically generated
using model-based testing, where the models contain thousands of states and
transitions. Black-box test execution is largely automated2 by an in-house de-
veloped tool, namely Vestel test automation system (VesTA) [46,35]. This tool
automatically sends remote controller key signals to the DTV by executing an
input test script.

Recall from Figure 1 in Section 1 that we combine test cases from two
sources. The first are the test cases recorded during exploratory tests. The
second are those generated from a model of the system. MaTeLo3 was being
used by Vestel as the MBT tool at the time of conducting this study. There
were already existing test models created with this tool, which conform to an
Extended Markov Chain (EMC) formalism [22]. For this reason, we used this
tool and formalism in our case study as well.

A Markov chain is basically a FSM, in which probabilities are defined
for state transitions [56]. The system may change its state from the current
state to another state, or remain in the same state, according to a probability
distribution. The EMC formalism that is adopted by MaTeLo involves features
of the state chart [24] and LTS [54] formalisms as well. First, they can be
hierarchically composed just like state charts. Second, each transition can be
associated with input and output labels just like LTS. In fact, transitions can
be labeled with multiple inputs and outputs in an EMC model. Hereby, inputs
and outputs are observable actions exchanged with the system. Each of the
inputs is associated with a probability value such that the sum of these values
for the alternative inputs is equal to the transition probability. Therefore, EMC
specifies two levels of probabilities; i) the probability to select the transition
and ii) the probability to select an input given that the transition occurs [22].
There was a single input defined for each transition in our case. This input
includes the sequence of events (i.e., remote controller key presses) necessary to
perform the corresponding transition. No output labels are specified since the
created test models are used for detecting crash failures only. Test models that
are created for functional tests also involve output labels, where the expected
visual output is specified in the form of TV screen snapshot images [33].

The main focus for our test framework is to capture crashes, if any. The
system does not suppose to crash even though the user can press any button
of the remote controller in any order at any speed. Our test data is supplied
by Vestel, a big company producing numerous different Digital-TV systems

2 Some tasks require physical access to the system and cannot be automated.
3 http://www.all4tec.net/

10 M. Furkan Kıraç et al.

Fig. 4: The top-level test model.

and configurations. Code-base is relatively mature. So, it is challenging to find
scenarios that trigger (new) system crashes. Yet, we obtained promising results
by identifying several of those as explained later in Section 5.4.

In our case study, we used particularly the test model depicted in top-
level view by MaTeLo as shown in Figure 4. This model is designed by Vestel
test architects based on usage profiles that are collected from end users. It
includes the most essential TV features that should be tested, such as the
media browser, channel list editing, Youtube portal, channel navigation, etc.
The model states that the DTV starts in the initial state denoted as “Main”
in Figure 4, then transitions to one of the features. When in the state of a
feature, we expect some number of feature-specific actions to take place, such
as navigating up and down in the channel list, or selecting a Youtube video by
navigating in the left/right/up/down directions. Once these actions finish, the
DTV transitions to the “Watch&Vol” state, where volume adjusting actions
take place. Finally, the DTV goes back to the initial state (denoted by a back
edge from “Watch&Vol” to “Main”).

Note that the model in Figure 4 is far simpler than what a complete model
of a DTV would be. In fact, there already exist other sophisticated and de-
tailed DTV feature models specified by the Vestel testing group. However, we
deliberately assumed those sophisticated models do not exist and did not use
them because such models are labor-intensive to specify and require mapping
transitions and state-related actions to low-level remote controller key press
event sequences. We wanted to experiment with an approach where we start
from an under-specified model that can be defined by a test architect without
much effort. Vestel testing group stated that for a test engineer familiar with
the MaTeLo tool, preparing the model in Figure 4 including the mappings
from states to remote controller key event sequences takes less than half a day.

Test cases are generated from the model using the MaTeLo tool based on
the following flow:

Automatically Generating Event Sequences for Black-Box Testing 11

1. At the Main state, randomly pick a TV feature (e.g. Media Browser).
Emit the remote controller key press sequences to transfer from Main to
that state.

2. Emit predefined remote controller key event sequences to utilize basic func-
tionality and navigation in the entered state. These sequences are defined
by the test architect when specifying the model.

3. Emit remote controller key event sequences to exit the state and enter the
Watch&Vol state.

4. Emit remote controller key sequences to adjust volume.
5. Repeat this flow until a termination condition is met.

The sequences to emit in Step 2 above involve randomization to increase
variation. For instance, for channel navigation, N number of “down” key
presses are emitted followed by M number of “up” key press events, where
N and M are randomly picked integers in a range pre-specified by the test
architect. Potentially, an infinite amount of sequences can be generated. There-
fore, we need to check in Step 5 for whether the process should be terminated.
For this, one the following three criteria can be used: (1) reaching a tester-
specified threshold for the number of event sequences generated, (2) reaching
a tester-specified time-limit, (3) reaching a tester-specified ratio of coverage of
the edges in the model. For our experimental evaluation in Section 5, we used
the third criterion with full coverage of the edges.

The generated test cases are output as executable Python code that can
be run using Vestel’s test automation tool, VesTA. A snippet that shows a
possible output to test the Media Browser feature is below:

sendKey("media", pause=5)

sendKey("ok", pause=2)

sendKey("right", pause=1)

sendKey("down*22", pause=2)

sendKey("up", pause=2)

sendKey("up*22")

sendKey("ok", pause=5)

sendKey("right*2", pause=2)

sendKey("left*2", pause=2)

sendKey("exit*3")

sendKey("back", pause=10)

Watch&Vol state

sendKey("voldown*14", pause=2)

sendKey("volup*47", pause=2)

sendKey("voldown*22", pause=2)

Here, the remote controller key to be pressed is specified as a string. For in-
stance, "ok" refers to pressing the OK button, "right" is the right arrow key,
etc. When executing the script, VesTA literally sends the specified remote
controller key press events to the DTV under test. If a pause argument is pro-
vided, VesTA waits for the given amount of seconds before executing the next

12 M. Furkan Kıraç et al.

statement. A star character (*) denotes repetition of the preceding event; for
instance, "down*22" instructs VesTA to send the down arrow event consecu-
tively for 22 times. Repetition factors are randomly picked according to the
specification of the test architect; another generated instance of the sequence
above may include "down*17" instead of "down*22". This way, MaTeLo gen-
erates hundreds of remote controller key press event sequences that are similar
but not exactly the same.

During exploratory testing, the test technician holds the remote controller
in her/his hand, and presses the keys. These key events are not only trans-
mitted to the DTV under test, but also captured and recorded by VesTA
in the same Python format shown above so that the testing session can be
re-executed in the future if needed.

We shall note that the model-based and exploratory testing practices ex-
plained in this section are routine procedures at Vestel; they have not been
developed or altered specifically for us. The novelty of our approach is to com-
bine these existing practices using machine learning techniques with the goal
of enhancing their effectiveness and reducing the human-labor costs.

5 Evaluation

We define the following research questions to evaluate our work:

RQ1: Can we detect new faults by executing test cases generated by LSTM?

RQ2: How effective and efficient are test cases generated by LSTM com-
pared to those that are randomly generated?

RQ3: How the effectiveness and efficiency of test cases generated by LSTM
change based on whether or not test cases recorded during exploratory test-
ing activities are used for training LSTM?

The first question is concerned with the usefullness of the approach. We
would like to know if we can detect faults that could not be detected with the
existing test cases or during previous exploratory testing activities. The second
question is to make sure that faults are not detected by chance. Hence, we
would like to compare our approach with random testing as the baseline. The
comparison criteria is effectiveness and efficiency. We measure effectiveness in
terms of the number of new faults detected. We measure efficiency in terms
of the number of unique faults detected per unit of time. The last research
question is regarding the impact of test cases recorded during exploratory
testing activities as input for training. We could have trained LSTM by just
using test cases automatically generated from a test model. We would like to
know how much we gain with respect to test effectiveness and efficiency, if we
do at all, when we utilize recorded exploratory testing activities for training
LSTM.

We evaluated our approach in the light of these research questions. In the
following, we provide the details of our experimental setup and discuss the
results obtained.

Automatically Generating Event Sequences for Black-Box Testing 13

5.1 Data Collection and Experimental Setup

We compiled two sets of test cases as our data to be used for training and
evaluating the LSTM. Our first set comprises 221,801 remote controller key
press events (plus a total of 463 minutes of pause directives) generated from the
system model as discussed in the previous section. We used full edge coverage of
the model as the termination condition of the generation process. Our second
data set comprises test cases recorded during the most recent exploratory
testing sessions at the time of writing this paper. The test technicians were
unaware of the work we intended to pursue, and they conducted their usual
exploratory testing procedures. We collected a set of test cases comprising
2,802 key press events (plus a total of 237 minutes of pause directives).

To be able to answer our research questions, we performed a comparison
among the following methods:

– AR (All Random): A test case produced by randomly picking key press
events from the set of all possible key press events. There are 202 events
in this set.

– SR-MBT (Selected Random based on MBT): A test case composed of a
completely random sequence of key press events using only the keys that
occur in the test cases generated with MBT. There are 37 such key events.

– SR-ET (Selected Random based on ET): A test case composed of a com-
pletely random sequence of key press events using only the keys that occur
in the recorded ET sessions. There are 32 such key events.

– WR-MBT (Weighted Random based on MBT): A test case composed of a
random sequence of key press events, where the probability of occurrence
for a key press event is proportional to the frequency of occurrence of that
event in the test cases generated with MBT.

– WR-ET (Weighted Random based on ET): A test case composed of a ran-
dom sequence of key press events, where the probability of occurrence for
a key press event is proportional to the frequency of occurrence of that
event among the events recorded during ET.

– MBT : Test cases generated with MBT.
– ET : Manually performed ET activities.
– LSTM-MBT (LSTM trained based on MBT): Test cases produced by an

LSTM network that have been trained with the test cases generated with
MBT.

– LSTM-ET (LSTM trained based on MBT and ET): Test cases produced
by an LSTM network that have been trained with both the test cases
generated with MBT and those recorded during ET.

In the random methods, we used a uniformly-distributed pseudo-random
number generator. Also in those methods, each key press events is followed by
a 1 second pause event to prevent the event buffer of the DTV from becoming
full and eventually dropping events or becoming unresponsive. Note that MBT
test cases include pause events, too, as specified by the test architect. ET test

14 M. Furkan Kıraç et al.

cases naturally include pause events between key press events, because they
are conducted by a human.

5.2 Data Normalization, Encoding, and Decoding

Before feeding the test cases to LSTM as training data, we normalize them by
unfolding all the event repetitions and translating the pause specifications to
pseudo events. For example,

sendKey("up*3", pause=2)

sendKey("right*2")

is converted to

sendKey("up")

sendKey("up")

sendKey("up")

sendKey("WAIT-1-SEC")

sendKey("WAIT-1-SEC")

sendKey("right")

sendKey("right")

We then encode the normalized test case by converting each event (hereby, each
line) to a unique 1-byte character. Because there are fewer than 256 different
remote controller key types, this is a straightforward one-to-one translation.
The encoded data are used for training LSTM. Hence, the output of LSTM
(i.e. the generated test cases) is in encoded format as well. We pass this output
through a decoding phase to convert the 1-byte character encodings back into
human-readable and executable Python source. Decoding is simply the reverse
of the one-to-one mapping applied during encoding.

5.3 LSTM Network Setup

Test performance of neural networks are known to be sensitive to their hyper-
parameters and initial values of the training parameters. Training of neural
networks needs numerous parameters to be fine-tuned for generic test perfor-
mance under unforeseen scenarios. These parameters include the number of
hidden layers, number of neurons in each hidden layer, learning rate, num-
ber of unfoldings (for recurrent neural networks), batch size, etc. Type of the
neurons and the training algorithm are also important hyper-parameters.

In this work, we used the karpathy/char-rnn open source project [31]. Our
training algorithm is Adam optimizer [32]. Despite using more memory, Adam
optimizer is known to be less sensitive to initialization of neural network pa-
rameters. This is a must-have property for optimizing a sensitive cost function
containing numerous parameters. Adam optimizer is a variant of the gradient
descent (GD) method. GD requires all the training samples to be considered

Automatically Generating Event Sequences for Black-Box Testing 15

per one epoch of training. This is normally not feasible as there are nor-
mally too many training samples. Although GD is accurate, it takes too much
time to converge. Depending on the training scenario, and available compu-
tational power, convergence time can reach up to months, or even years. A
simplification of this approach is called Stochastic Gradient Descent (SGD),
where training epochs are divided into iterations of isolated training of each
training sample. SGD is known to converge extremely fast compared to GD,
however, it is also considered unstable around local extrema of the optimized
cost function [8]. Moreover, considering the parallel pipeline of today’s CPUs
and GPUs, processing only one of the training samples per iteration causes
under-utilization of parallel computational power. A compromise between GD
and SGD is called mini-batch training in which a finite number of sample
batches are populated from the training dataset per iteration [10]. Mini-batch
training utilizes the parallel pipeline of CPUs and GPUs; moreover, it is con-
siderably more stable than SGD. Adam Optimizer is a variant of SGD that is
less sensitive to initial hyper-parameter values.

Neural networks, in general, need the training data to be sufficiently large
to avoid the memorization/overfitting problem. To make sure that our LSTM
network does not have this problem with our data, we applied the following
validation process: We randomly picked 90% of the data set to be our training
set. Remaining 10% is divided equally to be used as validation and test sets.
Our total sample size is 266,598 key press events, including the pseudo “WAIT-
1-SEC” events. Hence, the training set contained approximately 240k events,
whereas the validation and test sets included nearly 13k events each. We used
Adam optimizer to train on the training portion of the dataset. We continued
training until the validation set performance did not increase anymore. Finally,
we cross-checked our validation performance with the test performance, and
found that they are similar. This means that LSTM training did not memorize
the data; instead, it learned a generic summary of the training dataset. Generic
training enables us to generate completely new test cases resembling the input
data.

Next, we experimented with various parameter settings, and found the
following setup to give the best results:

– We used 30 steps of unfolding through time. In other words, each of our
training samples is a window of 30 consecutive events from the whole test
sequence. So, the LSTM model considers 30 events for predicting the next
event. Our input data contains 48 unique key press events. The window is
shifted by 1 for each sample. Increasing the window size (unfolding steps)
too much, increases the training time. On the contrary, choosing this pa-
rameter too low severely restricts the generative power of the LSTM. The
unfolding value that we used is a generous amount, and supplies the LSTM
network with the correlations of characters that are farther away from each
other, which is where LSTM networks are notoriously successful on.

– A batch size of 4000 samples has been used as the mini-batch size out
of approximately 240k samples, meaning that each epoch of our training

16 M. Furkan Kıraç et al.

contained 60 iterations. This increased the utilization of parallelization
available in our CPUs and GPUs while at the same time induced enough
stability of training convergence. Learning rate of the Adam optimizer is
set to 0.002, which is the default value in the library we used.

– After experimenting with various hyper-parameters, we used two hidden
layers of LSTM neurons and 128 neurons per hidden layer. Once these
hyper-parameters are set, the constructed LSTM turns out to have 228,400
different parameters (i.e., weights and biases of neurons) to optimize.

– We trained the LSTM network for 10000 epochs, and saved the network
parameters that gave the best error rate on the validation data set.

As the last step of our approach, the trained LSTM network is used for
generating event sequences [20]. To be compatible with our training, for the
first 30 unfolding time steps, we supply a random sequence to the network
for initializing its internal hidden state vector. The network then predicts a
likelihood of the next character in the sequence. We sample a new character
from this likelihood. The sampled character is then emitted, and fed to the
network as a new input. This changes the internal state. We keep this proce-
dure going until we sample a predefined number of new characters. Finally,
the generated sequence of characters is decoded by mapping each character to
its corresponding remote controller key press event.

5.4 Results

In this section we present the results obtained by the testing methods. In
total, 12 unique faults were detected during all the test runs. Some of these
faults were revealed multiple times. Each of the 12 faults lead to distinct
failures. This information has been verified by the Vestel testing group. Table 1
presents the overall results. Hereby, the first column lists all the compared
approaches. The following 12 columns indicate which of the detected 12 unique
faults are revealed by each of the approaches. The last 3 columns list the
total number of unique faults revealed, total duration and efficiency of each
approach. Efficiency is basically calculated as the number of revealed faults
divided by total duration.

LSTM-ET approach revealed 6 unique faults (F1–F6), of which 4 have not
been detected by any other testing method (F1, F2, F5, F6). Among these, F1
and F5 are particularly important, because these two have been classified by
the Vestel testing group as “critical” — the fault type that needs immediate
attention — and have been entered into the company’s bug-tracking system.
F1 is a crash problem where the TV does not respond to any commands; F5 is
a TV reset problem that forces the TV to reboot itself. Other faults are a no
video problem on the TV channel (F2), a wrong source switching problem (F3),
black screen fault (F4), and wrong audio at the Netflix screen (F6). LSTM-
MBT revealed 5 unique faults. Among these, F9 was not detected by any other
method; and F3 was not detected by a non-LSTM method. LSTM-MBT and
LSTM-ET together revealed 9 unique faults.

Automatically Generating Event Sequences for Black-Box Testing 17

Table 1: Detected unique faults with the test cases obtained via the compared
methods.

Method
Unique Faults Detected # of Faults Duration

Efficiency
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Revealed (hrs)

AR 0 50 0.00

SR-MBT X 1 50 0.02

SR-ET X 1 50 0.02

WR-MBT X 1 50 0.02

WR-ET X 1 50 0.02

MBT X X X 3 21 0.14

ET X X 2 4 0.50

LSTM-MBT X X X X X 5 15 0.33

LSTM-ET X X X X X X 6 15 0.40

The ET method detected only 2 faults, but these faults were not revealed
by any other method. This shows once again why ET is an indispensable test-
ing activity despite the manual effort involved. The two faults revealed by
ET, F10 and F11, are about manual channel searching and related to channel
frequencies. They require entering particular frequency values as search cri-
teria. In that sense, they require detailed domain knowledge, and hence were
detected only by the human testers.

So, returning back to our research questions, we see that

RQ1: We were able to detect new faults with our LSTM-based approach.
In fact, half of the all the detected faults (F1, F2, F3, F5, F6, F9) are only
detected with LSTM-based approaches.

RQ2: Our approach outperforms all the baseline approaches that are based on
random testing. It also significantly outperforms model based testing although
test cases that are generated from the test model are used for training the
LSTM network. We see that ET is the best in terms of test efficiency; however,
this is the only approach that is manually applied and as such incurs a high
cost.

RQ3: The number of faults detected by LSTM-MBT and LSTM-ET were 5
and 6, respectively within the same testing duration (15 hrs). An important
observation here is that these sets of faults are mainly complementary, i.e.,
the majority of the faults detected with LSTM-ET are not detected with the
other approaches. We can see in Table 1 that only two of the revealed 6 faults
are common between LSTM-MBT and LSTM-ET. LSTM-ET revealed 4 faults
that are not detected with any of the other methods.

18 M. Furkan Kıraç et al.

5.5 Threats to Validity

The number of detected faults with all the evaluated methods is 12 in total.
This hinders conclusion validity. The main reason for detecting a low number
of faults is that we focus on crash failures only. Unfortunately, we could not
mitigate this threat by performing controlled experiments with seeded faults.
We conducted an industrial case study instead, where the level of control is
inherently low. Even the test engineers we worked with perform only black-box
testing and as such, they do not have access to source code.

Our evaluation is subject to external validity threats [57] since it is based
on a single case study. More case studies can be conducted for generalizability
of results. We did not foresee any internal validity threats because we neither
selected human subjects as participants nor we performed any instrumentation
for measurement. Our measurements just involve external observations and of-
fline analysis of real products. Test technicians merely performed their regular
tasks without any external interference, while their actions being recorded.

Our LSTM setup and configurations can lead to construct and external
validity threats. However, we documented all the implementation details re-
garding the utilized libraries and parameters for facilitating the repeatability of
our experiments. We also followed a rigorous validation process to avoid mem-
orization and overfitting problems for the LSTM network. Nevertheless, there
exist an inherent randomness in the proposed test case generation method.
To investigate the affect of randomness, we devised 5 methods that employ
random testing. All these methods detected at most one fault in 50 hours of
testing. The other approaches including ET, MBT and LSTM-MBT/ET were
applied for 4, 21 and 15 hours, detecting 2, 3, 5/6 faults, respectively. Al-
though the total number of faults is low, we observed increased efficiency with
respect to pure random methods, considering the time invested in testing. In
the following, we further discuss how a quality training can be employed to
mimic the behavior of human test technicians.

5.6 Effective Training for Mimicking the Behavior of Human Test Technicians

We used two source of inputs for constructing our training data sets. Firstly,
we employed a simplified model-based representation of the system under test
(SUT). This part can generate sequence of events that traverse the most es-
sential states of the SUT. Secondly, we have test technicians and the sequence
of events generated by them. This part encapsulates the intrinsic knowledge
of the test technicians for making the SUT crash. Our major aim in this study
is to be able to capture the internal know-how of the human testers, and cre-
ate an expert system that can mimic their behavior for many more generated
scenarios. While doing this, we do not want to memorize the exact behavior
of the test technicians, as this will never create new event sequences. We al-
ready have those sequences recorded anyway. Instead, what we aim is to make
the learned model in such a manner that it can generate new events in a so

Automatically Generating Event Sequences for Black-Box Testing 19

called “creative” manner. In other words, we want our machine learning (ML)
algorithm to learn in a generic fashion, and to capture the essence of the event
sequences that are highly probable to cause system crashes. This can be vi-
sualized as creating synthetic human test technicians who behave similar to
their real counterparts, but who still act uniquely on their own.

Our main goal is to capture the behavior of human test engineers that
lead to unseen crashes of the SUT. Human test engineers, due to their domain
knowledge, have a better insight regarding what will break the SUT. Unfor-
tunately, access to human test engineers is highly limited. For our scenario,
we had extremely limited amount of human test data available at hand. We
also believe that this is a frequent scenario for a wide range of companies.
Unfortunately, machine learning methods, especially RNNs, demand big data
to be trained with high quality. As a result, our only option was to feed and
augment the training set with data that is sampled from a correct model of the
SUT. In order to clarify the effectiveness of the proposed method, we designed
our experimental setup considering 9 different scenarios (AR, SR-MBT, SR-
ET, WR-MBT, WR-ET, MBT, ET, LSTM-MBT, LSTM-ET) whose details
are available in Section 5.1. For a specific execution of ML training such as
LSTM-MBT and LSTM-ET, we systematically divided the underlying data
set into training (240k samples), validation (13k samples) and test (13k sam-
ples) partitions. We pushed the limits with a 90%/5%/5% partitioning in order
to put as many samples as possible to the training partition, since we do not
have enough data, and at the same time we want to minimally dilute our data
with synthetic samples. We trained our model using the training partition.
We checked our performance on the validation partition until the training is
finalized. We picked the best iteration to halt by maximizing our validation
performance. However, this is still a biased performance since the validation
set is used for deciding where to stop the training. The real performance is the
performance on the test data set, which is never seen by the trained model. We
reported the test performances. Due to the insufficient human test engineer
data, and the need of supplying large data to ML training, we augmented our
data as much as possible. We used the maximum possible amount of synthetic
data that didn’t inhibit the quality of LSTM training. We also used the max-
imum amount of training data that also satisfied this scenario (90% of all the
data available).

In ML, there are two frequently used keywords for defining the quality of
learning. One is called over-fitting, the other is called under-fitting. An over-
fitting expert system is said to have “memorized” the data such that it loses
its creativity and always produces the same results when presented with a
specific state. An over-fitting expert would always detect the errors in the test
sets if it has encountered them during its training. But, this would definitely
not be beneficial, since we are trying to capture the essence of test techni-
cians’ behavior, not what they exactly did. On the other hand, an ML expert
system that is said to be under-fitting is an expert system that needs more
training for being effective. An under-fitting expert system is not expected
to produce quality outputs. A sweet-spot occurs just between over-fitting and

20 M. Furkan Kıraç et al.

under-fitting, where the system is considered to have learned in a good manner,
and can produce generic creative outputs by itself. This means, it has suffi-
ciently learned, yet not memorized its training data sets. In order for this to
happen, a well trained system can and is allowed to make mistakes on its own
training sets, because this enhances their performance on never-seen inputs.
Such a system is considered to have gone a qualitative ML training phase.

Briefly, our trained ML expert system is complementary to the model-based
synthetic event generator. They are designed to be used together. A good
quality training can cause the trained ML expert system to make mistakes on
the training set. A real threat to validity would occur if the trained system
was unable to generate event sequences that cause system crashes. Yet, in our
approach, the trained system generates crash sequences that were seen before,
and moreover, it also generates sequences that causes completely new types of
crashes that had never been encountered before.

6 Related Work

Model-based testing has been studied for decades. There exist numerous tech-
niques [42] and tools [11] proposed for this approach. These techniques and
tools employ test models that are expressed in various formalisms such as finite
state machines [48], event sequence graphs [5,6], event flow graphs [38], and
Markov chains [56]. In our approach, the test model is implicitly represented
by an LSTM network.

One of the drawbacks of model-based testing is manual creation of models,
which is an effort-consuming and error-prone process [16]. Therefore, several
approaches have been proposed to automatically synthesize test models or
automatically refine/extend existing models. For example, LBTest tool [36]
automatically creates a test model in the form of a finite automaton based on a
set of inputs executed on the system under test and observed outputs. Observe-
Model-Exercise* [43] uses a possibly incomplete model of the graphical user
interface of an application, which is expressed in the form of an event flow
graph. This model is iteratively extended with new events that are detected
during the execution of the application. A variant of this approach [3] is applied
for mobile applications as well. Other similar techniques include capture-replay
testing [13] and automated feedback-based techniques that aim at increasing
either code coverage [15,40] or system behavior coverage [60,45]. None of these
approaches exploit knowledge and insight of experienced test engineers. The
model we used to populate the training data for LSTM is a non-sophisticated
model that can be specified by a test engineer without going through a labor
intensive process.

Mesbah et al. [39] automatically construct a test model for Web applica-
tions in the form of a state machine. The model is constructed by automatically
crawling the application. Testilizer [14] extends this approach by augmenting
information derived from human-written test suites. In our approach, we ex-
ploit recorded actions during exploratory testing activities. These records can

Automatically Generating Event Sequences for Black-Box Testing 21

be replaced with an existing test suite as well. However, we only exploit these
records as external events for black-box testing without any access to the im-
plementation of the system. This is not the case with Testilizer, which makes
use of the DOM model of the tested Web application [14]. As a result an ex-
plicit model of the application is generated in the form of a state machine. In
our approach, the model representation is implicit in the form of an artificial
neural network.

Deterministic approaches like GUI ripping [37] can be employed to auto-
matically infer a model of the system. However, the related techniques and
tools have limited applicability since they do not work in a purely black-box
fashion. They run on the same machine as the system under test, assuming
that GUI components (e.g., buttons, labels) [44] or a document object model
(e.g., as in HTML) for Web applications [39] are available. These elements
are used for identifying states and state changes in the application. However,
such elements might not be accessible for all types of systems and test setups.
For instance, testers do not usually have any access to the internal events
during the testing of embedded systems such as Digital TVs. They do not
have any access to the GUI components either. Therefore, one has to infer
state information and state changes only based on a sequence of external user
events.

In general, there have been various approaches evaluated for automatically
generating tests for Web applications [12]. These approaches are categorized
into 3 types [12]: i) purely white-box approaches that create a model based on
objects and their interactions, ii) purely black-box approaches that only make
use of user-session data, and iii) hybrid approaches. Our approach is purely
black-box. However, it is different from all the other black-box approaches in
that an implicit model of the application is learned in the form of an artificial
neural network. Other black-box approaches either directly replay recorded
sessions [52], generate new test cases by combining existing ones and/or by
modifying them [12]. They do not learn a usage model.

Learning-based testing [36] has been introduced as a paradigm for black-
box testing of reactive systems. Hereby, the goal is to iteratively construct a
model of the system in the form of a state machine by using previously executed
tests. To begin practical testing with this approach, a formal requirement
specification is needed in the form of linear temporal logic. This formula is
model checked on the constructed model to explore the relevant paths. These
paths are used for test case generation. The test execution is used for inferring
a refined model. Our approach does not require any requirement specification
or another formal specification of any kind. We only exploit recorded tests to
refine the existing artificial network model and generate test cases.

Exploratory modelling [49] was introduced for refining test models based
on recorded activities of test engineers. Hereby, a test model is developed
in the form of a state diagram. Then this model is manually updated based
on observed states and behaviors during exploratory testing [53,2,27,26]. We
have previously proposed an approach [17,16] for performing these updates
automatically. In that approach we used Markov chains as the formalism to

22 M. Furkan Kıraç et al.

express the test model. Execution traces that are collected during exploratory
testing process are used for detecting missing parts in this model. The main
challenge here is the mapping of recorded activities in the form of low level
events to abstract states of the test model. One has to manually prepare a
mapping specification for this purpose. In this work, recorded event sequences
are directly supplied to an LSTM network, which learns the behavior that is
implicitly represented in the network. The same network is then used for test
case generation. Therefore, there is no need to provide a mapping of low level
events or user actions to abstract states of a test model.

In general, machine learning techniques have been mainly applied for test
oracle automation [4]. On the other hand, artificial neural networks have been
previously used for supporting fault localization [59,58]. However, to the best
of our knowledge they, in particular LSTM networks, have not been used for
learning expected input sequences and thereby generating test cases. Relatively
more primitive types of artificial neural networks have been used for automated
test pattern generation for digital circuits [28].

7 Conclusion and Future Work

We introduced a novel application of LSTM networks for learning usage be-
havior of systems and automatically generating test cases. We applied our ap-
proach in the context of black-box testing of Digital TVs, where MBT and ET
are being applied regularly as standard testing practices. As the training input
to the LSTM network, we used both the test cases produced from a high-level
model of the system for functional testing, and the recorded robustness test in-
puts of experienced test technicians. We proposed a complementary approach
where the test cases generated by the trained LSTM network improve the num-
ber and variety of detected faults. The results show that MBT+ET+LSTM
as a package achieves a higher fault coverage in a shorter time when compared
to all the random methods tested.

The overall goal of machine learning is to automatically extract an already
learned model by the human brain in the form of a mathematical model. Unfor-
tunately, this extraction process demands big data. This is especially the case
for RNN architectures. RNNs are accepted as the prominent choice for learning
from sequence based data like the one we use in our case study. LSTMs, which
are variants of RNNs, represent the state-of-the-art for sequential knowledge
extraction. This was the reason behind our choice of this particular ML tech-
nique. However, there are many other ML techniques that can be employed
for learning usage behavior and automatically generating test inputs. The ap-
propriate choice would highly depend on the application context, the type of
system under test, and the types of inputs consumed by this system.

Automatically Generating Event Sequences for Black-Box Testing 23

Acknowledgment

We would like to thank the software developers, test engineers and technicians
at Vestel Electronics for sharing their resources with us and supporting our
case study. We also thank the anonymous reviewers for their comments on this
paper.

References

1. Aceto, L., Ingólfsdóttir, A., Larsen, K., Srba, J.: Reactive Systems: Modelling, Specifi-
cation and Verification. Cambridge University Press, New York, NY, USA (2007)

2. Agruss, C., Johnson, B.: Ad hoc software testing: A perspective on exploration and
improvisation. In: Florida Institute of Technology, pp. 68–69 (2000)

3. Amalfitano, D., Fasolino, A., Tramontana, P., Ta, B., Memon, A.: MobiGUITAR: au-
tomated model-based testing of mobile apps. IEEE Software 32(5), 53–59 (2015)

4. Barr, E., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem in software
testing: A survey. IEEE Transactions on Software Engineering 41(5), 507 – 525 (2015)

5. Belli, F.: Finite state testing and analysis of graphical user interfaces. In: Proceedings
of 12th International Symposium on Software Reliability Engineering, pp. 34–43 (2001)

6. Belli, F., Budnik, C., White, L.: Event-based modelling, analysis and testing of user
interactions: approach and case study. Software Testing, Verification and Reliability
16(1), 3–32 (2006)

7. Berner, S., Weber, R., Keller, R.K.: Observations and lessons learned from automated
testing. In: Proceedings of the 27th International Conference on Software Engineering,
pp. 571–579 (2005)

8. Bottou, L.: Stochastic gradient descent tricks. In: Neural networks: Tricks of the trade,
pp. 421–436. Springer (2012)

9. Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H.,
Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical
machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing, pp. 1724–1734 (2014)

10. Cotter, A., Shamir, O., Srebro, N., Sridharan, K.: Better mini-batch algorithms via
accelerated gradient methods. In: Advances in neural information processing systems,
pp. 1647–1655 (2011)

11. Dalal, S.R., Jain, A., Karunanithi, N., Leaton, J.M., Lott, C.M., Patton, G.C., Horowitz,
B.M.: Model-based testing in practice. In: Proceedings of the International Conference
on Software Engineering, pp. 285–294 (1999)

12. Elbaum, S., Rothermel, G., Karre, S., II, M.F.: Leveraging user-session data to support
web application testing. IEEE Transactions on Software Engineering 31(3), 187–202
(2005)

13. Entin, V., Winder, M., Zhang, B., Christmann, S.: Combining model-based and capture-
replay testing techniques of graphical user interfaces: An industrial approach. In: Pro-
ceedings of the 4th IEEE International Conference on Software Testing, Verification and
Validation Workshops, pp. 572–577 (2011)

14. Fard, A., Mirzaaghaei, M., Mesbah, A.: Leveraging existing tests in automated test
generation for web applications. In: Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, pp. 67–78 (2014)

15. Ferguson, R., Korel, B.: The chaining approach for software test data generation. ACM
Transactions on Software Engineering and Methodology 5(1), 63–86 (1996)

16. Gebizli, C., Sozer, H.: Automated refinement of models for model-based testing us-
ing exploratory testing. Software Quality Journal (2016). Published online, DOI:
10.1007/s11219-016-9338-2

17. Gebizli, C.S., Sozer, H.: Improving models for model-based testing based on exploratory
testing. In: Proceedings of the 6th IEEE Workshop on Software Test Automation, pp.
656–661 (2014). (COMPSAC Companion)

24 M. Furkan Kıraç et al.

18. Gers, F., Schmidhuber, E.: LSTM recurrent networks learn simple context-free and
context-sensitive languages. IEEE Transactions on Neural Networks 12(6), 1333–1340
(2001)

19. Gers, F., Schmidhuber, J.: Recurrent nets that time and count. In: Proceedings of the
IEEE-INNS-ENNS International Joint Conference on Neural Networks, pp. 189–194
(2000)

20. Graves, A.: Generating sequences with recurrent neural networks. CoRR
abs/1308.0850 (2013). URL http://arxiv.org/abs/1308.0850

21. Greff, K., Srivastava, R.K., Koutńık, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: A
search space odyssey. IEEE Transactions on Neural Networks and Learning Systems
28(10), 2222–2232 (2017)

22. Guen, H.L., Marie, R., Thelin, T.: Reliability estimation for statistical usage testing
using markov chains. In: Proceedings of the 15th International Symposium on Software
Reliability Engineering, pp. 54–65 (2004)

23. Hagan, M., Demuth, H., Beale, M.: Neural Network Design. PWS Publishing, New
York, NY, USA (1995)

24. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Computer
Programming 8(3), 231–274 (1987)

25. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computing 9(8),
1735–1780 (1997)

26. Itkonen, J.: Empirical studies on exploratory software testing. Ph.D. thesis, Aalto
University (2011)

27. Itkonen, J., Mantyla, M.V., Lassenius, C.: Defect detection efficiency: Test case based
vs. exploratory testing. In: First International Symposium on Empirical Software En-
gineering and Measurement, pp. 61–70. IEEE Computer Society (2007)

28. J. Štefanovič: A neural network algorithm for digital circuits test generation. In: Pro-
ceedings of the European Symposium on The State of the Art in Computational Intel-
ligence, pp. 56–60. Physica-Verlag HD, Heidelberg (2000)

29. J.Bach: Exploratory testing explained. Tech. rep. (2003). URL http://www.satisfice.

com/articles/et-article.pdf
30. Kaner, C.: Exploratory testing. In: Quality Assurance Institute Worldwide Annual

Software Testing Conference (2006)
31. Karpathy, A.: char-rnn. https://github.com/karpathy/char-rnn (2015)
32. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980 (2014)
33. Kirac, M., Aktemur, B., Sozer, H.: VISOR: A fast image processing pipeline with scaling

and translation invariance for test oracle automation of visual output systems. Journal
of Systems and Software 136, 266 – 277 (2018)

34. Lukac, Z., Zlokolica, V., Mlikota, B., Radonjic, M., Velikic, I.: A testing methodology
and system for functional verification of general HbbTV device. In: Proceedings of the
IEEE International Conference on Consumer Electronics, pp. 325–326 (2012)

35. Marijan, D., Zlokolica, V., Teslic, N., Pekovic, V., Tekcan, T.: Automatic functional
tv set failure detection system. IEEE Transactions on Consumer Electronics 56(1),
125–133 (2010). DOI 10.1109/TCE.2010.5439135

36. Meinke, K., Sindhu, M.A.: LBTest: A learning-based testing tool for reactive systems. In:
Proceedings of the 6th IEEE International Conference on Software Testing, Verification
and Validation, pp. 447–454 (2013)

37. Memon, A., Banerjee, I., Nguyen, B.N., Robbins, B.: The first decade of GUI ripping:
Extensions, applications, and broader impacts. In: Proceedings of the 20th Working
Conference on Reverse Engineering, pp. 11–20 (2013)

38. Memon, A., Soffa, M., Pollack, M.: Coverage criteria for GUI testing. ACM SIGSOFT
Software Engineering Notes 26(5), 256–267 (2001)

39. Mesbah, A., van Deursen, A., Roest, D.: Invariant-based automatic testing of modern
web applications. IEEE Transactions on Software Engineering 38(1), 35–53 (2012)

40. Michael, C., McGraw, G., Schatz, M.: Generating software test data by evolution. IEEE
Transactions on Software Engineering 27(12), 1085–1110 (2001)

41. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines.
In: Proceedings of the 27th international conference on machine learning (ICML-10),
pp. 807–814 (2010)

Automatically Generating Event Sequences for Black-Box Testing 25

42. Neto, A.C.D., R.Subramanyan, M.Vieira, Travassos, G.H.: A survey on model-based
testing approaches: A systematic review. In: Proceedings of the 1st ACM international
workshop on Empirical assessment of software engineering languages and technologies,
pp. 31–36 (2007)

43. Nguyen, B., Memon, A.: An observe-model-exercise* paradigm to test event-driven sys-
tems with undetermined input spaces. IEEE Transactions on Software Engineering
40(3), 216–234 (2014)

44. Nguyen, B., Robbins, B., Banerjee, I., Memon, A.: GUITAR: an innovative tool for
automated testing of gui-driven software. Automated Software Engineering 21(1), 65–
105 (2014)

45. Pacheco, C., Lahiri, S., Ernst, M., Ball, T.: Feedbackdirected random test generation. In:
Proceedings of the 29th International Conference on Software Engineering, pp. 396–405
(2006)

46. Pekovi, V., Tesli, N., Resetar, I., Tekcan, T.: Test management and test execution
system for automated verification of digital television systems. In: IEEE International
Symposium on Consumer Electronics (ISCE 2010), pp. 1–6 (2010). DOI 10.1109/ISCE.
2010.5523721

47. Rafi, D., Moses, K., Petersen, K., Mäntylä, M.: Benefits and limitations of automated
software testing: Systematic literature review and practitioner survey. In: Proceedings
of the 7th International Workshop on Automation of Software Test, pp. 36–42 (2012)

48. Robinson, H.: Finite state model-based testing on a shoestring. In: Proceedings of the
Software Testing and Analysis and Review West Conference (1999)

49. Robinson, H.: Intelligent test automation a model-based method for generating tests
from a description of an applications behavior. Software Testing and Quality Engineer-
ing Magazine pp. 24–32 (2000)

50. Sak, H., Senior, A., Beaufays, F.: Long short-term memory recurrent neural network
architectures for large scale acoustic modeling. In: Proceedings of the 15th Annual
Conference of the International Speech Communication Association, pp. 338–342 (2014)

51. Sivaraman, G., Csar, P., Vuorimaa, P.: System software for digital television applica-
tions. In: IEEE International Conference on Multimedia and Expo, pp. 784–787 (2001)

52. Sprenkle, A., Gibson, E., Sampath, S., Pollock, L.: Automated replay and failure de-
tection for web applications. In: Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering, pp. 253–262 (2005)

53. Tinkham, A., Kaner, C.: Exploring exploratory testing. In: Proceedings of the Software
Testing and Analysis and Review East Conference (2003)

54. Tretmans, J.: Formal Methods for Eternal Networked Software Systems: 11th Inter-
national School on Formal Methods for the Design of Computer, Communication and
Software Systems, SFM 2011, Bertinoro, Italy, June 13-18, 2011. Advanced Lectures,
chap. Model-Based Testing and Some Steps towards Test-Based Modelling, pp. 297–326.
Springer Berlin Heidelberg (2011)

55. Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings
of the IEEE 78(10), 1550–1560 (1990)

56. Whittaker, J., Thomason, M.: A markov chain model for statistical software testing.
IEEE Transactions on Software Engineering 20(10), 812–824 (1994)

57. Wohlin, C., Runeson, P., Host, M., Ohlsson, M., Regnell, B., Wesslen, A.: Experimen-
tation in Software Engineering. Springer-Verlag, Berlin, Heidelberg (2012)

58. Wong, W., Debroy, V., Golden, R., Xu, X., Thuraisingham, B.: Effective software fault
localization using an RBF neural network. IEEE Transactions on Reliability 61(1),
149–169 (2012)

59. Wong, W., Qi, Y.: Bp neural network-based effective fault localization. International
Journal of Software Engineering and Knowledge Engineering 19(4), 573–597 (2009)

60. Xie, T., Notkin, D.: Tool-assisted unit-test generation and selection based on operational
abstractions. Automated Software Engineering 13(3), 345–371 (2006)

61. Yonghui Wu et al.: Google’s neural machine translation system: Bridging the gap be-
tween human and machine translation. CoRR abs/1609.08144 (2016)

