
Staging Static Analyses for Program Generation ∗

(Extended Version)

Sam Kamin Baris Aktemur Michael Katelman

University of Illinois at Urbana-Champaign
201 N. Goodwin, Urbana, IL 61801 USA
{kamin,aktemur,katelman}@cs.uiuc.edu

Abstract

Program generators are most naturally specified using a quote/antiquote facility; the pro-
grammer writes programs with holes which are filled in, at program generation time, by other
program fragments. If the programs are generated at compile-time, analysis and compilation
follow generation, and no changes in the compiler are needed. However, if program generation
is done at run time, compilation and analysis need to be optimized so that they will not over-
whelm overall execution time. In this paper, we give a compositional framework for defining
program analyses which leads directly to a method of staging these analyses. The staging
allows the analysis of incomplete programs to be started at compile time; the residual work to
be done at run time may be much less costly than the full analysis. We give frameworks for
forward and backward analyses, present several examples of specific analyses, and give timing
results showing significant speed-ups for the run-time portion of the analysis relative to the full
analysis.

1 Introduction

We are concerned here with languages in which code generators are specified by embedding quoted
program fragments within a larger program (the meta-program) [6, 12, 13, 4]. These quoted frag-
ments include “holes” — portions of the program that are to be filled in with other fragments to
generate a complete program (see Figure 1). Such systems provide a natural, easy to understand
method of creating program generators. They raise several kinds of research questions: What prop-
erties of generated programs can be inferred from the initial set of fragments? How quickly can the
generated program be generated? The latter is of most interest when program generation occurs at
run time.

This paper addresses the question: how quickly can static analyses be performed on generated
programs? To be precise: We are given a program P [•, . . . , •] with holes, and a collection of plugs
Q1, . . . , Qn. We want to find the result of some static analysis when applied to P [Q1, . . . , Qn]. We

∗Partial support for this work was received from NSF under grant CCR-0306221. This technical report is the
extended version of the paper published in GPCE 2006 with the same title.

1

Code genBody (int n) {
if (n==0)

return $< 1 >$;

else

return $< x * ‘(genBody(n-1)) >$;

}

Code genPowerFun (int n) {
return $< int pow (int x) {

return ‘(genBody(n));

} >$;

}

meta-program

�� ��
�� ��

holesquoted fragments XXXXX

��
���

JJ

�

�
��

Figure 1: Terminology for program generators. When a fragment fills in a hole, we call it a plug.
Note that a fragment is never used as a plug until all of its holes have been filled.

could, at run time, fill in the plugs and run the analysis. However, we can save time by preprocessing
P and the Qi, and then combining them at run time to produce the same result.

We present a framework for static analyses which allows us to make a clear distinction between
compile time — when we know all the fragments, but do not know which fragments will fill in which
holes in which other fragments — and run time — when we create the generated program and can
do the analysis. The ability to stage analyses depends upon finding an accurate representation for
the dataflow functions; we present representations for several analyses. The staging can produce
substantial speed-ups in the analyses.

We begin the technical presentation (Section 3) with our forward analysis framework, illustrat-
ing it with a simple analysis, uninitialized variables. We discuss how the framework allows for
efficient staging of analyses, and in Section 4 present a collection of analyses. Section 5 presents
the backward analysis framework. Section 6 gives performance results for various analyses and
benchmark programs.

The contributions of this paper are three-fold: (1) We define frameworks for forward and back-
ward analyses of abstract syntax trees (AST), including break statements, which explains how
analyses can be staged. Staging requires that dataflow functions be represented “adequately.” (2)
We give representations for several dataflow problems, and for staged type checking. (3) We provide
experimental evidence of speed-ups from staging.

This paper is an expanded version of [8].

2 Related Work

Our work shares with several others a concern with representation of dataflow functions, and some
of our representations have appeared previously. In the area of interprocedural dataflow analysis,
Sharir and Pnueli [17] introduced the idea of summarizing the analysis of an entire procedure.
Rountev, Kagan and Marlowe [15] discuss concrete representations for these summary functions, to
allow for “whole program” analysis of programs that use libraries; our representation for reaching
definitions appears there. Reps, Horwitz, and Sagiv [14] give representations for a class of dataflow
problems, including reaching definitions and linear constant propagation. (Interprocedural analysis

2

is similar to staged analysis in that one can think of the procedure call as a “hole,” and the
procedure as a “plug.” However, the control flow issues are very different; that work must deal with
the notion of “valid” paths — where calls match returns — while we must deal with multiple-exit
control structures.) To parallelize static analyses, Kramer, Gupta and Soffa [10] partition programs
and analyze each partition to produce a summary of its effect on the program as a whole.

In hybrid analysis [16], Marlowe and Ryder partition a program based on strong components,
representing dataflow functions for each component. A representation for reaching definitions that
is “adequate” in our sense is given there. Marlowe and Ryder also talk about incremental analysis
where the problem is to maintain the validity of an analysis during source program editing. But
note the subtle but important distinction between incremental analysis and staged analysis: there,
any node can change at any time; here, some parts of the program are fixed and some unknown,
and the goal is to fully exploit the fixed parts.

In approximate analysis [18], the meta-program is analyzed to determine as much as possible
about what the generated program will look like. This approach has the advantage of avoiding
run-time analysis entirely, but the disadvantage that the analysis results are very approximate.

Lastly, we mention the work of Chambers et al. [3]. That work has the ambitious goal of auto-
matically staging compilers: a user can indicate when some information will first become available,
and the system will produce an optimizer to efficiently perform the optimization at that time. The
broad goals of that work — optimizing run-time compilation — are the same as ours. However,
we are much less ambitious about the use of automation (and, indeed, that work accommodates a
limited number of optimizations); we are, instead, providing a mathematical framework that can
facilitate the manual construction of staged analyses.

3 Framework for Forward Analysis

Our framework differs from the standard one [1] in that it analyzes abstract syntax trees (ASTs),
not control-flow graphs (CFGs). Since program fragments appear as ASTs, this is the natural unit
of analysis for our purposes. Note that we are considering only intraprocedural analysis in this
paper. However, as noted above, our techniques have much in common with some interprocedural
analyses; we expect the extension to be relatively straightforward.

In this section, we present our framework as the third in a sequence of frameworks of increasing
complexity. For each framework, the plan is the same:

1. Present an analysis framework F for calculating dataflow values for AST’s in a lattice Data.

2. Present a framework R for calculating representations of dataflow functions, given an “ade-
quate” representation R.

3. Give a theorem relating representations produced by R to dataflow functions given by F .

4. Give an alternative method of calculating representations, called FR, more efficient than R,
which uses the definition of F but applies it to representations rather than dataflow values.

As a running example in these sections, we use uninitialized variables, an analysis that calculates a
list of variables that may have been used without being initialized.

The first framework contains only simple control structures; the theorems are trivial in this case,
but we introduce notation and explain how staging works. The second framework handles break

3

e ∈ Exp
x ∈ Var
` ∈ Label
P ∈ Pgm ::= x = e | skip | if e then P1 else P2 | P1; P2

| while e do P | ` : P | break `

Figure 2: The language treated in this paper

F [[skip]] = id

F [[x = e]] = asgn(x, e)

F [[P1; P2]] = F [[P1]];F [[P2]]

F [[if then (e) P1 else P2]] = exp(e); (F [[P1]] ∧ F [[P2]])

Figure 3: First framework.

statements. These two frameworks calculate dataflow values only for the root of an AST; the final
framework calculates values at each node within an AST.

Figure 2 shows the language we treat in this paper. Keep in mind that this is the language inside
quotations. We do not include holes because these are not proper elements of the language. To
avoid notational complexities, we allow holes only in statement position; allowing holes in expression
position poses no fundamental problems.

Dataflow values are assumed to come from a lattice, called Data. Define DFFun to be the
function space Data → Data (confined to functions that preserve >Data).

3.1 Simple Control Structures

Our first framework (Figure 3) treats a subset of the full language, programs with only sequenc-
ing and conditionals. F assigns an element of DFFun to every program. We use semi-colon (;)
for function composition in diagrammatic order. The meet (∧) operation on functions is defined
pointwise, and id is the identity function in DFFun. asgn and exp are the only functions specific to
a particular analysis. The types of all the names appearing in this definition are:

id : DFFun
asgn : Var× Exp→ DFFun
exp : Exp→ DFFun
; : DFFun×DFFun→ DFFun
∧ : DFFun×DFFun→ DFFun

We earlier stated that we allow only >-preserving functions in DFFun. The identity function has
this property, and function composition and meet preserve it, so we need only to confirm it for asgn
and exp for each analysis.

To get the result of the static analysis of P , apply F [[P]] to an appropriate initial value.
As an example, we define an analysis for variable initialization. Here, Data = P(V ar)2, with

ordering
(D, U) v (D′, U ′) if D ⊆ D′ and U ⊇ U ′

4

R[[skip]] = idR

R[[x = e]] = asgnR(x, e)

R[[P1; P2]] = R[[P1]] ;R R[[P2]]

R[[if then (e) P1 else P2]] = expR(e) ;R (R[[P1]] ∧R R[[P2]])

Figure 4: Representation function for the first framework.

The datum (D,U) entering a node means that D is the set of variables that definitely have definitions
at this point, and U is the set that may have been used without definition.

asgn(x, e) = λ(D, U).(D ∪ {x}, (vars(e) \D) ∪ U)
exp(e) = λ(D, U).(D, (vars(e) \D) ∪ U)

vars(e) is the set of variables occurring in e. It is easy to see that asgn(x,e) and exp(e) preserve
>Data (the pair (V ar, ∅)).

Returning to the general case, our task is to find representations of elements of DFFun for each
analysis.

Definition Suppose R is a set with the following values and functions (>R is not used until the
next subsection):

>R : R expR: Exp→ R
idR : R ;R : R×R→ R
asgnR: Var× Exp→ R ∧R : R×R→ R

R is an adequate representation of a dataflow problem if there is a function abs : R → DFFun such
that it is a homomorphism from (R,>R, idR, asgnR, expR, ;R ,∧R) to (DFFun,>DFFun, id, asgn, exp, ; ,∧).
Specifically, this requires

abs(>R) = >DFFun = λd.>Data

abs(idR) = id
abs(asgnR(x, e)) = asgn(x, e)
abs(expR(e)) = exp(e)
abs(r ;Rr′) = abs(r);abs(r′)
abs(r ∧R r′) = abs(r) ∧ abs(r′)

Define R : Pgm → R to be the function in Figure 4.

Theorem If R is an adequate representation, then for all P , abs(R[[P]]) = F [[P]].

Proof A trivial structural induction. �

For uninitialized variables, a natural representation, which is also adequate, is almost the same
as Data:

R = P(V ar)2 ∪ {>R}

5

For any fragment P , R[[P]] is the pair containing the set of variables definitely defined in P and the
set possibly used without definition in P . The operations on this representation are1

idR = (∅, ∅)
asgnR(x, e) = ({x}, vars(e))
expR(e) = (∅, vars(e))
(D, U) ;R (D′, U ′) = (D ∪D′, U ∪ (U ′ \D))
(D, U) ∧R (D′, U ′) = (D ∩D′, U ∪ U ′)

The abs function is defined as

abs(D, U) = λ(D′, U ′).(D′ ∪D, U ′ ∪ (U \D′))

We would like to note that abs(>R) necessarily equals λd.>Data, as required by the definition of
adequacy.

To illustrate the analysis, we show a program annotated with the value of R[[P]] for each subtree
P :

// ({x, y}, {x, z}) (entire fragment)
y = x; // ({y}, {x})
if (z > 10) // ({x}, {x, y, z}) (‘if’ statement)
{ // ({x, w}, {x, y}) (‘true’ branch)

w = 15; // ({w}, ∅)
x = x + y + w; // ({x}, {x, y, w})

} else

x = 0; // ({x}, ∅)

In Figure 2, we included while statements in our language. They can be defined using a maximal
fixpoint in the usual way:

F [[while e do P]] = mfxp(λp.exp(e); (F [[P]]; p ∧ id))

We cannot define R[[while e do P]] in this way, because R is not a partial order. However, in all of
our analyses — and most static analyses — this fixpoint converges in a fixed number of iterations.
Thus, F [[while e do P]] will be equal to the first element of the list exp(e), exp(e);F [[P]]; exp(e),
exp(e);F [[P]]; exp(e);F [[P]]; exp(e), . . . that is equal to the next element, and the corresponding
element of R will represent it. We might only add that the iteration bound is another parameter
to the analysis that can vary among analyses.

In principle, we could now move on to staging, using R to calculate the representation of
fragments. In practice, we calculate them by using the definition of F . This method will turn out,
in the following sections, to be more efficient.

Define FR : Pgm → R → R to be the function in Figure 5, with the relevant operations defined
as follows:

idR = id
asgnR(x, e) = λr.r ;R asgnR(x, e)
expR(e) = λr.r ;R expR(x, e)
f ∧R g = λr.fr ∧R gr

1Throughout the paper, to avoid clutter, we ignore > when defining functions; in every case, the definitions of
asgn(x, e), exp(e), ;R, ∧R, and abs should check for > and return it.

6

FR[[skip]] = idR

FR[[x = e]] = asgnR(x, e)

FR[[P1; P2]] = FR[[P1]] ; FR[[P2]]

FR[[if then (e) P1 else P2]] = expR(e) ; (FR[[P1]] ∧R FR[[P2]])

Figure 5: FR for the first framework.

Definition r ≡ r′ if abs(r) = abs(r′).

Theorem If R is adequate, then for all P and r, FR[[P]]r ≡ r ;RR[[P]].

Proof The proof is by induction on the structure of P .

• skip :

abs(FR[[skip]]r) = abs(idR(r))

= abs(r)

= abs(r) ; id

= abs(r) ; abs(idR)

= abs(r) ; abs(R[[skip]])

= abs(r ;RR[[skip]])

• x = e

abs(FR[[x = e]]r) = abs(asgnR(x, e)(r))

= abs(r ;R asgnR(x, e))

= abs(r ;RR[[x = e]])

• P1; P2

By the induction hypothesis, we have, ∀r ∈ R,

abs(FR[[P1]]r) = abs(r ;RR[[P1]])

abs(FR[[P2]]r) = abs(r ;RR[[P2]])

Now we work on P1; P2:

abs(FR[[P1; P2]]r) = abs(FR[[P2]](FR[[P1]]r))

= abs((FR[[P1]]r) ;RR[[P2]])

= abs((FR[[P1]]r));abs(R[[P2]]) by ind. hyp.

= abs(r ;RR[[P1]]);abs(R[[P2]]) by ind. hyp.

= abs(r);abs(R[[P1]]);abs(R[[P2]])

= abs(r);abs(R[[P1]] ;RR[[P2]])

= abs(r);abs(R[[P1; P2]])

= abs(r ;RR[[P1; P2]])

7

• if(e) P1 else P2

By the induction hypothesis, we have, ∀r ∈ R,

abs(FR[[P1]]r) = abs(r ;RR[[P1]])

abs(FR[[P2]]r) = abs(r ;RR[[P2]])

Now we work on if(e) P1 else P2:

abs(FR[[if(e) P1 else P2]]r) = abs((expR(e) ; (FR[[P1]] ∧R FR[[P2]]))r)

= abs((FR[[P1]] ∧R FR[[P2]])(r ;R expR(e)))

= abs(FR[[P1]](r ;R expR(e)) ∧R FR[[P2]](r ;R expR(e)))

= abs(FR[[P1]](r ;R expR(e))) ∧ abs(FR[[P2]](r ;R expR(e)))

= abs((r ;R expR(e)) ;RR[[P1]]) ∧ abs((r ;R expR(e)) ;RR[[P2]])

= abs(r ;R expR(e));abs(R[[P1]]) ∧ abs(r ;R expR(e));abs(R[[P2]])

= abs(r);abs(expR(e));abs(R[[P1]]) ∧ abs(r);abs(expR(e));abs(R[[P2]])

= abs(r);abs(expR(e)); (abs(R[[P1]]) ∧ abs(R[[P2]]))

= abs(r);abs(expR(e)); (abs(R[[P1]] ∧R R[[P2]]))

= abs(r);abs(expR(e) ;R (R[[P1]] ∧R R[[P2]]))

= abs(r);abs(R[[if(e) P1 else P2]])

= abs(r ;R (R[[if(e) P1 else P2]]))

�

Corollary FR[[P]]idR ≡ R[[P]].

Proof

abs(FR[[P]]idR) = abs(idR;RR[[P]])

= abs(idR);abs(R[[P]])

= id;abs(R[[P]])

= abs(R[[P]])

�

If abs is injective — in which case we call R an exact representation — then we can replace ≡
by = in the above theorems. All the analyses we define in this paper are exact.

We are now ready to stage static analyses. The first stage calculates values of R, and the second,
run-time, stage uses F to complete the analysis:

Static stage : For every fragment P , analyze every maximal hole-free subtree T by computing
FR[[T]]idR.

Dynamic stage : Holes will be filled “bottom-up,” so all fragments will have their holes filled
before they themselves can be plugs. Thus, plugs are hole-free. After filling in the holes in P
with plugs Q1, ..., Qn, we have an AST in which some nodes have already been annotated with
representations (namely, the hole-free subtrees of P and the plugs Q1, ..., Qn). We can now
calculate F [[P [Q1, ..., Qn]]] with the appropriate initial value, but without traversing subtrees
of the nodes that are already analyzed. It is in this exception that staging has its benefit.

8

F [[skip]] = id

F [[x = e]] = λ(η, d).(η, asgn(x, e)(d))

F [[break `;]] = λ(η, d).(η[` 7→ d ∧ η(`)],>Data)

F [[` : P]] = λ(η, d). let (η1, d1)← F [[P]](η, d)
in (η1[` 7→ >Data], d1 ∧ η1(`))

F [[P1; P2]] = F [[P1]];F [[P2]]

F [[if (e) P1 else P2]] = λ(η, d). let (η1, d1)← F [[P1]](η, exp(e)(d))
(η2, d2)← F [[P2]](η, exp(e)(d))

in (η1, d1) ∧ (η2, d2)

Figure 6: Framework with break statements

3.2 Break Statements

We expand our analysis now to labelled statements and break-to-label statements. The idea is this:
Since a break results in transfer of control to the end of a labelled statement, we treat it as the meet
of the statements up to the break with the normal exit from the labelled statement (and with all
other breaks to this label). We will see that an adequate representation in the sense of the previous
section can be extended uniformly to a representation for this case.

Throughout this section and the next, we assume all programs are legal in the sense that they
do not contain nested labelled statements with the same label.

An environment η is a function in Env = Label → Data. Now the incoming and outgoing values
are pairs:

F [[P]] : Env ×Data→ Env ×Data

The extended analysis is shown in Figure 6. asgn and exp have the same types as in the previous
section; semi-colon is again function composition (in the expanded space), and id is the identity
function. We extend meet to environments element-wise and then to pairs component-wise.

A word of explanation is in order about labelled statements and breaks. Suppose a statement P
is contained within a labelled statement with label L, and we are evaluating F [[P]](η, d). d contains
information about the control flow paths that reach P . η contains information about all the control
flow paths that were terminated with a break L statement prior to reaching P ; since there may
be more than one, η(L) gives a conservative approximation by taking the meet of all those paths.
Thus, if P is break L, then d is incorporated into the outgoing environment by taking d ∧ η(L).
Furthermore, the “normal exit” from P is >Data. For any statement Q, F [[Q]] preserves >Data in its
second argument. so any statements directly following P will be ignored. For labelled statements,
F [[L : P]](η, d) first calculates F [[P]](η, d). It is important that η(L) = >Data; this will be the case
because (a) the initial value for any analysis has the environment λ`.>Data, (b) L : P is legal, so it
cannot be within another statement labelled L, and (c) F [[L : P]](η, d) returns an environment in
which L is reset to >Data.

Representations of these functions are derived from representations of functions in DFFun.
Assume R is an adequate representation of DFFun. It can be extended to a representation ER of

9

R[[skip]] = (>EnvR , idR)

R[[x = e]] = (>EnvR , asgnR(x, e))

R[[break `;]] = (>EnvR [` 7→ idR],>R)

R[[` : P]] =let (η, r)←R[[P]]
in (η[` 7→ >R], r ∧R η(`))

R[[P1; P2]] =let (η1, r1)←R[[P1]], (η2, r2)←R[[P2]]
in (η1 ∧R (r1;R η2), r1;R r2)

R[[if (e) P1 else P2]] = let (η1, r1)←R[[P1]], (η2, r2)←R[[P2]]
in expR(e);R ((η1, r1) ∧R (η2, r2))

Figure 7: Representation for framework of Figure 6

functions in the space Env ×Data → Env ×Data. Define EnvR = Label → R. Then

ER = EnvR ×R

Figure 7 gives a function to calculate representations. Although very similar to F , R has one
crucial difference. For statement P1;P2, where F simply uses function composition, R calculates an
explicit value. Of particular interest is the way environments are affected. The environment given
by R[[P2]] incorporates all the control flow up to any break statements in P2. The new environment
augments each value in that environment by adding r1, which is the dataflow information for a
normal exit from P1. That is, an abnormal exit is either an abnormal exit from P1 or a normal exit
from P1 followed by an abnormal exit from P2. Furthermore, if there is a break to the same label
from both P1 and P2, the total effect is that two separate paths meet after the statement with that
label, so the functions in the two environments are joined.

Defining the abstraction function:

absE : ER → (Env ×Data→ Env ×Data)
absE(ηR, r) = λ(η, d).(λ`.η(`) ∧ abs(ηR(`))d,abs(r)d)

we have the following theorem.

Theorem If R is adequate, then for all programs P , absE(R[[P]]) = F [[P]].

Proof The proof is by induction on the structure of P .
• skip :

absE(R[[skip]]) = absE((>EnvR , idR))

= λ(η′, d′).(λ`.η′(`) ∧ abs(>EnvR(`))d′, abs(idR)d′)

= λ(η′, d′).(λ`.η′(`) ∧ abs(>R)d′, id(d′))

= λ(η′, d′).(λ`.η′(`) ∧ (λd.>Data)d′, d′)

= λ(η′, d′).(λ`.η′(`) ∧ >Data, d′)

= λ(η′, d′).(λ`.η′(`), d′)

= λ(η′, d′).(η′, d′)

= F [[skip]]

10

• x = e

absE(R[[x = e]]) = absE((>EnvR , asgnR(x, e)))

= λ(η′, d′).(λ`.η′(`) ∧ abs(>EnvR(`))d′, abs(asgnR(x, e))d′)

= λ(η′, d′).(λ`.η′(`) ∧ abs(>R)d′, asgn(x, e)(d′))

= λ(η′, d′).(λ`.η′(`) ∧ (λd.>Data)d′, asgn(x, e)(d′))

= λ(η′, d′).(λ`.η′(`) ∧ >Data, asgn(x, e)(d′))

= λ(η′, d′).(λ`.η′(`), asgn(x, e)(d′))

= λ(η′, d′).(η′, asgn(x, e)(d′))

= F [[x = e]]

• break `

absE(R[[break `]]) = absE((>EnvR [` 7→ idR],>R))

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(>EnvR [` 7→ idR](`′))d′, abs(>R)d′)

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(>EnvR [` 7→ idR](`′))d′, >Data)

= λ(η′, d′).(

„
λ`′.


η′(`) ∧ abs(idR)d′ if ` = `′

η′(`′) ∧ abs(>R)d′ if ` 6= `′

«
,>Data)

= λ(η′, d′).(

„
λ`′.


η′(`) ∧ d′ if ` = `′

η′(`′) if ` 6= `′

«
,>Data)

= λ(η′, d′).(η′[` 7→ η′(`) ∧ d′], >Data)

= F [[break `]]

• ` : P
Let (η, r) = R[[P]]. By the induction hypothesis we have

F [[P]] = absE(R[[P]])

= absE((η, r))

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η(`′))d′, abs(r)d′)

Now we work on absE(R[[` : P]]). Note that because we require all the programs to be legal, incoming
environment has ` mapped to >Data.

absE(R[[` : P]]) = absE((η[` 7→ >R], r ∧R η(`)))

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η[` 7→ >R](`′))d′, abs(r ∧R η(`))d′)

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η[` 7→ >R](`′))d′, abs(r)d′ ∧ abs(η(`))d′)

= λ(η′, d′).(λ`′.


η′(`) ∧ abs(>R)d′ if ` = `′

η′(`′) ∧ abs(η(`′))d′ if ` 6= `′
, abs(r)d′ ∧ abs(η(`))d′)

= λ(η′, d′).(λ`′.


>Data ∧ >Data if ` = `′

η′(`′) ∧ abs(η(`′))d′ if ` 6= `′
, abs(r)d′ ∧ abs(η(`))d′)

= λ(η′, d′).(λ`′.


>Data if ` = `′

η′(`′) ∧ abs(η(`′))d′ if ` 6= `′
, abs(r)d′ ∧ abs(η(`))d′) (1)

11

And F [[` : P]]:

F [[` : P]] = λ(η′, d′). let (η1, d1)← F [[P]](η′, d′)

in (η1[` 7→ >Data], d1 ∧ η1(`))

= λ(η′, d′). let (η1, d1)← (λ(η′, d′).(λ`′.η′(`′) ∧ abs(η(`′))d′, abs(r)d′))(η′, d′)

in (η1[` 7→ >Data], d1 ∧ η1(`))

= λ(η′, d′). let (η1, d1)← (λ`′.η′(`′) ∧ abs(η(`′))d′, abs(r)d′)

in (η1[` 7→ >Data], d1 ∧ η1(`))

= λ(η′, d′).((λ`′.η′(`′) ∧ abs(η(`′))d′)[` 7→ >Data], abs(r)d′ ∧ (λ`′.η′(`′) ∧ abs(η(`′))d′)(`))

= λ(η′, d′).((λ`′.η′(`′) ∧ abs(η(`′))d′)[` 7→ >Data], abs(r)d′ ∧ η′(`) ∧ abs(η(`))d′)

= λ(η′, d′).((λ`′.η′(`′) ∧ abs(η(`′))d′)[` 7→ >Data], abs(r)d′ ∧ η′(`) ∧ abs(η(`))d′)

= λ(η′, d′).(λ`′.


>Data if ` = `′

η′(`′) ∧ abs(η(`′))d′ if ` 6= `′
, abs(r)d′ ∧ >Data ∧ abs(η(`))d′)

= (1)

• P1; P2

Let (η1, r1) = R[[P1]] and (η2, r2) = R[[P2]]. By the induction hypothesis we have

F [[P1]] = absE(R[[P1]])

= absE((η1, r1))

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η1(`
′))d′, abs(r1)d

′)

F [[P2]] = absE(R[[P2]])

= absE((η2, r2))

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η2(`
′))d′, abs(r2)d

′)

Now we work on absE(R[[P1; P2]]).

absE(R[[P1; P2]]) = absE((η1 ∧R (r1;R η2), r1;R r2))

= λ(η′, d′).(λ`′.η′(`′) ∧ abs((η1 ∧R (r1;R η2))(`
′))d′, abs(r1;R r2)d

′)

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η1(`
′))d′ ∧ abs(η2(`

′))(abs(r1)d
′), abs(r2)(abs(r1)d

′)) (2)

And F [[P1; P2]]:

F [[P1; P2]] = λ(η′, d′).(F [[P1]];F [[P2]])(η
′, d′)

= λ(η′, d′).F [[P2]](F [[P1]](η
′, d′))

= λ(η′, d′).F [[P2]]((λ(η′, d′).(λ`′.η′(`′) ∧ abs(η1(`
′))d′, abs(r1)d

′))(η′, d′))

= λ(η′, d′).F [[P2]](λ`′.η′(`′) ∧ abs(η1(`
′))d′, abs(r1)d

′)

= λ(η′, d′).(λ(η′, d′).(λ`′.η′(`′) ∧ abs(η2(`
′))d′, abs(r2)d

′))(λ`′.η′(`′) ∧ abs(η1(`
′))d′, abs(r1)d

′)

= λ(η′, d′).(λ`′.(λ`′.η′(`′) ∧ abs(η1(`
′))(d′))(`′) ∧ abs(η2(`

′))(abs(r1)d
′), abs(r2)(abs(r1)d

′))

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η1(`
′))(d′) ∧ abs(η2(`

′))(abs(r1)d
′), abs(r2)(abs(r1)d

′))

= (2)

12

• if(e) P1 else P2

Let (η1, r1) = R[[P1]] and (η2, r2) = R[[P2]]. By the induction hypothesis we have

F [[P1]] = absE(R[[P1]])

= absE((η1, r1))

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η1(`
′))d′, abs(r1)d

′)

F [[P2]] = absE(R[[P2]])

= absE((η2, r2))

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η2(`
′))d′, abs(r2)d

′)

Now we work on absE(R[[if(e) P1 else P2]]).

absE(R[[if(e) P1 else P2]]) = absE(expR(e);R ((η1, r1) ∧R (η2, r2)))

= absE(expR(e);R ((η1, r1) ∧R (η2, r2)))

= absE((expR(e);R (η1 ∧R η2), expR(e);R (r1 ∧R r2)))

= λ(η′, d′).(λ`′.η′(`′) ∧ abs((expR(e);R (η1 ∧R η2))(`
′))d′,

abs(expR(e);R (r1 ∧R r2))d
′)

= λ(η′, d′).(λ`′.η′(`′) ∧ (abs(expR(e));abs((η1 ∧R η2)(`
′)))d′,

(abs(expR(e));abs(r1 ∧R r2))d
′)

= λ(η′, d′).(λ`′.η′(`′) ∧ (exp(e);abs((η1 ∧R η2)(`
′)))d′,

(exp(e);abs(r1 ∧R r2))d
′)

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η1(`
′))(exp(e)d′) ∧ abs(η2(`

′))(exp(e)d′),

abs(r1)(exp(e)d′) ∧ abs(r2)(exp(e)d′)) (3)

And F [[if(e) P1 else P2]]:

F [[if(e) P1 else P2]] = λ(η′, d′). let (η′1, d
′
1)← F [[P1]](η

′, exp(e)d′)

(η′2, d
′
2)← F [[P2]](η

′, exp(e)d′)

in (η′1, d
′
1) ∧ (η′2, d

′
2)

= λ(η′, d′). let (η′1, d
′
1)← (λ(η′, d′).(λ`′.η′(`′) ∧ abs(η1(`

′))d′, abs(r1)d
′))(η′, exp(e)d′)

(η′2, d
′
2)← (λ(η′, d′).(λ`′.η′(`′) ∧ abs(η2(`

′))d′, abs(r2)d
′))(η′, exp(e)d′)

in (η′1, d
′
1) ∧ (η′2, d

′
2)

= λ(η′, d′). let (η′1, d
′
1)← (λ`′.η′(`′) ∧ abs(η1(`

′))(exp(e)d′), abs(r1)(exp(e)d′))

(η′2, d
′
2)← (λ`′.η′(`′) ∧ abs(η2(`

′))(exp(e)d′), abs(r2)(exp(e)d′))

in (η′1, d
′
1) ∧ (η′2, d

′
2)

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η1(`
′))(exp(e)d′) ∧ η′(`′) ∧ abs(η2(`

′))(exp(e)d′),

abs(r1)(exp(e)d′) ∧ abs(r2)(exp(e)d′))

= λ(η′, d′).(λ`′.η′(`′) ∧ abs(η1(`
′))(exp(e)d′) ∧ abs(η2(`

′))(exp(e)d′),

abs(r1)(exp(e)d′) ∧ abs(r2)(exp(e)d′))

= (3)

�

13

FR[[skip]] = idR

FR[[x = e]] = λ(η, r).(η, asgnR(x, e)r)

FR[[break `;]] = λ(η, r).(η[` 7→ r ∧R η(`)],>R)

FR[[` : P]] = λ(η, r). let (η1, r1)← FR[[P]](η, r)
in (η1[` 7→ >R], r1 ∧R η1(`))

FR[[P1; P2]] = FR[[P1]];FR[[P2]]

FR[[if (e) P1 else P2]] = λ(η, r). let (η1, r1)← FR[[P1]](η, expR(e)r)
(η2, r2)← FR[[P2]](η, expR(e)r)

in (η1, r1) ∧R (η2, r2)

Figure 8: FR with break statements.

Again, we can (and do) calculate R by reinterpreting F using the operators of R. The function

FR : Pgm→ ER → ER

is defined as given in Figure 8 where asgnR and expR are exactly the same as in the previous section;
idR has the same definition but different type.

Theorem Given P , let (η, r) = R[[P]]. For all η′, r′, as long as η′(L) = >R for any label L that
occurs in P ,

FR[[P]](η′, r′) ≡ (λ`′.η′(`′) ∧R (r′ ;R η(`′)), r′ ;R r).

Proof The proof is by induction on the structure of P .

• skip :
For this case, (η, r) = (>EnvR , idR).

absE(FR[[skip]](η′, r′)) = absE(idR(η′, r′))

= absE((η′, r′))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′,abs(r′)d′′) (1)

And

absE((λ`′.η′(`′) ∧R (r′ ;R>EnvR(`′)), r′ ;R idR))

= absE((λ`′.η′(`′) ∧R (r′ ;R>R), r′ ;R idR))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (r′ ;R>R))(`′))d′′,abs(r′ ;R idR)d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R>R))d′′,abs(r′)d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′ ∧ >Data,abs(r′)d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′,abs(r′)d′′)

= (1)

14

• x = e
For this case, (η, r) = (>EnvR , asgnR(x, e)).

absE(FR[[x = e]](η′, r′)) = absE((η′, asgnR(x, e)(r′)))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′,abs(asgnR(x, e)(r′))d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′,abs(r′ ;R asgnR(x, e))d′′) (2)

And

absE((λ`′.η′(`′) ∧R (r′ ;R>EnvR(`′)), r′ ;R asgnR(x, e)))

= absE((λ`′.η′(`′) ∧R (r′ ;R>R), r′ ;R asgnR(x, e)))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (r′ ;R>R))(`′))d′′,abs(r′ ;R asgnR(x, e))d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R>R))d′′,abs(r′ ;R asgnR(x, e))d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′ ∧ >Data,abs(r′ ;R asgnR(x, e))d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′,abs(r′ ;R asgnR(x, e))d′′)

= (2)

• break `
For this case, (η, r) = (>EnvR [` 7→ idR],>R).

absE(FR[[break `]](η′, r′)) = absE((η′[` 7→ r′ ∧R η′(`)],>R))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′[` 7→ r′ ∧R η′(`)](`′))d′′,abs(>R)d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′[` 7→ r′ ∧R η′(`)](`′))d′′,>Data)

= λ(η′′, d′′).(

„
λ`′.


η′′(`) ∧ abs(r′ ∧R η′(`))d′′ if ` = `′

η′′(`′) ∧ abs(η′(`′))d′′ if ` 6= `′

«
,>Data) (3)

And

absE((λ`′.η′(`′) ∧R (r′ ;R>EnvR [` 7→ idR](`′)), r′ ;R>R)))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (r′ ;R>EnvR [` 7→ idR](`′)))(`′))d′′,abs(r′ ;R>R)d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R>EnvR [` 7→ idR](`′)))d′′,>Data)

= λ(η′′, d′′).(

„
λ`′.


η′′(`) ∧ abs(η′(`) ∧R (r′ ;R idR))d′′ if ` = `′

η′′(`) ∧ abs(η′(`) ∧R (r′ ;R>R))d′′ if ` 6= `′

«
,>Data)

= λ(η′′, d′′).(

„
λ`′.


η′′(`) ∧ abs(η′(`) ∧R r′)d′′ if ` = `′

η′′(`) ∧ abs(η′(`′))d′′ if ` 6= `′

«
,>Data)

= (3)

• ` : P
Let (η, r) = R[[P]]. By the induction hypothesis, we have

absE(FR[[P]](η′, r′))

= absE((λ`′.η′(`′) ∧R (r′ ;R η(`′)), r′ ;R r))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (r′ ;R η(`′)))(`′))d′′,abs(r′ ;R r)d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η(`′)))d′′,abs(r′ ;R r)d′′) (4)

Let (η1, r1) = FR[[P]](η′, r′). Then we get

absE(FR[[P]](η′, r′)) = absE((η1, r1))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η1(`
′))d′′,abs(r1)d

′′) (5)

15

Since (4) = (5), we obtain

abs(r′ ;R r)d′′ = abs(r1)d
′′

and

η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η(`′)))d′′ = η′′(`′) ∧ abs(η1(`
′))d′′

When `′ = `, using the legality condition for all the programs, we get

η′′(`) ∧ abs(η′(`) ∧R (r′ ;R η(`)))d′′ = η′′(`) ∧ abs(η1(`))d
′′

⇒ >Data ∧ abs(>R ∧R (r′ ;R η(`)))d′′ = >Data ∧ abs(η1(`))d
′′

⇒ abs(r′ ;R η(`))d′′ = abs(η1(`))d
′′

Now we work on ` : P :

absE(FR[[` : P]](η′, r′))

= absE((η1[` 7→ >R], r1 ∧R η1(`)))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η1[` 7→ >R](`′))d′′,abs(r1 ∧R η1(`))d
′′)

= λ(η′′, d′′).(λ`′.


η′′(`) ∧ abs(>R)d′′ if ` = `′

η′′(`′) ∧ abs(η1(`
′))d′′ if ` 6= `′

,

abs(r1)d
′′ ∧ abs(η1(`))d

′′)

= λ(η′′, d′′).(λ`′.


η′′(`) if ` = `′

η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η(`′)))d′′ if ` 6= `′
,

abs(r′ ;R r)d′′ ∧ abs(r′ ;R η(`))d′′)

= λ(η′′, d′′).(λ`′.


η′′(`) if ` = `′

η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η(`′)))d′′ if ` 6= `′
,

abs(r′ ;R (r ∧R η(`)))d′′) (6)

And using the fact that R[[` : P]] = (η[` 7→ >R], r ∧R η(`)), we have

absE((λ`′.η′(`′) ∧R (r′ ;R η[` 7→ >R](`′)), r′ ;R (r ∧R η(`))))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (r′ ;R η[` 7→ >R](`′)))(`′))d′′,

abs(r′ ;R (r ∧R η(`)))d′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η[` 7→ >R](`′)))d′′,

abs(r′ ;R (r ∧R η(`)))d′′)

= λ(η′′, d′′).(λ`′.


η′′(`) ∧ abs(η′(`) ∧R (r′ ;R>R))d′′ if ` = `′

η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η(`′)))d′′ if ` 6= `′
,

abs(r′ ;R (r ∧R η(`)))d′′)

= λ(η′′, d′′).(λ`′.


η′′(`) ∧ abs(>R ∧R (r′ ;R>R))d′′ if ` = `′

η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η(`′)))d′′ if ` 6= `′
,

abs(r′ ;R (r ∧R η(`)))d′′)

= λ(η′′, d′′).(λ`′.


η′′(`) if ` = `′

η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η(`′)))d′′ if ` 6= `′
,

abs(r′ ;R (r ∧R η(`)))d′′)

= (6)

16

• P1; P2

Let (η1, r1) = R[[P1]], (η2, r2) = R[[P2]], (ηa, ra) = FR[[P1]](η
′, r′), and (ηb, rb) = FR[[P2]](ηa, ra). By

the induction hypothesis, we have

absE(FR[[P1]](η
′, r′)) = absE((ηa, ra))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηa(`′))d′′, abs(ra)d′′)

and

absE(FR[[P1]](η
′, r′)) = absE((λ`′.η′(`′) ∧R (r′ ;R η1(`

′)), r′ ;R r1))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (r′ ;R η1(`
′)))(`′))d′′, abs(r′ ;R r1)d

′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η1(`
′)))d′′, abs(r′ ;R r1)d

′′)

Similarly, for P2

absE(FR[[P2]](ηa, ra)) = absE((ηb, rb))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηb(`
′))d′′, abs(rb)d

′′)

and

absE(FR[[P2]](ηa, ra)) = absE((λ`′.ηa(`′) ∧R (ra ;R η2(`
′)), ra ;R r2))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.ηa(`′) ∧R (ra ;R η2(`
′)))(`′))d′′, abs(ra ;R r2)d

′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηa(`′) ∧R (ra ;R η2(`
′)))d′′, abs(ra ;R r2)d

′′)

These give us the equalities

η′′(`′) ∧ abs(ηa(`′))d′′ = η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η1(`
′)))d′′

abs(ra)d′′ = abs(r′ ;R r1)d
′′

η′′(`′) ∧ abs(ηb(`
′))d′′ = η′′(`′) ∧ abs(ηa(`′) ∧R (ra ;R η2(`

′)))d′′

abs(rb)d
′′ = abs(ra ;R r2)d

′′

Now, returning to P1; P2, we have

absE(FR[[P1; P2]](η
′, r′)) = absE(FR[[P2]](FR[[P1]](η

′, r′)))

= absE(FR[[P2]](ηa, ra))

= absE((ηb, rb))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηb(`
′))d′′, abs(rb)d

′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηa(`′) ∧R (ra ;R η2(`
′)))d′′, abs(ra ;R r2)d

′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηa(`′))d′′ ∧ abs(η2(`
′))(abs(ra)d′′), abs(r2)(abs(ra)d′′))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R η1(`
′)))d′′ ∧ abs(η2(`

′))(abs(r′ ;R r1)d
′′),

abs(r2)(abs(r′ ;R r1)d
′′))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′)) ∧ (abs(r′);abs(η1(`
′)))d′′ ∧ (abs(r′);abs(r1);abs(η2(`

′)))d′′,

(abs(r′);abs(r1);abs(r2))d
′′) (7)

for the left-hand-side of the equivalence. And using the fact thatR[[P1; P2]] = (η1∧R(r1 ;R η2), r1;R r2),
for the right-hand-side of the equivalence we have

17

absE((λ`′.η′(`′) ∧R (r′ ;R (η1 ∧R (r1 ;R η2))(`
′)), r′ ;R (r1;R r2)))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (r′ ;R (η1 ∧R (r1 ;R η2))(`
′)))(`′))d′′,

abs(r′ ;R (r1;R r2))d
′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R (η1 ∧R (r1 ;R η2))(`
′)))d′′, abs(r′ ;R (r1;R r2))d

′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′)) ∧ (abs(r′);abs((η1 ∧R (r1 ;R η2))(`
′)))d′′,

(abs(r′);abs(r1);abs(r2))d
′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′)) ∧ (abs(r′);abs(η1(`
′)))d′′ ∧ (abs(r′);abs(r1);abs(η2(`

′)))d′′,

(abs(r′);abs(r1);abs(r2))d
′′)

= (7)

• if(e) P1 else P2

Let (η1, r1) = R[[P1]], (η2, r2) = R[[P2]], (ηa, ra) = FR[[P1]](η
′, expR(e)r′), and (ηb, rb) = FR[[P2]](η

′, expR(e)r′).
By the induction hypothesis, we have

absE(FR[[P1]](η
′, expR(e)r′)) = absE((ηa, ra))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηa(`′))d′′, abs(ra)d′′)

and

absE(FR[[P1]](η
′, expR(e)r′)) = absE((λ`′.η′(`′) ∧R (expR(e)r′ ;R η1(`

′)), expR(e)r′ ;R r1))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (expR(e)r′ ;R η1(`
′)))(`′))d′′, abs(expR(e)r′ ;R r1)d

′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′;R expR(e);R η1(`
′)))d′′, abs(r′;R expR(e);R r1)d

′′)

Similarly, for P2

absE(FR[[P2]](η
′, expR(e)r′)) = absE((ηb, rb))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηb(`
′))d′′, abs(rb)d

′′)

and

absE(FR[[P2]](η
′, expR(e)r′)) = absE((λ`′.η′(`′) ∧R (expR(e)r′ ;R η2(`

′)), expR(e)r′ ;R r2))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs((λ`′.η′(`′) ∧R (expR(e)r′ ;R η2(`
′)))(`′))d′′, abs(expR(e)r′ ;R r2)d

′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′;R expR(e);R η2(`
′)))d′′, abs(r′;R expR(e);R r2)d

′′)

These give us the equalities

η′′(`′) ∧ abs(ηa(`′))d′′ = η′′(`′) ∧ abs(η′(`′) ∧R (r′;R expR(e);R η1(`
′)))d′′

abs(ra)d′′ = abs(r′;R expR(e);R r1)d
′′

η′′(`′) ∧ abs(ηb(`
′))d′′ = η′′(`′) ∧ abs(η′(`′) ∧R (r′;R expR(e);R η2(`

′)))d′′

abs(rb)d
′′ = abs(r′;R expR(e);R r2)d

′′

18

Now, returning to if(e) P1 else P2, we have

absE(FR[[if(e) P1 else P2]](η
′, r′)) = absE((ηa ∧R ηb, ra ∧R rb))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(ηa(`′) ∧R ηb(`
′))d′′,abs(ra ∧R rb)d

′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′;R expR(e);R η1(`
′)))d′′ ∧

abs(η′(`′) ∧R (r′;R expR(e);R η2(`
′)))d′′,

abs(r′;R expR(e);R r1)d
′′ ∧ abs(r′;R expR(e);R r2)d

′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′ ∧ abs(r′;R expR(e);R η1(`
′))d′′ ∧

abs(r′;R expR(e);R η2(`
′))d′′,

abs(r′;R expR(e);R r1)d
′′ ∧ abs(r′;R expR(e);R r2)d

′′) (8)

And using the fact that R[[if(e) P1 else P2]] = (expR(e);R (η1 ∧R η2), expR(e);R (r1 ∧R r2)),

absE((λ`′.η′(`′) ∧R (r′ ;R (expR(e);R (η1(`
′) ∧R η2(`

′)))), r′ ;R (expR(e);R (r1 ∧R r2))))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′) ∧R (r′ ;R (expR(e);R (η1(`
′) ∧R η2(`

′)))))d′′,

abs(r′ ;R (expR(e);R (r1 ∧R r2)))d
′′)

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η′(`′))d′′ ∧ abs(r′;R expR(e);R η1(`
′))d′′ ∧

abs(r′;R expR(e);R η2(`
′))d′′,

abs(r′;R expR(e);R r1)d
′′ ∧ abs(r′;R expR(e);R r2)d

′′)

= (8)

�

Corollary FR[[P]](>EnvR
, idR) ≡ R[[P]].

Proof Let R[[P]] = (η, r). Then, by the theorem above,

FR[[P]](>EnvR
, idR) ≡ (λ`′.>EnvR

(`′) ∧R (idR ;R η(`′)), idR ;R r)
= (λ`′.>R ∧R (idR ;R η(`′)), idR ;R r)

which means

absE(FR[[P]](>EnvR
, idR)) = absE((λ`′.>R ∧R (idR ;R η(`′)), idR ;R r))

= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(>R ∧R (idR ;R η(`′)))d′′,abs(idR ;R r)d′′)
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(>R)d′′ ∧ (abs(idR);abs(η(`′)))d′′, (abs(idR);abs(r))d′′)
= λ(η′′, d′′).(λ`′.η′′(`′) ∧ abs(η(`′))d′′,abs(r)d′′)
= absE((η, r))
= absE(R[[P]])

�

Again, ≡ can be replaced by = for all the analyses we present in this paper. The value of this
theorem is more easily seen now than in the previous section. R contains a fundamental inefficiency
in the calculation of environments in R[[P1;P2]]. Because this involves modifying all the values given
in the environment of P2, it can lead to quadratic behavior for a sequence of statements each of which

19

contains a break statement. (The effect is far worse, in practice, in Section 3.3, where the dataflow
functions for every node in P2 need to be modified.) F does not have this inefficiency. There, the
environments are threaded through the program, so a break statement causes the environment to
be updated just once, and the value placed there is never changed.

Adding a break statement to our previous example, we show the values of FR[[P]](>EnvR
, (∅, ∅))

for each node P .

// ({L 7→ ({x, y}, {x, z})}, ({x, w, y}, {x, z}))
y = x; // (∅, ({y}, {x}))
if (z > 10) // ({L 7→ ({x}, {z})}, ({x, w}, {x, y, z}))
{ // (∅, ({x, w}, {x, y}))

w = 15; // (∅, ({w}, ∅))
x = x + y + w; // (∅, ({x}, {x, y, w}))

} else
{ // ({L 7→ ({x}, ∅)},>)

x = 0; // (∅, ({x}, ∅))
break L; // ({L 7→ (∅, ∅)},>)

}

The approach to staging is unchanged.

3.3 The Framework

The frameworks described so far lack one important ingredient: they do not give us information
about each node in the AST, but only about the root node of the AST. Most static analyses are used
to obtain information at each node: What definitions reach this particular node? What variables
have constant values at this particular point in the program?

The complete analysis returns a map giving data at each node. Assuming each node is uniquely
identified by an element of Node, we define NodeMap = Node ◦→Data (partial functions from
Node to Data). Now,

F [[P]] : NodeMap× Env ×Data→ NodeMap× Env ×Data

We also change the type of asgn:

asgn : Node×Var× Exp→ DFFun

for cases (such as reaching definitions) where Node is contained within Data. In most cases, such
as uninitialized variables, the first argument is ignored.

The full forward analysis is shown in Figure 9.
As in the previous section, we can start with an adequate representation and create a represen-

tation for this analysis. Specifically, define

FR = (Node ◦→R)× EnvR ×R

20

F [[n : skip;]] = λ(ϕ, η, d).(ϕ[n 7→ d], η, d)

F [[n : x = e;]] = λ(ϕ, η, d).let d′ ← asgn(n, x, e)(d)
in (ϕ[n 7→ d′], η, d′)

F [[n : break `;]] = λ(ϕ, η, d).(ϕ[n 7→ >Data],
η[` 7→ d ∧ η(`)],>Data)

F [[n : (` : (n1 : P))]] = λ(ϕ, η, d). let (ϕ1, η1, d1)← F [[n1 : P]](ϕ, η, d)
in (ϕ1[n 7→ d1 ∧ η1(`)], η1[` 7→ >Data], d1 ∧ η1(`))

F [[n : (n1 : P1; n2 : P2)]] = λ(ϕ, η, d). let (ϕ1, η1, d1)← F [[n2 : P2]](F [[n1 : P1]](ϕ, η, d))
in (ϕ1[n 7→ d1], η1, d1)

F [[n : if(e) n1 : P1 else n2 : P2]] = λ(ϕ, η, d). let (ϕ1, η1, d1)← F [[n1 : P1]](ϕ, η, exp(e)(d))
(ϕ2, η2, d2)← F [[n2 : P2]](ϕ, η, exp(e)(d))

in ((ϕ1 ∪ ϕ2)[n 7→ d1 ∧ d2], η1 ∧ η2, d1 ∧ d2)

Figure 9: Forward analysis framework

The abstraction function becomes:

absF : FR → (NodeMap× Env ×Data→ NodeMap× Env ×Data)
absF (ϕR, ηR, r) = λ(ϕ′, η′, d′).(ϕ′ ∪ (λn.abs(ϕR(n))d′), λ`.η′(`) ∧ abs(ηR(`))d′, abs(r)d′)

Representations are calculated by function R as given in Figure 10.

Theorem If R is adequate, then for all programs P , absF (R[[P]]) = F [[P]].

Proof The proof is similar to, but notationally more complex than, the corresponding proof for
the intermediate framework in Section 3.2, page 10. �

We can define FR as in previous sections, and obtain

Theorem Let (ϕ, η, r) = R[[P]]. Then for all ϕ′, η′, r′,

FR[[P]](ϕ′, η′, r′) ≡ (ϕ′ ∪ λ.r′ ;R ϕ(n), λl.η(l) ∧R (r′ ;R η(l)), r′ ;R r)

Proof The proof is similar to, but notationally more complex than, the corresponding proof for
the intermediate framework in Section 3.2, page 14. �

Our previous example with numbered nodes is in Figure 11. We show the value of function
R[[P]] only at the top node. The environment and data values are just as in Section 3.2: {L 7→
({x, y}, {x, z})} and ({x, w, y}, {x, z}), respectively. The node map is:

{ n1 7→ ({x, w, y}, {x, z}), n2 7→ ({y}, {x}), n3 7→ ({x, w, y}, {x, z}),
n4 7→ ({x, w, y}, {x, z}), n5 7→ >R, n6 7→ ({w, y}, {x, z}),
n7 7→ ({x, w, y}, {x, z}), n8 7→ ({x, y}, {x, z}), n9 7→ >R }

Note that the values associated with the nodes are different from those in the previous analyses.
This node map incorporates what is known about each node at the top node (as in [17]). For
example, when we get through node n6, we will have defined w and y, and will have used x and
z possibly without definition. Thus, suppose we put this fragment into a hole at a position where

21

R[[n : skip]] = ({n 7→ idR},>EnvR , idR)

R[[n : x = e]] = ({n 7→ asgnR(n, x, e)},>EnvR , asgnR(n, x, e))

R[[n : break `;]] = ({n 7→ >R},>EnvR [` 7→ idR],>R)

R[[n : (` : n1 : P)]] = let (ϕ, η, r)←R[[P]]
in (ϕ[n 7→ r ∧R η(`)], η[` 7→ >R], r ∧R η(`))

R[[n : (n1 : P1; n2 : P2)]] = let (ϕ1, η1, r1)←R[[P1]], (ϕ2, η2, r2)←R[[P2]]
in (λn′. if ϕ1(n

′) defined then ϕ1(n
′)

if ϕ2(n
′) defined then r1;R ϕ2(n

′)
if n′ = n then r1;R r2 ,

η1 ∧R (r1;R η2),
r1;R r2)

R[[n : if (e) n1 : P1 else n2 : P2]] = let (ϕ1, η1, r1)←R[[P1]], (ϕ2, η2, r2)←R[[P2]]
in (expR(e);R ((ϕ1 ∪ ϕ2)[n 7→ (r1 ∧R r2)]),

expR(e);R (η1 ∧R η2),
expR(e);R (r1 ∧R r2))

Figure 10: Representation for framework of Figure 9.

x has been defined. We can look at, for example, node n6 and immediately find that only z may
have been used without definition. Note also that the fragment as a whole definitely defines w, even
though it is only defined in one branch of the conditional; since the false branch ends in a break,
control can only reach the end of this statement by taking the true branch.

Thus, we can analyze selected nodes without analyzing the entire tree, which can have a salutary
effect on the run-time performance of the analysis.

Again, staging is not fundamentally different in this more complicated framework. One new
wrinkle is that a single plug cannot be used to fill in two holes because its node names would then
not be unique in the larger AST; thus, nodes in plugs need to be uniformly renamed before insertion
in a larger tree, a process that is easily done.

4 Adequate Representations

We now present several analyses. Like variable initialization, all the representations we present here
are exact.

4.1 Reaching Definitions I

The reaching definitions at a point in a program include any assignment statement which may have
been the most recent assignment to a variable prior to this point.

Data = P(Node) ∪ {>}

22

n1: // entire fragment
n2: y = x;

n3: if (z > 10)
n4: {
n6: w = 15;
n7: x = x + y + w;

} else
n5: {
n8: x = 0;
n9: break L;

}

Figure 11: The example program with numbered nodes.

Sets in Data are ordered by reverse inclusion, with ∅ being the element just below >. The operations
are

asgn(n, x, e) = λD.(D \Dx) ∪ {n}
exp(e) = λD.D

where Dx means the definitions of x. The representation is:

R = (P(Var)× P(Node)) ∪ {>R}

If R[[P]] = (V,N), V are all the variables defined in P and N are the assignment statements that
define those variables and may reach the end of P .

idR = (∅, ∅)
asgnR(n, x, e) = ({x}, {n})
expR(e) = (∅, ∅)
(K1, G1);R (K2, G2) = (K1 ∪K2, G2 ∪ (G1 \K2))
(K1, G1) ∧R (K2, G2) = (K1 ∩K2, G1 ∪G2)

abs(K, G) = λD. G ∪ (D \K)

where G \K = {n ∈ G |n is the definition of some x ∈ K}.
Theorem R for reaching definitions I is an exact representation.

Proof In order to show that a representation is exact (i.e. there is an isomorphism between R
and DFFun defined by abs), we need to prove two claims:

1. R is adequate (i.e. abs defines a homomorphism)

2. No two different representations represent the same DFFun function. (i.e. ∀r1, r2 ∈ R, r1 6=
r2 ⇒ abs(r1) 6= abs(r2))

23

Claim 1: R for reaching definitions I is adequate.
Proof:

• abs(>R) = λD.>Data holds by definition.

• abs(idR) = abs((∅, ∅)) = λD.∅ ∪ (D \ ∅) = λD.D = id

• abs(asgnR(n, x, e)) = abs(({x}, {n})) = λD.{n} ∪ (D \ {x}) = λD.{n} ∪ (D \ Dx) =
asgn(n, x, e)

• abs(expR(e)) = abs((∅, ∅)) = λD.∅ ∪ (D \ ∅) = λD.D = exp(e)

• abs((K1, G1);R (K2, G2)) = abs((K1 ∪K2, G2 ∪ (G1 \K2)))
= λD.G2 ∪ (G1 \K2) ∪ (D \ (K1 ∪K2))
= λD.G2 ∪ (G1 \K2) ∪ ((D \K1) ∩ (D \K2)) (1)

abs((K1, G1));abs((K2, G2)) = (λD.G1 ∪ (D \K1)); (λD.G2 ∪ (D \K2))
= λD.G2 ∪ ((G1 ∪ (D \K1)) \K2)
= λD.G2 ∪ (G1 \K2) ∪ ((D \K1) \K2)
= λD.G2 ∪ (G1 \K2) ∪ ((D \K1) ∩ (D \K2))
= (1)

• abs((K1, G1) ∧R (K2, G2)) = abs((K1 ∩K2, G1 ∪G2))
= λD.G1 ∪G2 ∪ (D \ (K1 ∩K2)) (2)

abs((K1, G1)) ∧ abs((K2, G2)) = (λD.G1 ∪ (D \K1)) ∧ (λD.G2 ∪ (D \K2))
= λD.G1 ∪ (D \K1) ∪G2 ∪ (D \K2)
= λD.G1 ∪G2 ∪ (D \ (K1 ∩K2))
= (2)

Therefore, R for reaching definitions I is adequate.

Claim 1: No two different representations represent the same DFFun function.
Proof: Let r1 = (K1, G1), r2 = (K2, G2) and r1 6= r2, which implies K1 6= K2 and/or G1 6= G2.

Assume abs(r1) = abs(r2). Then we have

λD.G1 ∪ (D \K1) = λD.G2 ∪ (D \K2)

which means, for all D ∈ Data,

G1 ∪ (D \K1) = G2 ∪ (D \K2)

Now there are two cases to consider: K1 = K2 and K1 6= K2.

• For the first case, take D to be the empty set. Then we get G1 = G2. But this conflicts with
our initial assumption.

24

• For the second case, without loss of generality, assume K1 \ K2 6= ∅. We can pick D to be
{n} for some n ∈ Node such that n : x = e, x ∈ (K1 \K2) and n 6∈ G1. Then we end up with
the equality

G1 ∪ ∅ = G2 ∪ {n}

which is a conflict because G1 does not include n.

Therefore, there is always a value which conflicts our initial assumption, meaning representations
uniquely represent functions. �

4.2 Available Expressions

Available expressions are those expressions that have been previously computed, such that no
intervening assignment has made their value obsolete. A given statement makes some expressions
available, kills some expressions (by assigning to the variables they contain), and lets others pass
through unmolested.

Data = P(Exp) ∪ {>}

Sets in Data are ordered by set inclusion.

asgn(n, x, e) = λE.(E ∪ {e′ | e′ ∈ sub(e)}) \ Ex

exp(e) = λE.E ∪ {e′ | e′ ∈ sub(e)}

where Ex is the set of expressions that contain x and sub(e) is the set of all subexpressions of e.
The following seems an obvious representation.

R = (P(Var)× P(Exp)) ∪ {>R}

The value (V,E) represents that E is the set of expressions made available by a statement, and
V is the set of variables defined by that statement (so that the statement kills any expressions
containing those variables).

idR = (∅, ∅)
asgnR(n, x, e) = ({x}, {e′ | e′ ∈ sub(e), x 6∈ vars(e′)}
expR(e) = (∅, {e′ | e′ ∈ sub(e)})
(K1, G1);R (K2, G2) = (K1 ∪K2, G2 ∪ (G1 \K2))
(K1, G1) ∧R (K2, G2) = (K1 ∪K2, G1 ∩G2)

abs(K, G) = λE.G ∪ (E \K)

where G \K = {e ∈ G |none of the variables in e occur in K}.
However, this is not an adequate representation for the analysis. Consider the statement: if

(cond) {a = . . .; . . . = a + b} else {}. Suppose that a + b is available before this statement. It
will also be available afterwards. However, since there is an assignment to a in one branch, the

25

statement kills any expression containing a. Furthermore, a+b is not generated in the other branch.
Thus, the only R value that we could assign to this if-statement is ({a}, ∅). But this will kill the
incoming definition of a + b.

To obtain an adequate representation, we need to record that some expressions are guaranteed
to survive a statement, even if they contain variables that are in its kill set, while others will be
killed, as usual. We do this by putting annotations on expressions in the available set:

Definition For set S, SAnnot = {smust | s ∈ S} ∪ {ssur | s ∈ S}. Also define the operation “.” on
annotations: must.must = must and otherwise a.a′ = sur.

Then, this analysis is defined as follows:

R = P(Var)× P(ExpAnnot) ∪ {>R}

idR = (∅, ∅)
asgnR(n, x, e) = ({x}, {e′must | e′ ∈ sub(e), x 6∈ vars(e′)}
expR(e) = (∅, {e′must | e′ ∈ sub(e)})

(K1, G1);R (K2, G2) = (K1 ∪K2,
{emust | emust ∈ G2}∪
{em | esur ∈ G2, em ∈ G1}∪
{esur | esur ∈ G2, em 6∈ G1, vars(e) ∩K1 = ∅}∪
{em | em ∈ G1, en 6∈ G2, vars(e) ∩K2 = ∅})

(K1, G1) ∧R (K2, G2) = (K1 ∪K2,
{em.n | em ∈ G1, en ∈ G2}∪
{esur | em ∈ G1, en 6∈ G2, vars(e) ∩K2 = ∅}∪
{esur | em ∈ G2, en 6∈ G1, vars(e) ∩K1 = ∅})

abs(K, G) = λE.{e | emust ∈ G}∪
{e | esur ∈ G, e ∈ E}∪
{e | e ∈ E, ea 6∈ G, vars(e) ∩K = ∅}

The most interesting case is in the definition of semicolon, when esur ∈ G2 and e ∈ G1 (with
either annotation). In that case, e is included in the available set, even if it is killed by K2. Looking
again at the if statement we discussed above, the true branch gives ({a}, {(a + b)must}), and the
false branch gives (∅, ∅). The meet of these values is ({a}, {(a+ b)sur}). This value summarizes the
effect of the if statement correctly: if (a + b)must is in the incoming available set, then it will be in
the resulting available set.

Annotations are used again in the alternative representation for reaching definitions and for
constant propagation.

Theorem R for available expressions is an exact representation.

Proof The proof is similar to the corresponding proof for reaching definitions I in Section 4.1,
but involves more cases to handle because of the annotations. �

4.3 Reaching Definitions II

Using annotations, we give an alternative representation for reaching definitions.

26

R = (Var→ P(Node)Annot) ∪ {>R}

idR = λv.∅sur

asgn(n, x, e) = (λv.∅sur)[x 7→ {n}must]
exp(e) = λv.∅sur

S1;R S2 = λx. let pm ← S1(x), qn ← S2(x)
in if n = must then qn else (p ∪ q)m

S1 ∧R S2 = λx.let pm ← S1(x), qn ← S2(x)
in (p ∪ q)m.n

We assume that S(x) defaults to ∅sur. Finally, the abstraction function is

abs(S) = λD.{n ∈ D |n : x = e and S(x) = psur} ∪ {n ∈ p |n : x = e and S(x) = pm}

Theorem R for reaching definitions II is an exact representation.

Proof The proof is similar to the corresponding proof for reaching definitions I in Section 4.1,
but involves more cases to handle because of the annotations. �

4.4 Constant Propagation

The framework can be instantiated for constant propagation with the following definitions.

Data = (Var→ Z>⊥) ∪ {>R}

Function values in Data are ordered under the usual pointwise ordering.

asgn(n, x, e) = λM. if isConstant(e, M) then M [x 7→ consVal(e, M)]
else M [x 7→ ⊥]

exp(e) = λM.M

For the representation, R is a function giving values for variables. However, these values are
actually sets of variables, integer literals, and binary expressions, meaning “the set will be reduced
to a constant c, if every element it contains eventually reduces to the constant c”. Using this set, we
effectively delay the meet operation, and gradually complete it as information becomes available.

R = V ar → CSAnnot

CS = P (Exp ∪ {⊥})

We assume that, for all C ∈ CS, if ⊥ ∈ C then C = {⊥}; if there exist two integers i1, i2 ∈ C
such that i1 6= i2 then C = {⊥}. In the following definitions, M1 and M2 ∈ Data,C and C ′ ∈ CS, m
and n ∈ Annot.

27

idR = λv.∅sur

asgnR(n, x, e) = (λv.∅sur)[x 7→ {e}must]
expR(e) = λv.∅sur

M1 ∧R M2 = λx.M1(x) ∧R M2(x)
= λx.let Cm ←M1(x), C′

n ←M2(x)
in (C ∪ C′)m.n

M1;R M2 = λx.semicolon(M1, M1(x), M2(x))

semicolon(M, Cm, C′
must) = update(M, C′)must

semicolon(M, Cm, C′
sur) = (update(M, C′) ∪ C)m

The function update(M,C) checks the constant map M for each variable found in the elements
of the set C, and if there exists a mapping in M for that variable, uses it to update C. For example,
let M(y) = {w, z}, and C = {y + 1}. Then update(M,C) returns {w + 1, z + 1}.

The abs function, where i ∈ Z, is

abs(M) = λS.λx.let Cmust ← semicolon(S, S(x)must, M(x))
in if C = {i} then i else ⊥

Theorem R for constant propagation is an exact representation.

Proof We provide the sketch of the proof here. We first show that R is adequate.
• abs(>R) = λM.>Data holds by definition.

• abs(idR) = abs(λv.∅sur) = λS.λv. let Cmust ← semicolon(S, S(v)must, ∅sur)
in if C = {i} then i else ⊥

= λS.λv. let Cmust ← S(v)must

in if C = {i} then i else ⊥
= λS.λv.S(v)
= λS.S
= id

• abs(asgnR(n, x, e)) = abs(λv.∅sur[x 7→ {e}must])
= λS.λv. let Cmust ← semicolon(S, S(v)must, (λv.∅sur[x 7→ {e}must])(v))

in if C = {i} then i else ⊥

= λS.λv.


S(v) if v 6= x
update(S, {e}) if v = x

= λS.S[x 7→ if isConstant(e, S) then consVal(e, M) else ⊥]
= asgn(n, x, e)

• abs(expR(e)) = abs(λv.∅sur) = λS.S = exp(e)

• abs(M1 ∧R M2) = abs(λv.M1(v) ∧R M2(v))
= λS.λv. let Cmust ← semicolon(S, S(v)must, M1(v) ∧R M2(v))

in if C = {i} then i else ⊥
= (1)

and

abs(M1) ∧ abs(M2) =

„
λS.λv.let Cmust ← semicolon(S, S(v)must, M1(v))

in if C = {i} then i else ⊥

«
∧„

λS.λv.let Cmust ← semicolon(S, S(v)must, M2(v))
in if C = {i} then i else ⊥

«
= (2)

28

Showing that (1) = (2) is a straightforward case analysis based on the annotations of the values
obtained from M1(v) and M2(v).

• abs(M1;R M2) = abs(λv.semicolon(M1, M1(v), M2(v)))
= λS.λv. let Cmust ← semicolon(S, S(v)must, semicolon(M1, M1(v), M2(v)))

in if C = {i} then i else ⊥
= (3)

and

abs(M1);abs(M2) =

„
λS.λv.let Cmust ← semicolon(S, S(v)must, M1(v))

in if C = {i} then i else ⊥

«
;„

λS.λv.let Cmust ← semicolon(S, S(v)must, M2(v))
in if C = {i} then i else ⊥

«
= (4)

Showing that (3) = (4) is a straightforward case analysis based on the annotations of the values
obtained from M1(v) and M2(v).

Next step of the proof requires showing that the representations uniquely represent functions. This part

in essence follows the same principles of the corresponding proof of reaching definitions I (Section 4.1). �

4.5 Type Checking

Type checking is the most complicated of our analyses (see [9] for a full presentation). It requires
that the framework be extended to accommodate declarations and scopes:

F [[n : int x]] = λ(ϕ, η, d). let d′ ← intDecl(n, x)(d)
in (ϕ[n 7→ d′], η, d′)

F [[n : {n1 : P}]] = λ(ϕ, η, d). let η′ ← map(beginScope(n), η),
(ϕ1, η1, d1)← F [[n1 : P]](ϕ, η′, beginScope(n)(d))

in let d′ ← endScope(d1)
in (ϕ1[n 7→ d′],map(endScope, η1), d

′)

The Data values consist of a stack of type environments, to accommodate different levels of
scopes. In the lattice, a shorter stack appears below a longer one. If the stack frames are of the
same length, ordering is done pairwise among the type environments in the frames.

Data = TySt ∪ {error}
TySt = ((Node ∪ {?})× TyEv)∗

TyEv = V ar ◦→Type
Type = {int,bool}

asgn(n, x, e) = λΓ. if type(x, Γ) = type(e, Γ) then Γ else error
intDecl(n, x) = λΓ. if Γ(x) is defined then error else add(Γ, x, int)
exp(e) = λΓ. if type(e, Γ) = bool then Γ else error
beginScope = λn.λΓ.[Γ, (n, ε)]
endScope = λΓ. let [Γ′, (n, γ)]← Γ in Γ′

The star in TySt denotes the initial frame of the stack.
Summarizing a node requires that we remember certain “proof obligations” which we may not

be able to discharge until we have the entire program together. These obligations are of three kinds:

29

ensuring that two variables have the same type; ensuring that a given variable has a given type;
and ensuring that a variable is not being redeclared. An R value, in addition to a stack of type
environments, consists of a set Oblg which can carry the three kinds of obligations.

R = TySt×Oblg
Oblg = P(V ar2 ∪ (V ar × Type) ∪ V ar) ∪ {error}

The appearance of an expression or assignment statement generates a set of obligations:

asgnR(n, x, e) = ([],mkOblg(x, e))
expR(e) = ([],mkOblg(e,bool))
intDeclR(n, x) = ([(?, ε[x 7→ int])] , {x})

where mkOblg is an overloaded function defined by:

mkOblg(x, y) = (x, y)
mkOblg(x, e1 ⊕ e2) = mkOblg(e1, ltype(⊕)) t mkOblg(e2, rtype(⊕)) t (x, type(⊕))
mkOblg(x, T) = (x, T)
mkOblg(e1 ⊕ e2, T) = if type(⊕) = T then

mkOblg(e1, ltype(⊕)) t mkOblg(e2, rtype(⊕))
else error

where ⊕ denotes any binary operation. t is union if both sides are not the special error value, but
when one of the arguments is error, then the error value is propagated. ltype, rtype, type denote
the expected type of the left argument, right argument, and return value, of the operator.

We define the meet and semicolon operations as

(Γ, ∆);R (Γ′, ∆′) = let Γ′′ := sequence(Γ, Γ′), ∆′′ := sequence(∆, ∆′, Γ)
in (Γ′′, ∆′′)

where sequence : TySt× TySt → TySt is

sequence(Γ1, Γ2) = concatenate(Γ1, Γ2)

and sequence : Oblg ×Oblg × TySt → Oblg is

sequence(∆1, ∆2, Γ) = {δ : δ ∈ ∆1 or, δ ∈ ∆2 and Γ 6` δ}

For meet we have

(Γ, ∆) ∧R (Γ′, ∆′) = (longestCommonPrefix(Γ, Γ′), ∆ ∪∆′)

Finally, in the abs function, if the obligations imposed by the representation are not satisfied
by the incoming type stack, we return error, otherwise we just sequence the incoming type stack
with the stack in the representation.

abs(ΓR, ∆R) = λΓ. let (Γ′, ∆′)← (Γ, ∅);R (ΓR, ∆R)
in if ∆′ = ∅ then Γ′ else error

30

B[[skip;]] = id

B[[x = e;]] = λ(η, d).(η, asgn(x, e)(d))

B[[break `;]] = λ(η, d).(η, η(`))

B[[` : P]] = λ(η, d). let (η′, d′)← B[[P]](η[` 7→ d], d)
in (η′[` 7→ >Data], d′)

B[[P1; P2]] = B[[P2]];B[[P1]]

B[[if(e) P1 else P2]] = λ(η, d). let (η1, d1)← B[[P1]](η, d)
(η2, d2)← B[[P2]](η, d)

in (η, exp(e)(d1 ∧ d2))

Figure 12: Backward analysis framework

R[[skip]] = (>EnvR , idR)

R[[x = e]] = (>EnvR , asgnR(x, e))

R[[break `;]] = (>EnvR [` 7→ idR], >R)

R[[` : P]] = let (η, r)←R[[P]]
in (η[` 7→ >R], r ∧R η(`))

R[[P1; P2]] = let (η1, r1)←R[[P1]], (η2, r2)←R[[P2]]
in (η1 ∧R (η2 ;R r1), r2 ;R r1)

R[[if (e) P1 else P2]] = (R[[P1]] ∧R R[[P2]]) ;R expR(e)

Figure 13: Representation for framework of Figure 12.

Theorem R for type checking is an exact representation.

Proof This proof follows the same structure of the corresponding proof for constant propaga-
tion, and is omitted. �

5 Backward Analysis Framework

We can define a similar framework for backwards analysis, although break statements significantly
complicate matters. Due to space constraints, we only provide the intermediate framework here. It
is presented in Figure 12, and the representation in Figure 13. The abstraction function is

absE(ηR, r) = λ(η, d).(η,abs(r)(d) ∧
^

`∈Label

abs(ηR(`))(η(`)))

Theorem For all P , if the DFFun functions are distributive (i.e. f(d ∧ d′) = f(d) ∧ f(d′)),
absE(R[[P]]) = B[[P]].

31

Proof The proof is by induction on the structure of P .

• skip :

absE(R[[skip]]) = absE((>EnvR , idR))

= λ(η′, d′).(η′,abs(idR)d′ ∧
^

`′∈Label

abs(>EnvR(`′))(η′(`′)))

= λ(η′, d′).(η′, d′ ∧
^

`′∈Label

>Data)

= λ(η′, d′).(η′, d′)

= B[[skip]]

• x = e

absE(R[[x = e]]) = absE((>EnvR , asgnR(x, e)))

= λ(η′, d′).(η′,abs(asgnR(x, e))d′ ∧
^

`′∈Label

abs(>EnvR(`′))(η′(`′)))

= λ(η′, d′).(η′, asgn(x, e)d′ ∧
^

`′∈Label

>Data)

= λ(η′, d′).(η′, asgn(x, e)d′)

= B[[x = e]]

• break `

absE(R[[break `]]) = absE((>EnvR [` 7→ idR], >R))

= λ(η′, d′).(η′,abs(>R)d′ ∧
^

`′∈Label

abs(>EnvR [` 7→ idR](`′))(η′(`′)))

= λ(η′, d′).(η′, >Data ∧ abs(idR)(η′(`)))

= λ(η′, d′).(η′, η′(`))

= B[[break `]]

• ` : P
Let (η, r) = R[[P]]. By the induction hypothesis we have

B[[P]] = absE(R[[P]]) = absE((η, r))

= λ(η′, d′).(η′,abs(r)d′ ∧
^

`′∈Label

abs(η(`′))(η′(`′)))

Now we work on ` : P .

absE(R[[` : P]]) = absE((η[` 7→ >R], r ∧R η(`)))

= λ(η′, d′).(η′,abs(r ∧R η(`))d′ ∧
^

`′∈Label

abs(η[` 7→ >R](`′))(η′(`′)))

= λ(η′, d′).(η′,abs(r)d′ ∧ abs(η(`))d′ ∧
^

`′∈Label

abs(η[` 7→ >R](`′))(η′(`′)))

= λ(η′, d′).(η′,abs(r)d′ ∧ abs(η(`))d′ ∧
^

`′∈Label,`′ 6=`

abs(η(`′))(η′(`′))) (1)

32

And

B[[` : P]] = λ(η′, d′). let (η1, d1)← B[[P]](η′[` 7→ d′], d′)

in (η1[` 7→ >Data], d1)

= λ(η′, d′). let (η1, d1)← (η′[` 7→ d′],abs(r)d′ ∧
^

`′∈Label

abs(η(`′))(η′[` 7→ d′](`′)))

in (η1[` 7→ >Data], d1)

= λ(η′, d′).(η′[` 7→ >Data], abs(r)d′ ∧
^

`′∈Label

abs(η(`′))(η′[` 7→ d′](`′)))

= λ(η′, d′).(η′[` 7→ >Data], abs(r)d′ ∧ abs(η(`))d′ ∧
^

`′∈Label,`′ 6=`

abs(η(`′))(η′(`′))) (2)

Because we require all the programs to be legal, incoming environment η′ has ` mapped to >Data.
This means that η′ = η′[` 7→ >Data]. So

(2) = λ(η′, d′).(η′, abs(r)d′ ∧ abs(η(`))d′ ∧
^

`′∈Label,`′ 6=`

abs(η(`′))(η′(`′)))

= (1)

• P1; P2

Let (η1, r1) = R[[P1]] and (η2, r2) = R[[P2]]. By the induction hypothesis we have

B[[P1]] = absE(R[[P1]])

= absE((η1, r1))

= λ(η′, d′).(η′,abs(r1)d
′ ∧

^
`′∈Label

abs(η1(`
′))(η′(`′)))

and

B[[P2]] = absE(R[[P2]])

= absE((η2, r2))

= λ(η′, d′).(η′,abs(r2)d
′ ∧

^
`′∈Label

abs(η2(`
′))(η′(`′)))

Now we work on P1; P2.

absE(R[[P1; P2]]) = absE((η1 ∧R (η2;R r1), r2;R r1))

= λ(η′, d′).(η′,abs(r2;R r1)d
′ ∧

^
`′∈Label

abs((η1 ∧R (η2;R r1))(`
′))(η′(`′)))

= λ(η′, d′).(η′,abs(r2;R r1)d
′ ∧

^
`′∈Label

(abs(η1(`
′))(η′(`′)) ∧ abs(η2(`

′);R r1)(η
′(`′)))) (3)

33

And

B[[P1; P2]] = λ(η′, d′).(B[[P2]];B[[P1]])(η
′, d′)

= λ(η′, d′).B[[P1]](B[[P2]](η
′, d′))

= λ(η′, d′).B[[P1]](η
′,abs(r2)d

′ ∧
^

`′∈Label

abs(η2(`
′))(η′(`′)))

= λ(η′, d′).(η′,abs(r1)(abs(r2)d
′ ∧

^
`′∈Label

abs(η2(`
′))(η′(`′))) ∧

^
`′∈Label

abs(η1(`
′))(η′(`′)))

= λ(η′, d′).(η′,abs(r2;R r1)d
′ ∧

^
`′∈Label

abs(η2(`
′);R r1)(η

′(`′)) ∧
^

`′∈Label

abs(η1(`
′))(η′(`′)))

= λ(η′, d′).(η′,abs(r2;R r1)d
′ ∧

^
`′∈Label

(abs(η2(`
′);R r1)(η

′(`′)) ∧ abs(η1(`
′))(η′(`′))))

= (3)

We note that we used the distributivity property above.

• if(e) P1 else P2

Let (η1, r1) = R[[P1]] and (η2, r2) = R[[P2]]. By the induction hypothesis we have

B[[P1]] = absE(R[[P1]])

= absE((η1, r1))

= λ(η′, d′).(η′,abs(r1)d
′ ∧

^
`′∈Label

abs(η1(`
′))(η′(`′)))

B[[P2]] = absE(R[[P2]])

= absE((η2, r2))

= λ(η′, d′).(η′,abs(r2)d
′ ∧

^
`′∈Label

abs(η2(`
′))(η′(`′)))

Now we work on if(e) P1 else P2.

absE(R[[if(e) P1 else P2]]) = absE(((η1 ∧R η2);R expR(e), (r1 ∧R r2);R exp(e)))

= λ(η′, d′).(η′,abs((r1 ∧R r2);R exp(e))d′ ∧
^

`′∈Label

abs(((η1 ∧R η2);R expR(e))(`′))(η′(`′)))

= λ(η′, d′).(η′, exp(e)(abs(r1 ∧R r2)d
′) ∧ exp(e)

„ ^
`′∈Label

abs(η1(`
′) ∧R η2(`

′))(η′(`′))

«
) (4)

Let (η′1, d
′
1) = B[[P1]](η

′, d′) and (η′2, d
′
2) = B[[P2]](η

′, d′). Then

B[[if(e) P1 else P2]] = λ(η′, d′).(η′, exp(e)(d1 ∧ d2))

= λ(η′, d′).(η′, exp(e)((abs(r1)d
′ ∧

^
`′∈Label

abs(η1(`
′))(η′(`′))) ∧

(abs(r2)d
′ ∧

^
`′∈Label

abs(η2(`
′))(η′(`′)))))

= λ(η′, d′).(η′, exp(e)(abs(r1 ∧R r2)d
′ ∧

^
`′∈Label

abs(η1(`
′) ∧R η2(`

′))(η′(`′))))

= λ(η′, d′).(η′, exp(e)(abs(r1 ∧R r2)d
′) ∧ exp(e)

„ ^
`′∈Label

abs(η1(`
′) ∧R η2(`

′))(η′(`′))

«
)

= (4)

34

B[[n : skip;]] = id

B[[n : x = e;]] = λ(ϕ, η, d).(ϕ[n 7→ asgn(x, e)(d)], η, asgn(x, e)(d))

B[[n : break `;]] = λ(ϕ, η, d).(ϕ[n 7→ η(`)], η, η(`))

B[[n : (` : n1 : P)]] = λ(ϕ, η, d). let (ϕ′, η′, d′)← B[[n1 : P]](ϕ, η[` 7→ d], d)
in (ϕ′[n 7→ d′], η′[` 7→ >Data], d′)

B[[n : (n1 : P1; n2 : P2)]] = λ(ϕ, η, d). let (ϕ′, η′, d′)← (B[[n2 : P2]];B[[n1 : P1]])(ϕ, η, d)
in (ϕ′[n 7→ d′], η′, d′)

B[[n : if(e) n1 : P1 else n2 : P2]] = λ(ϕ, η, d). let (ϕ1, η1, d1)← B[[n1 : P1]](ϕ, η, d)
(ϕ2, η2, d2)← B[[n2 : P2]](ϕ, η, d)

in ((ϕ1 ∪ ϕ2)[n 7→ exp(e)(d1 ∧ d2)], η, exp(e)(d1 ∧ d2))

Figure 14: Backward analysis framework

We note that we used the distributivity property above.

�

For the full framework which builds a node map at the top node, the intermediate framework
can again be extended naturally as in forward analysis (Figure 9). However, defining R is not that
straightforward. We need to keep an environment for every node in the node-map. So the type of
the representation function is

R : Pgm→ (Node→ (EnvR ×R))× EnvR ×R

Analogous to how R[[P1;P2]] in the forward representation function of Figure 10 updates the
node-map for each node in P1 and P2, R[[L : P]] and R[[P1;P2]] in the full backward representation
function update each mapping in their node-maps as well. Full versions of B and R are given in
Figures 14 and 15, respectively. In Figure 15, closeLabel is defined as

closeLabel(`, ϕ) = λn. let (η, r)← ϕ(n) in (η[` 7→ >R], r ∧R η(`))

The abs function for the full backward framework is defined as

absF (ϕ, η, r)

= λ(ϕ′, η′, d′). let ϕ′′ ← λn. let (η̄, r̄)← ϕ(n)

in abs(r̄)(d′) ∧
^

`∈Label

abs(η̄(`))(η′(`))

in (ϕ′ ∪ ϕ′′, η′, abs(r)(d′) ∧
^

`∈Label

abs(η(`))(η′(`)))

Theorem For all P , if the DFFun functions are distributive (i.e. f(d ∧ d′) = f(d) ∧ f(d′)),
absF (R[[P]]) = B[[P]].

Proof The proof is similar to, but notationally more complex than, the corresponding proof for
the intermediate framework, on page 32. �

35

R[[n : skip]] = ({n 7→ (>EnvR , idR)}, >EnvR , idR)

R[[n : x = e]] = ({n 7→ (>EnvR , asgnR(x, e))}, >EnvR , asgnR(x, e))

R[[n : break `;]] = ({n 7→ (>EnvR [` 7→ idR],>R)}, >EnvR [` 7→ idR], >R)

R[[n : (` : n1 : P)]] = let (ϕ, η, r)←R[[P]]
in (closeLabel(`, ϕ[n 7→ (η, r)]), η[` 7→ >R], r ∧R η(`))

R[[n : (n1 : P1; n2 : P2)]] = let (ϕ1, η1, r1)←R[[n1 : P1]], (ϕ2, η2, r2)←R[[n2 : P2]]
in (λn′. if ϕ2(n

′) defined then ϕ2(n
′)

if ϕ1(n
′) defined then let (η′, r′)← ϕ1(n

′)
in (η′ ∧R (η2;R r′), r2;R r′)

if n′ = n then (η1 ∧R (η2 ;R r1), r2 ;R r1),
η1 ∧R (η2 ;R r1), r2 ;R r1)

R[[n : if (e) n1 : P1 else n2 : P2]] = let (ϕ1, η1, r1)←R[[n1 : P1]], (ϕ2, η2, r2)←R[[n2 : P2]]
in ((ϕ1 ∪ ϕ2)[n 7→ (r1 ∧R r2);R expR(e)],

(η1 ∧R η2);R expR(e),
(r1 ∧R r2);R expR(e))

Figure 15: Representation for framework of Figure 14.

5.1 Live Variables

Data is defined as
Data = (P(Var)) ∪ {>}

and is ordered by reverse set inclusion.

asgn(n, x, e) = λL.(L \ {x}) ∪ vars(e)
exp(e) = λL.L ∪ vars(e)

R = P(Var)2

asgnR(n, x, e) = ({x}, vars(e))
expR(e) = (∅, vars(e))

Definitions of idR, ;R, ∧R and abs are the same as in reaching definitions I (Section 4.1).

5.2 Very Busy Expressions

The definitions, except the following, are the same as in available expressions.

asgn(n, x, e) = λE.(E \ Ex) ∪ sub(e)
asgnR(n, x, e) = ({x}, {e′must | e′ ∈ sub(e)})

6 Performance

We are interested in the run-time costs of two methods of doing static analysis. One method is to
fill in the holes and analyze the complete program at run time (the base analysis); the other is to

36

HotSpot libgcj Kaffe

Sample Program RD CP TC RD CP TC RD CP TC

Big-plug 2.10 1.19 3.65 7.43 3.78 5.15 9.73 5.23 5.63

Small-plug-A 2.17 1.12 3.50 6.96 3.91 4.28 10.7 4.62 5.55

Small-plug-B 2.40 1.14 2.97 4.78 3.41 4.39 7.03 4.65 5.40

Two-plug 1.67 1.17 1.66 2.59 2.19 2.90 3.83 2.83 3.18

Fib1 ([7]) 1.10 1.07 1.31 1.24 0.93 1.17 1.64 1.26 1.05

Fib2 ([7]) 1.23 1.16 0.67 1.48 0.99 1.18 2.02 1.47 1.05

Sort ([5]) 1.48 1.21 1.92 1.64 1.08 1.59 1.86 1.29 1.66

Huffman ([7]) 1.11 1.29 0.30 1.04 0.93 1.02 1.31 1.30 0.95

Marshalling 1 ([2]) 12.37 3.93 28.27 34.83 15.42 9.34 49.64 18.92 12.04

Marshalling 2 ([2]) 2.01 1.75 16.01 1.83 1.33 1.86 2.59 2.27 1.47

Table 1: Benchmarking results. The numbers show the ratio of the base case to the staged case.

use our staged analysis.
The benchmarks we present are of two kinds: artificial benchmarks illustrate how performance

is affected by specific features in a program; realistic benchmarks are program generators drawn
from previous publications.

For some analyses, one needs only the dataflow information for the root node; examples are
uninitialized variables and type-checking. For most, we need the information at many, though not
necessarily all, nodes. (Note that the base case must visit every node at run-time, even if it is only
interested in a subset.)

We implemented the framework in Java. In Table 1, we present the performance of three
analyses, on a variety of benchmark programs, as ratios between the base and the staged analyses;
higher numbers represent greater speed-up. We run the experiments in three different Java runtime
environments: Sun’s HotSpot, GNU’s libgcj, and Kaffe. For reaching definitions (RD) and constant
propagation (CP), we perform the analysis at every assignment statement (roughly half the nodes
in the programs). For type checking (TC), we analyze only the top node.

We briefly describe the benchmarks used in Table 1.

• Big-plug is a small program with one hole, filled in by a large plug.

• Small-plug-A is a large program with a hole near the beginning, filled in by a small plug.

• Small-plug-B is a large program with a hole near the end, filled in by a small plug.

• Two-plug is a medium-sized program with two holes, filled in by medium-sized plugs.

• Fib1 and Fib2 are two versions of a Fibonacci function divided into small pieces for exposition
[7].

• Sort is a generator that produces a sort function by inlining the comparison operation [5].

• Huffman is a generator that turns a Huffman tree into a sequence of conditional statements
[7].

37

• Marshalling 1 is part of a program that produces customized serializers in Java [2]; charac-
teristics much like Big-plug.

• Marshalling 2 is a different part of the same program; has many holes and many small plugs.

As often happens, the invented benchmark examples show the best performance improvements.
Our approach does result in slow-downs in some cases; the worst cases are Fib2 and Huffman, both
of which consist of many holes and small plugs. Overall, the results are quite promising.

7 Conclusions

We have presented a framework for static analysis of ASTs that allows these analyses to be staged
(when the representations are adequate). The method has application to run-time program genera-
tion: by optimizing the static analysis of programs, it can speed up overall run-time code generation
time.

We are aware that the kinds of analyses we have presented are not normally done on source
code. One area for future work is to explore analyses that occur naturally at source level; the
type-checking analysis is one example. Another is to adapt our approach to CFGs. However, CFGs
with multiple exits are difficult to use as plugs. An alternative is to use an intermediate language
that is itself structured.

Acknowledgements

The authors would like to thank the anonymous reviewers of GPCE ’06 for their helpful comments.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: principles, techniques, and tools. Addison-Wesley,
1986.

[2] B. Aktemur, J. Jones, S. Kamin, L. Clausen. Optimizing Marshalling by Run-time Program
Generation. GPCE ’05, Tallinn, Estonia, 2005.

[3] C. Chambers. Staged compilation. PEPM ’02, Portland, OR, USA, 2002.

[4] K. Czarnecki, J. O’Donnell, J. Striegnitz, W. Taha. DSL Implementation in MetaOCaml,
Template Haskell, and C++. DSPG ’04, Dagstuhl, Germany, 2004

[5] S. Kamin, M. Callahan, L. Clausen. Lightweight and Generative Components I: Source-Level
Components. GCSE ’99, Erfurt, Germany, 1999.

[6] S. Kamin, L. Clausen, A. Jarvis. Jumbo: run-time code generation for java and its applications.
CGO ’03, Washington, DC, USA, 2003.

[7] S. Kamin. Program generation considered easy. PEPM ’04, Verona, Italy, 2004.

[8] S. Kamin, B. Aktemur, M. Katelman. Staging Static Analyses for Program Generation. GPCE
’06, Portland, OR, USA, 2006.

38

[9] M. Katelman Staged Static Analyses and Run-time Program Generation M.S. Thesis, Com-
puter Science Dept., Univ. of Illinois, 2006.

[10] R. Kramer, R. Gupta, M. Soffa. The Combining DAG: A Technique for Parallel Data Flow
Analysis. IEEE Trans. Parallel Distrib. Syst. 5(8), 1994

[11] T. Marlowe, B. Ryder. An efficient hybrid algorithm for incremental data flow analysis. POPL
’90, San Francisco, CA, USA, 1990

[12] Y. Oiwa, H. Masuhara, A. Yonezawa. Type safe dynamic code generation in java. JSST
Workshop on Programming and Programming Languages (PPL2001), 2001.

[13] M. Poletto, W. Hsieh, D. Engler, M. Kaashoek. C and tcc: a language and compiler for
dynamic code generation. ACM TOPLAS, 21(2):324–369, 1999.

[14] T. Reps, S. Horwitz, M. Sagiv. Precise interprocedural dataflow analysis via graph reachability.
POPL ’95, San Fransisco, CA, USA, 1995

[15] A. Rountev, S. Kagan, T. Marlowe. Interprocedural Dataflow Analysis in the Presence of Large
Libraries. CC ’06, Vienna, Austria, 2006

[16] B. Ryder, M. Paull. Incremental data-flow analysis algorithms. ACM TOPLAS, 10(1):1–50,
1988.

[17] M. Sharir, A. Pnueli. Two approaches to interprocedural dataflow analysis. In Program Flow
Analysis: Theory and Applications, 189–234, 1981.

[18] F. Smith, D. Grossman, G. Morrisett, L. Hornof, T. Jim. Compiling for runtime code genera-
tion. Technical report, Department of Computer Science, Cornell University, 2000.

39

