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1. INTRODUCTION
Sparse Matrix Vector Multiplication (SpMV) is the kernel operation used in many it-
erative methods to solve large linear systems of equations. Sparse matrices appear
in many problem domains. In the scientific or engineering domain they are obtained
by discretization of partial differential equations, and represent physical phenomena,
such as heat, electro dynamics, or quantum mechanics. They can also be obtained from
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graphs, in which case they represent the internet structure or social interactions. For
iterative solutions, various approaches, such as Krylov subspace methods, can be used.
Usually, they converge after a large number of iterations. Thus, they are often com-
bined with preconditioners to decrease the number of iterations. Preconditioning can
increase the running time of each iteration, but the total runtime is reduced. The prob-
lem with preconditioning is that finding a good preconditioner is usually viewed as a
combination of art and science [Saad 2003]. For some matrices, there is no good precon-
ditioner. Thus, the problem of generating efficient code for SpMV, the kernel operation
in these iterative solvers, is a critical problem; it has been and continues to be exten-
sively researched [D’Azevedo et al. 2005; Jain 2008; Buluç et al. 2009; Buluç et al.
2011; Kourtis et al. 2011; Williams et al. 2009; Belgin et al. 2011; Mellor-Crummey
and Garvin 2004; Bell and Garland 2009; Venkat et al. 2015; Liu et al. 2013].

In a previous work [Kamin et al. 2014] we investigated how much speedup can be
obtained by applying runtime specialization for the SpMV operation (w ← w + Av).
In that work, we experimented with five methods requiring specialization and com-
pared them with methods that did not, including Intel R© Math Kernel Library (Intel R©

MKL) [MKL 2013], and other state of the art libraries such as CSB [Buluç et al. 2009],
BiCSB [Buluç et al. 2011] and CSX [Kourtis et al. 2011], whose code was available
online. We found that, in most cases, a method using runtime specialization was the
fastest. However, we also found that no single method is the best, as the best method
varies across machines and across matrices. While offline code generation is possible
for many problem domains (e.g. when the matrix, or at least its pattern, is known
beforehand), in the general case, runtime specialization can only be profitable if:

— the best specialization method can be predicted without having to generate and run
all the code variants;

— code of the method predicted to be the best can be generated quickly.

In this paper, we address the issues above and show that runtime specialization of
SpMV for real-world matrices is feasible. Our contributions are three-fold:

— We investigate how accurately we can predict the best SpMV method for a given ma-
trix. We use a Support Vector Machine (SVM) machine-learning technique to predict
the best among 6 methods (including Intel MKL as the baseline method)

— We give a list of matrix features to determine the performance of SpMV. Several of
these features are unique to our work. We also experiment with an early-exit strategy
when extracting the matrix features to decrease matrix analysis costs significantly.

— We developed an end-to-end special-purpose compiler that takes a matrix and gener-
ates specialized executable code for the X86 64 architecture at runtime. We show that
the runtime costs and break-even points are low enough that runtime specialization
of SpMV for many real-world matrices is feasible.

The novelty of our work is not in the use of autotuning for SpMV; that problem has
been studied extensively, in particular for selecting a matrix storage format (see Sec-
tion 8 for related work). We also do not claim that we generate aggressively optimized
SpMV code, for which there also exist outstanding body of work. The novelty of our
work lies in using autotuning for selecting a runtime specialization method, defining
the matrix features for this purpose, and in generating long SpMV code very rapidly.
These make runtime specialization of SpMV profitable in practice.

Organization: In Section 2, we explain the SpMV specialization methods we evalu-
ated. Section 3 presents how we do code generation. Section 4 describes the autotuning
approach we applied. Our experimental setup and results are presented in Sections 5
and 6, respectively. In Section 7 we evaluate the latency incurred by runtime special-
ization. Section 8 gives related work. Finally, Section 9 presents our conclusions.
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2. BACKGROUND: SPECIALIZATION METHODS CONSIDERED
In this section, we briefly describe the methods that we use to specialize the SpMV
code. For performance comparison, we use Intel MKL’s SpMV as the baseline imple-
mentation. We could not use the AMD Core Math Library (ACML) [ACML 2013] on
our testbed machine that has an AMD CPU, because ACML lacks SpMV.

In the discussion of the methods below, we assume A is an N×N matrix, with NZ
nonzeros. In the code snippets, the rows array contains the row indices, the cols array
contains the column indices, and the vals array contains the nonzero elements of the
matrix; v is the input vector, w is the output vector. The type of rows and cols is int*;
the type of vals, v, and w is double*.

We feed matrices into Intel MKL in Compressed Sparse Row (CSR) format. In this
format, the vals array contains NZ double precision floating-point values; the cols ar-
ray contains the column indices of nonzero elements (NZ integers); the rows array con-
tains, for each row, the starting/ending index of elements in the cols and vals arrays
(N+1 integers). Hence, the data size is (NZ+N+1)×4 + NZ×8 bytes, assuming 4-byte
integers. The interpretation and size of the arrays change according to the method.

CSRbyNZ
This method groups the rows of A according to the number of nonzeros they contain
(i.e. the row length) and generates a loop for each group of rows [Mellor-Crummey
and Garvin 2004]. This method gains its efficiency from long basic blocks in each loop,
which can be compiled efficiently. It provides, in effect, a perfect unrolling of the inner
loop of CSR, and so reduces loop overhead, which is important in SpMV [Goumas et al.
2008]. CSRbyNZ would generate the following code for 100 rows with a length of 3:

for (int a = 0, b = 0; a < 100; a++, b += 3) {
int row = rows[a];
w[row] += vals[b]*v[cols[b]] + vals[b+1]*v[cols[b+1]] + vals[b+2]*v[cols[b+2]];

}
rows += 100; cols += 100*3; vals += 100*3; // Set the pointers for the next loop.

Data order: CSRbyNZ reorders the matrix data to group rows with the same length
together. Because of reordering, accesses to the output vector w are not sequential.
Data size: The rows array contains the indices of nonempty rows. Hence, the data size
of the matrix is the same as CSR, except for when there are rows with no elements.
Code size: Since this method generates one for-loop for each row length, and the body of
a loop contains as many multiplications as the row length, the code size is proportional
to the number of distinct row lengths and their sum.

RowPattern
This method analyzes the matrix to find the exact pattern of nonzero entries in each
row of A, and generates, for each pattern, a loop that handles all the rows that have
that pattern. Specifically, the pattern of each row is defined as the location of the nonze-
ros with respect to the main diagonal. So, if row r has nonzeros in columns r − 2, r,
r + 1, and r + 3, its pattern would be {−2, 0, 1, 3}. Sample code corresponding to this
row pattern, assuming there are 100 rows with that pattern, is given below.

for (int a = 0, b = 0; a < 100; a++, b += 4) {
int row = rows[a];
w[row] += vals[b] * v[row-2] + vals[b+1] * v[row]

+ vals[b+2] * v[row+1] + vals[b+3] * v[row+3];
}
rows += 100; vals += 100*4; // Set the pointers for the next loop.
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Data order: RowPattern reorders the matrix data to group rows with the same pattern
together; similar to CSRbyNZ, accesses to the output vector w are not sequential.
Data size: RowPattern provides matrix data reduction by making the column indices
explicit in the code, and thus eliminating the need to store column indices. This is a
saving of NZ-many integer values. Similar to CSRbyNZ, the length of the rows array
is equal to the number of nonempty rows.
Code size: For matrices with a modest number of row patterns, this method can be the
most efficient. However, if there are many patterns, the code can get quite large, reduc-
ing its efficiency. Since this method generates one for-loop for each row pattern, and
the body of a loop contains as many multiplications as the length of the pattern, the
code size is proportional to the number of row patterns and the sum of their lengths.

RowPattern turns indirect indexing on the vector v (e.g. v[cols[b]]) to direct in-
dexing (e.g. v[row]), except for a single initial memory load per row. This can reduce
latency and utilize the CPU pipeline better [Goumas et al. 2008].

GenOSKI
This method analyzes the matrix to find the patterns of nonzero entries in each block
of size r × c, and for each pattern, generates straight-line code [Belgin et al. 2011].
A motivation of this method is to avoid the zero-fill problem of OSKI [Im et al. 2004]
that generates efficient per-block code by inserting some zeros into the matrix data.
GenOSKI generates one loop for each block pattern of nonzeros. A sample 4 × 4 block
pattern and the corresponding code is given below, assuming there are 100 blocks with
that pattern. The rows and cols arrays store indices of blocks, not individual nonzero
elements. The index of a block is the location of the top-left corner of the block.

for (int a = 0, b = 0; a < 100; a++, b += 7) {
int row = rows[a];
int col = cols[a];
w[row] += vals[b] * v[col+1] + vals[b+1] * v[col+3];
w[row+1] += vals[b+2] * v[col] + vals[b+3] * v[col+2] + vals[b+4] * v[col+3];
w[row+2] += vals[b+5] * v[col+1];
w[row+3] += vals[b+6] * v[col+3];

}
rows += 100; cols += 100; vals += 100*7; // Set the pointers for the next loop.

Data order: GenOSKI reorders matrix data to group blocks with the same pattern
together. The accesses to w are sequential within a block, but not across blocks.
Data size: Because this method stores indices of blocks, not individual nonzero ele-
ments, it can provide significant savings on the data size, unless there is a large num-
ber of very sparse blocks.
Code size: GenOSKI generates one for-loop for each block pattern, and the body of a
loop contains as many multiplications as the length of the pattern. Hence, the code
size is proportional to the number of block patterns and the sum of their lengths.

GenOSKI often performs well, especially when most blocks are fairly dense. This
is because (1) locality within blocks is improved; (2) matrix data is usually reduced;
(3) there is room for compiler optimizations in for-loop bodies. Similar to RowPat-
tern, GenOSKI also eliminates indirect indexing on v. Nevertheless, this method may
greatly increase the number of writes into the output vector w; the other methods write
each w element only once. For the evaluation in this paper, we use blocks of size 4 × 4
and 5 × 5, as these were the block sizes that obtained the best performance in our
previous study. We abbreviate these as GenOSKI44 and GenOSKI55, respectively.
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Unfolding
This method completely unfolds the CSR loop and produces a straight-line program
that consists of a long sequence of assignment statements of the form
w[i] += Ai,j0 * v[j0] + Ai,j1 * v[j1] + . . .;

where the italicized parts — i, Ai,j0 , j0, etc. — are fixed values, not variables or sub-
scripted arrays. This method eliminates the need to store rows or cols arrays sepa-
rately because all the matrix information is implicit in the code. It also produces the
lowest number of executed instructions, but should produce, by far, the longest code.
The size of the code is proportional to NZ. For this reason, it is not expected to yield
good performance usually. However, it occasionally beats the other methods substan-
tially. We have measured Unfolding as the best method for 13-21 matrices out of 610.
For these matrices, Unfolding’s performance was on the average 1.23–1.35× of the
performance of the second best method. The ratio goes as high as 2.52×. These results
show that Unfolding is not the winner method in most of the time, but when it is,
its performance may substantially exceed the other methods. Therefore we decided to
include Unfolding among the specialization methods we evaluate. It is also an inter-
esting case from the point of view of machine learning to include a class that does not
have many samples.

The main reason why Unfolding may yield very good performance is the repeated
nonzero values of the matrix. To see why, suppose the following statements are pro-
duced after unfolding the SpMV loop, where 1.1 and 2.2 are matrix values.

w[0] += 1.1 * v[3] + 2.2 * v[4] + 1.1 * v[9];
w[1] += 2.2 * v[4] + 1.1 * v[9];

Compilers (we experimented with icc, clang, and gcc) tend to put only the unique
floating point values into the data section, and load values from there. Since the
nonzero values of the matrix are available, this is a valid optimization. Furthermore,
the nonzero values can be loaded into registers once and reused multiple times. Hence,
the statements are compiled as if the code were

double M[] = {1.1, 2.2};
register double m0 = M[0];
register double m1 = M[1];
w[0] += m0 * v[3] + m1 * v[4] + m0 * v[9];
w[1] += m1 * v[4] + m0 * v[9];

In effect, using a pool of unique values may significantly reduce the memory traffic
required to transfer nonzero values and open up more space in the cache for other data.
This optimization was studied previously by Kourtis et al. [2010] as “Value Compres-
sion”. We also reported the impact of unique values on the performance in a previous
work [Kamin et al. 2014].

Unfolding also enables arithmetic optimizations because nonzero values become ex-
plicit in the code. An expression of the form e + 1.0 * v[i] can be simplified to e +
v[i], and e + -1.0 * v[i] can be simplified to e - v[i]. Futhermore, the inverse of
distribution of multiplication over addition can be performed. E.g. 7.0 * v[6] + 7.0
* v[8] can be transformed into 7.0 * (v[6] + v[8]). These arithmetic optimizations
decrease the total number of FP operations needed in SpMV. Having fewer unique
values increases the opportunities for these optimizations.

Finally, Unfolding also increases opportunities for Common Subexpression Elimina-
tion (CSE) when few distinct values exist. Consider the code snippet we used above.
CSE can reduce the FP operations as follows:
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double M[] = {1.1, 2.2};
register double m0 = M[0];
register double m1 = M[1];
double subExp = m1 * v[4] + m0 * v[9];
w[0] += m0 * v[3] + subExp;
w[1] += subExp;

In our code generator (detailed in Section 3), when using the Unfolding method,
we create a pool of unique values if the matrix has sufficiently few distinct nonzero
values. We set the threshold for this to 5000. We also do the arithmetic optimizations
mentioned above. Our generator does not employ CSE.

To give concrete evidence of the impact of Unfolding optimizations, let us look at
Table I. Here, we give the number of rows (N), number of nonzero values (NZ), number
of unique values, the number of MUL instructions generated by Unfolding, and “mem-
ory traffic” values for plain CSR format (Baseline) and the specialization methods. The
memory traffic values imply the amount of data elements “touched” by the correspond-
ing SpMV computation, according to the model in [Gropp et al. 1999], which ignores
the cache. So, in addition to the traffic incurred by the rows, cols and vals arrays,
whose elements are accessed once, we also include the data accesses to the input and
output vectors v and w. This means, for each method, an additional traffic of NZ×8 is
incurred because of the accesses to v. In Baseline, CSRbyNZ, RowPattern, and Unfold-
ing, an element of the output vector w is accessed twice (once for read, once for write).
This incurs an additional NE×8×2 bytes, where NE is the number of nonempty rows.
For GenOSKI, the traffic incurred by the accesses to w is calculated according to the
block patterns and the number of blocks. The traffic values for specialization methods
also include the generated code size. In our previous work, we presented formulas to
calculate the matrix data and code sizes for these methods [Kamin et al. 2014].

We show information for 9 matrices in Table I. Unfolding gives the best performance
for the first 7 of these on turing (our testbed machine that has the Intel CPU), using
sequential execution. The best method for af 5 k101 is GenOSKI55; for torso3, it is
RowPattern. The first 5 matrices have few unique elements while the other 4 have
many. Normally, SpMV executes one multiplication instruction per each nonzero el-
ement. Hence, a naive unfolding would result in NZ-many MUL instructions in the
code. However, due to the optimizations we explained before, the MUL instructions
have been substantially reduced. An extreme case is soc-sign-Slashdot081106, where
no MUL instruction remains in the generated code, because the matrix contains only

Table I. The impact of optimizations possible in Unfolding. Best performing method’s speedup is in bold font.
Matrix Unique MUL inst. Memory traffic (MB) and Speedup wrt Baseline

N NZ values Baseline CSRbyNZ RowPattern GenOSKI44 GenOSKI55 Unfolding
Andrews 29 60,000 9.0 9.0 14.7 9.8 9.8 9.1

60,000 410,077 1.32× 0.80× 1.00× 0.89× 1.50×
EAT RS 91 42,333 6.6 8.3 11.5 7.9 8.0 6.4

23,219 325,592 1.00× 0.73× 0.78× 0.77× 1.23×
kron g500-logn16 103 29,281 47.8 71.1 84.8 59.6 59.4 42.9
65,536 2,456,398 0.63× 0.49× 0.75× 0.76× 1.03×

Reuters911 165 14,856 3.0 4.3 5.3 3.6 3.7 2.9
13,332 148,038 0.97× 0.78× 0.82× 0.83× 1.55×

soc-sign-Slashdot081106 2 0 10.8 11.8 18.5 12.4 12.5 9.9
77,357 516,575 1.49× 0.68× 1.04× 1.04× 1.87×

delaunay n21 6,291,408 6,291,407 155.8 154.8 240.6 130.3 138.1 237.9
2,097,152 6,291,408 0.81× 0.73× 0.40× 0.44× 1.21×

roadNet-CA 2,766,607 2,766,606 87.8 87.1 94.2 62.4 62.4 125.6
1,971,281 2,766,607 1.19× 0.55× 0.46× 0.52× 1.50×

af 5 k101 9,027,150 9,027,150 181.8 181.8 147.5 150.4 144.6 299.8
503,625 9,027,150 0.74× 1.07× 0.96× 1.41× 0.49×

torso3 3,121,632 4,429,042 89.4 89.4 80.5 82.2 80.3 147.2
259,156 4,429,042 1.08× 1.17× 0.98× 0.91× 0.50×
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1 and −1 as its nonzero values. Also, due to creating a unique value pool, Unfolding’s
output is almost always smaller in terms of memory traffic when compared to the out-
puts of other methods. It is usually smaller than even the baseline. The reductions in
the number of instructions and the size is only possible if the number of distinct values
is small. The data for af 5 k101 and torso3 matrices illustrate this.

Finally, to our surprise, we have also observed that Unfolding gives the best perfor-
mance for some matrices that have no or very few repeated values. The delaunay n21
and roadNet-CA in Table I are two such matrices. Even though the optimizations we
discussed above are not applicable to these matrices, Unfolding performs very well be-
cause it eliminates indirect indexes on the vector v and replaces them with constant
indices (e.g. v[9]). A common property we observed in these matrices is that they
are connectivity matrices that have a very large number of row patterns and a high
number of sparse blocks. So, RowPattern and GenOSKI do not perform well. Also, the
average length of rows is very low (e.g. 3.0 in delaunay n21, 1.4 in roadNet-CA). This
causes loop overheads and branch prediction penalties in other methods.

We acknowledge that our list of methods is not complete. There exist many other ma-
trix storage formats (e.g. ELL [Grimes et al. 1978], DIA [Saad 2003], etc.) that require
no specialization, yet may give better performance for some matrices. The problem
is, covering all the possibilities seems practically impossible, as there is a very large
number of formats and also hybrid combinations. So, we did not include generic stor-
age formats except CSR in our evaluation; we specifically focused on specialization
methods, and we limited ourselves to the SpMV methods presented here. That said,
in our previous work [Kamin et al. 2014], we had compared our specialization meth-
ods with BiCSB [Buluç et al. 2011] and CSX [Kourtis et al. 2011]. The specialization
methods we use in this paper had performed the best most of the time. We had also
experimented with hybrid approaches, but had not obtained high speedups.

3. CODE GENERATION APPROACH
We developed a special-purpose compiler that generates executable SpMV code at run-
time. We do not generate source code, use scripts, or invoke an external compiler at
runtime. The compiler takes a matrix and a method name as inputs, and emits X86 64
object code into a memory buffer. The emitted code is dynamically loaded into the pro-
gram and a function pointer is returned to the user.

For boilerplate tasks such as managing the object file format (e.g. arranging the
code/data sections in the Elf, Mach-O formats), and dynamic loading, we use LLVM
[Lattner and Adve 2004; LLVM 2013]. Instructions are emitted into LLVM’s internal
buffer at its machine-code layer. We do not generate any LLVM intermediate repre-
sentation code, but rather emit machine instructions directly –bit by bit– to avoid
time-consuming compiler passes (e.g. alias analysis, register allocation, global value
numbering, etc.). We took this approach to minimize runtime code generation cost.
The compiler is implemented in C++ to best integrate with the LLVM API.

Our compiler generates parallel code. For this, the matrix is split into as many par-
titions as the number of threads. Partitioning is row-oriented, and aims to assign
roughly equal number of nonzero values to each partition, using the following ap-
proach: If there are t threads, starting from the first row, we assign consecutive rows
to the first partition until the number of elements contained by the partition is at least
nz/t. When the first partition has been given at least nz/t elements, we continue the
same process for the next partition using the subsequent rows. This 1D partition is a
common approach [Williams et al. 2009; Belgin et al. 2011; Byun et al. 2012; Liu et al.
2013]. For each partition, a function is generated using the specified specialization
method. The generated functions are executed concurrently using OpenMP [2009].

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. 0, Article 0, Publication date: 2015.



0:8 B. Yılmaz et al.

ALGORITHM 1: The pseudo-code of the CSRbyNZ code generator. This generator produces
X86 64 code for each distinct row length, corresponding to the source snippet on page 3.
// rows array is in %rdx, cols is in %rcx, vals is in %r8,
// v is in %rdi, w is in %rsi, a is in %rbx, b is in %r9

foreach row length L do
M ← number of rows with row length L;
emit(xor %rbx, %rbx) ; // reset a to 0
emit(xor %r9, %r9) ; // reset b to 0
emit(alignment to 16 bytes) ; // for better cache line utilization
P ← current position in the object code buffer;
emit(xor %xmm0, %xmm0) ; // reset xmm0 to 0
for i← 0 to L do

// Emit code to calculate vals[b+i]*v[cols[b+i]] and accumulate in %xmm0
emit(mov i× 4(%rcx,%r9,4), %rax) ; // rax ← cols[b+i]
emit(mov i× 8(%r8,%r9,8), %xmm1) ; // xmm1 ← vals[b+i]
emit(mul (%rdi,%rax,8), %xmm1) ; // xmm1 ← xmm1 * v[rax]
emit(add %xmm1, %xmm0) ; // xmm0 ← xmm0 + xmm1

end
emit(mov (%rdx,%rbx,4), %rax) ; // rax ← rows[a]
emit(add L, %r9) ; // b ← b + L
emit(add 1, %rbx) ; // a ← a + 1
emit(add (%rsi,%rax,8), %xmm0) ; // xmm0 ← xmm0 + w[rax]
emit(cmp M , %rbx) ; // compare M and loop counter a
emit(mov %xmm0, (%rsi,%rax,8)) ; // w[rax] ← xmm0
emit(jne P ) ; // Jump to loop header if limit not reached
emit(add M × 4, %rdx) ; // rows ← rows + M
emit(add M × L× 4, %rcx) ; // cols ← cols + M × L
emit(add M × L× 8, %r8) ; // vals ← vals + M × L

end

Because partitioning is row-oriented, no two threads share a common row. Hence, a
locking mechanism or a final reduce-add operation is not needed.

When developing our purpose-built compiler, we naturally faced the problem of
which machine instructions to use; that is, how to derive the assembly code. For this,
we first generated code at source level and manually examined the assembly code pro-
duced by icc and clang (using the -O3 flag) to learn what instruction choices the com-
pilers make. We focused on how the compilers compiled the loops similar to those we
provided in Section 2. Although long, our code consists of replicating a straightforward
loop structure over and over. We then wrote the code generator to match the output of
compilers as closely as we could.

The way we generate assembly code is mostly straightforward. Algorithm 1 provides
the CSRbyNZ code generator in pseudo-code. This generator produces X86 64 machine
code corresponding to the sample source code given for CSRbyNZ in Section 2. We
wrote emit functions to write specific bits into the in-memory object code buffer for the
given opcode and arguments. The X86 64 code generated by this CSRbyNZ generator
for the t2em matrix is shown in Figure 1.

Our focus in this work is not generating the best SpMV code per se. We have not
aggressively optimized the code we are generating; we are not doing optimizations such
as vectorization, common subexpression elimination (CSE), or explicit prefetching.

Directly generating object code instead of going through the usual compiler passes
makes the quality of our generated code questionable. To make sure that we gener-
ate efficient enough code, we compared our compiler’s output with icc’s. For this, we
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xorl %r9d, %r9d
xorl %ebx, %ebx
nopw (%rax,%rax)
xorps %xmm0, %xmm0
movslq (%rcx,%r9,4), %rax
movsd (%r8,%r9,8), %xmm1
mulsd (%rdi,%rax,8), %xmm1
addsd %xmm1, %xmm0
movslq 4(%rcx,%r9,4), %rax
movsd 8(%r8,%r9,8), %xmm1
mulsd (%rdi,%rax,8), %xmm1
addsd %xmm1, %xmm0
movslq 8(%rcx,%r9,4), %rax
movsd 16(%r8,%r9,8), %xmm1
mulsd (%rdi,%rax,8), %xmm1
addsd %xmm1, %xmm0

movslq 12(%rcx,%r9,4), %rax
movsd 24(%r8,%r9,8), %xmm1
mulsd (%rdi,%rax,8), %xmm1
addsd %xmm1, %xmm0
movslq 16(%rcx,%r9,4), %rax
movsd 32(%r8,%r9,8), %xmm1
mulsd (%rdi,%rax,8), %xmm1
addsd %xmm1, %xmm0
movslq (%rdx,%rbx,4), %rax
addq $5, %r9
addq $1, %rbx
addsd (%rsi,%rax,8), %xmm0
cmpl $917300, %ebx
movsd %xmm0, (%rsi,%rax,8)
jne -140
addq $3669200, %rdx
addq $18346000, %rcx
addq $36692000, %r8

xorl %r9d, %r9d
xorl %ebx, %ebx
nopw %cs
xorps %xmm0, %xmm0
movslq (%rcx,%r9,4), %rax
movsd (%r8,%r9,8), %xmm1
mulsd (%rdi,%rax,8), %xmm1
addsd %xmm1, %xmm0
movslq (%rdx,%rbx,4), %rax
addq $1, %r9
addq $1, %rbx
addsd (%rsi,%rax,8), %xmm0
cmpl $4332, %ebx
movsd %xmm0, (%rsi,%rax,8)
jne -52
addq $17328, %rdx
addq $17328, %rcx
addq $34656, %r8

Fig. 1. The CSRbyNZ code generated for t2em, a 921,632×921,632 matrix with 4,590,832 nonzeros. t2em
has 917,300 rows whose length is 5, and 4,332 rows whose length is 1.

generated source code for all the 23 matrices that were used in [Kamin et al. 2014].
We compiled these codes using icc with flags -O3 -no-vec (vectorization disabled, be-
cause our generator does not do vectorization). We measured the performance of the
compiled code and compared against our code generator.

In Figure 2, we see the ratio of our code’s performance to the performance of the
code generated by icc. A value greater than 1 means our code performed better, smaller
than 1 means icc’s output performed better. The test was done on our Intel testbed ma-
chine using single-threaded execution. For CSRbyNZ, GenOSKI44, and GenOSKI55,
the performances are consistently close, with our code performing slightly better: on
the average (last column in Figure 2), the ratios are 1.01, 1.04, and 1.06, respectively.
For RowPattern, our code performs better than icc for 21 cases out of 23. On the av-
erage, the ratio is 1.17, with a maximum of 1.61. Unlike other methods, Unfolding’s
performance varies with the input matrix greatly. The performance ratio for Unfolding
ranges between 0.32 and 1.54, and is 1.08 on the average.

Table II shows the best of the 5 specialization methods for the code generated by icc
and our compiler. The last column gives the performance ratio between our compiler’s
winner and icc’s winner. Again, a value larger than 1 means our code performs better.
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Fig. 2. The performance ratio of our compiler’s output to icc’s output for the matrices used in [Kamin et al.
2014]. A value greater than 1 means we generated more efficient code than icc.
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Table II. Performance of the code compiled by icc vs. our code generator.

Matrix Best performing method when using our code / iccour generator icc
soc-sign-Slashdot081106 Unfolding Unfolding 0.99
webbase-1M CSRByNZ Unfolding 0.77
mc2depi RowPattern Unfolding 0.94
engine Unfolding Unfolding 0.38
fidapm37 GenOSKI55 GenOSKI44 1.07
18 other matrices Same for both 1.04 (avg.)

For 18 matrices out of 23, the winning method for icc-compiled code and our compiler
is the same. These codes perform similarly, with our compiler’s output giving 1.04×
the performance of icc. For fidapm37, the winning method when using our generator
is GenOSKI55, while it is GenOSKI44 with icc. The performances are close. There
are 4 matrices that are worth more discussion: soc-sign-Slashdot081106, webbase-1M,
mc2depi, and engine. In all of these, Unfolding is the winner among icc-compiled code.
Our Unfolding performed very close to icc for soc-sign-Slashdot081106. This is a matrix
that has only 1 and −1 as its nonzero values; we applied the arithmetic optimizations
and so were able to match icc’s performance. For engine, although Unfolding performs
the best among the code generated by our compiler, it is significantly slower than icc-
compiled Unfolding. Our compiler’s Unfolding also could not meet the performance of
icc’s Unfolding for mc2depi and webbase-1M; other methods, RowPattern and CSR-
byNZ, respectively, were the best. The performance of RowPattern for mc2depi was
close to icc’s Unfolding, but for webbase-1M there is a large gap. When we examined
icc’s Unfolding output for the matrices where icc outperforms our generator, we saw
that icc applies optimizations that we do not do, such as common subexpression elimi-
nation (CSE) and instruction reordering.

In summary, the code that we generate, except for Unfolding, is either competitive
with or better than icc’s output. We were able to achieve this performance by gener-
ating code in a straightforward manner, and without having to go through compiler
phases, which are expensive at runtime. To give a measure, compiling the C source
codes for 23 matrices took about two days on our testbed machine. Code generation
has to be very rapid for runtime specialization to pay off. That is why we wrote our
purpose-built compiler.

There are three dimensions of concern in runtime code generation in a setting like
ours: 1) quality of the generated code, 2) speed of code generation, 3) adaptability of the
generator to new architectures. Achieving high levels in all three dimensions does not
seem possible with the current state of the art. For instance, we could have followed
a template-based approach (e.g. [Consel et al. 2004]) to satisfy dimension (2) and (3),
but not (1); compiling templates separately misses inter-template optimization oppor-
tunities. We could have generated code at an AST or intermediate representation level
(e.g. with Jumbo [Kamin et al. 2003] or LMS [Rompf and Odersky 2010]) and use an
existing compiler back-end to optimize the generated program, but this would fail to
satisfy dimension (2). We opted for dimension (1) and (2) at the price of (3): our gen-
erator does not easily adapt to changes in the architecture. To handle updates made
to the target instruction set architecture, first, we would have to write new emit func-
tions to support the new instructions. This is straightforward to do. Second, the code
generator for each specialization method would have to be updated to use the new in-
struction emitting functions. This would have to be done by a programmer who knows
where and under which conditions to use these new instructions. Because we do not
outsource code generation to an external compiler, this step does not happen automat-
ically, and would be the most expensive part of the adaptation in terms of developer
effort. This is a price we pay in exchange for quickly generating fast code.
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4. AUTOTUNING RUNTIME SPECIALIZATION
Performance portability is a well-known challenge brought by the complexity of mod-
ern computer architecture. Autotuning has been successfully applied to solve this prob-
lem for HPC kernels including SpMV, dense linear algebra, and discrete Fourier trans-
form [Frigo 1999; Whaley et al. 2001; Püschel et al. 2005; Vuduc et al. 2004; Vuduc
et al. 2005; Muralidharan et al. 2014]. The same problem occurs in specialized SpMV
code; the best performing SpMV specialization method depends on both the matrix and
the machine [Kamin et al. 2014]. In this section we discuss the use of autotuning to
predict which method will perform the best for a given matrix. Prediction is important
to avoid having to generate all the code variants and try them out, because runtime
specialization has non-trivial cost (we discuss code generation costs in Section 7).

The autotuning process is as follows:

(1) At install time, code is generated for a set of training matrices using all the spe-
cialization methods. The generated programs as well as a non-generative one (i.e.
Intel MKL as the baseline) are executed and their performances are recorded.

(2) The collected data are used to train a multi-class classifier where several matrix
properties are used as features (detailed below, in Section 4.2) and the names of
the best performing methods are used as classes.

(3) At runtime, the user calls the library with a new matrix. Features are extracted
from the matrix and are fed into the previously-trained multi-class classifier. The
classifier outputs a class, which denotes the method that is predicted to perform
the best for the given matrix.

(4) SpMV code is generated using the predicted method if it involves specialization
(the baseline method may have been predicted as well).

(5) A function pointer is returned to the user to be used for the subsequent SpMV
operations for the given matrix.

In this work we evaluate how one can accurately predict the best SpMV method for
a particular matrix. Our experimental results will show the prediction accuracy and
the cost of runtime prediction and code generation; that is, when would specialization
compensate its runtime overheads. We first discuss the impact of memory bandwidth,
and how this shapes the matrix features we chose for autotuning.

4.1. Memory Bandwidth
The performance of SpMV is highly affected by the amount of data transferred between
CPU and memory [Gropp et al. 1999]. Non-specialized methods usually have small
codes; there, the concern is the size of the matrix data. On one hand, specialization may
reduce matrix data significantly. On the other hand, code may become very long. Both
the matrix data size and the code size should be counted when talking about memory
bandwidth, because code is also brought into the CPU from the memory. In Section 2
we commented on the code and data sizes implied by each method. In a previous work
we used formulas to compute code and data size for the different methods [Kamin et al.
2014]. To measure the role of memory bandwidth, we calculated the code and data size
for all the 610 matrices we use in this study. We then asked the question “How would
an autotuner perform if it always picked the method with the smallest data?” When
compared to the speedup that could be achieved by a (hypothetical) perfect predictor
that always picks the best performer, this smallest-size strategy yielded 86-91% of the
achievable speedup. However, an SVM-based approach using the features we list in
the next section obtains 97-99% of the achievable speedup (Section 6). In Table III, we
show the number of times each method has the smallest size. CSRbyNZ is the smallest
only 63 times, but it performs the best for many more matrices (see Figure 4 in Section
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Table III. Number of times a method yields the smallest size.
Smallest (code + data) CSRbyNZ RowPattern GenOSKI44 GenOSKI55 Unfolding

size occurrence 63 117 193 229 8

6). The opposite situation holds for GenOSKI methods. They yield the smallest size for
many matrices, but do not perform the best for that many cases.

This shows that even though memory is a dominant factor in SpMV performance,
relying on only the size falls short of the achievable speedup. Table I also provides
concrete examples of this argument. Another problem with the pick-the-smallest-size
approach is that the total size of CSRbyNZ is most of the time slightly larger than the
baseline. Hence, making a choice between CSRbyNZ and the baseline method solely
based on size is insufficient. Other decision factors, such as the average length of rows
or the number of distinct row lengths, are needed. At this point, one starts to feel the
need of a model, and that is what the machine-learning based autotuning approach
builds for us, based on the matrix features we provide and also the actual performance
on machines. Hence, it also provides adaptation for a specific computer.

4.2. Features
We selected matrix features that indicate both the data and code size. We also picked
features that hint at the number of iterations the generated loops execute. Table IV
shows the feature set we are using. The features are classified based on the method
that will have the highest impact from this feature. A total of 29 features are col-
lected for each matrix (4 general structure, 4 CSRbyNZ, 8 RowPattern, 1 Unfolding, 6
GenOSKI44, and 6 GenOSKI55). We collect the number of rows (N), number of nonze-
ros (NZ), and nonzeros per row to represent the general structure of a matrix. We also
include the number of nonempty rows (NE) because no code is generated for empty
rows by RowPattern, CSRbyNZ and Unfolding methods, and some matrices have many
empty rows. For instance, in our set of 610 matrices, 52 matrices have 10% or more
empty rows; among these, 28 have more than 20% of their rows empty. From our point
of view, Intel MKL is a black box, and we cannot have features specifically designed
for it. This is yet another challenge for making successful predictions.

For CSRbyNZ, we collect the number of distinct row lengths, which indicates how
many loops will be generated, and the sum of row lengths, which indicates how long
the generated loop bodies will be. So, the first two features represent the code length for
CSRbyNZ. The next two features are selected to indicate runtime. The average number
of rows per each row length denotes how many times, on the average, each loop will
iterate. The average of distinct row lengths indicates how long, on the average, a loop
body will be; hence, it is an approximation of the runtime of one loop iteration.

There are corresponding features for RowPattern and GenOSKI. The number of pat-
terns and the sum of pattern lengths indicate the code size. The average number of
rows (resp. blocks) per pattern, and the average length of patterns indicate the average
runtimes of generated loops. RowPattern generates a loop for each pattern; however,
if a pattern is unique to only one row, completely unfolded code is generated. There-
fore, we distinguish these cases when collecting RowPattern features. RowPattern and
GenOSKI features also include the ratio of NZ elements covered by effective row pat-
terns and block patterns, inspired from Belgin et al. [2011]. We say a row pattern is
effective if its length is more than 3 and it covers at least 1000 NZ elements; a block
pattern is effective if its length is more than 3 and it applies to at least 1000 blocks.

For GenOSKI, we collect the number of nonempty blocks. This denotes the total
number of iterations generated loops will execute. The corresponding feature for CSR-
byNZ and RowPattern is the number of nonempty rows, which is already in our list.
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Unfolding’s performance is highly sensitive to the number of distinct NZ values as
discussed in Section 2. Hence, we have this value as a feature.

Before using for autotuning, we transformed the raw feature values as follows: (1)
We took the log the values, because they show a skewed distribution. The effective
block coverage (i.e. G 6) is the only exception to this. (2) We normalized the features to
the [−1, 1] interval. This transformation is common in machine learning.

To the best of our knowledge, the features that we pick to indicate the code size are
unique to our work. In existing work, features are usually determined according to
the matrix storage formats, not code size. N and NZ are almost always collected as
features (e.g. [El Zein and Rendell 2012; Armstrong and Rendell 2008; 2010; Li et al.
2013; Neelima et al. 2014]). NZ/N is also common [El Zein and Rendell 2012; Su and
Keutzer 2012; Li et al. 2013]. Some other features used in the literature are

— zero-fill ratios for formats like DIA, ELL, and BELLPACK [Choi et al. 2010; Abu-
Sufah and Abdel Karim 2013; Li et al. 2013],

— variation of row lengths [Abu-Sufah and Abdel Karim 2013; Armstrong and Rendell
2008; 2010; Li et al. 2013],

— mean neighbor count of nonzero elements [Armstrong and Rendell 2008; 2010],
— number of blocks and dense blocks per super row [Su and Keutzer 2012],
— number of diagonals, number of nonzero elements per diagonal [Su and Keutzer

2012; Li et al. 2013],
— max number of nonzeros per row [Li et al. 2013; Neelima et al. 2014], and
— memory traffic (number of bytes fetched, number of writes to w) [Belgin et al. 2011].

In an attempt to give more information to the learner, we experimented with other
features. For instance, we decomposed the properties in the form of histograms to
carry more fine-tuned information. E.g. the number of row patterns whose length is
less than 3, between 3 and 10, and more than 10, etc. (and similarly for CSRbyNZ
and GenOSKI). We also used mean and standard deviation values. However, those
attempts did not improve the prediction success, and often decreased the quality, prob-
ably because of over-fitting (a.k.a. the curse of high dimensionality).

Table IV. Matrix features grouped under the method they impact the most.
General structure
Number of rows (N)
Number of nonzero elements (NZ)
Number of nonempty rows (NE)
Avg. number of nonzero elements per row (i.e. NZ / N)
CSRbyNZ
Number of distinct row lengths (RL)
Sum of distinct row lengths (SR)
Avg. number of rows for each row length (i.e. NE / RL)
Avg. of distinct row lengths (i.e. SR / RL)
RowPattern
Number of row patterns that apply to only a single row (R 1)
Number of row patterns that apply to multiple rows (R 2)
Sum of lengths of row patterns that apply to a single row (R 3)
Sum of lengths of row patterns that apply to multiple rows (R 4)
Avg. number of rows per row pattern that apply to multiple rows (R 5)
Avg. length of row patterns that apply to a single row (R 6)
Avg. length of row patterns that apply to multiple rows (R 7)
Ratio of NZ elements covered by effective row patterns (R 8)
Unfolding
Number of unique NZ values (capped at 5000) (U)
GenOSKI (for 4×4 and 5×5)
Number of block patterns (G 1)
Sum of lengths of block patterns (G 2)
Number of nonempty blocks (G 3)
Avg. number of blocks per block pattern (G 4)
Avg. length of block patterns (G 5)
Ratio of NZ elements covered by effective block patterns (G 6)
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Full vs. Capped Feature Set
We call the features listed in Table IV the full feature set. In Section 6, we will
see that the full feature set gives us good prediction success, but it is expensive to
compute. As an alternative, we stop collecting some of the features when a certain
cap is reached. We set this cap for RowPattern-related features at 2000 row patterns,
and for GenOSKI-related features at 5000 block patterns. We call this the capped
feature set. The only difference between the full and the capped feature set is that
when the cap value is reached, associated feature values are frozen and the matrix is
no longer analyzed for those features. Analysis continues normally for other features.
The number of distinct values is always capped at 5000.

The intuition behind the capped approach is that many matrices have too many row
or block patterns. When this is the case, full analysis is expensive, because the set/map
structures used for keeping track of the patterns become large. However, we observed
that in general it is unlikely for RowPattern and GenOSKI to be the best method
when there are too many patterns. So, there is no need to do a complete analysis in
this case. With the capped approach, many matrices will be only partially analyzed for
RowPattern and GenOSKI. The features related to these methods will not always be
the exact values. However, we saw that this inaccuracy causes only a slight decrease in
the prediction success. In return, the feature extraction costs are reduced. We did not
put a cap on CSRbyNZ features because the number of distinct row lengths is usually
low and CSRbyNZ analysis is not expensive. Details are in Section 6.

We performed a correlation analysis between the features, shown in Figure 3. The
correlations show that in general we have low redundancy among features. There is
high correlation between N and NE (nonempty rows). This is because most of the ma-
trices have elements on every row. However, there are some that have empty rows,
and we want to distinguish them. (In our set of 610 matrices, 52 matrices have 10%
or more, 28 have 20% or more of their rows empty.) So, we kept NE in the features.
We also see high correlation between the corresponding features of GenOSKI44 and
GenOSKI55. This is not surprising since the two are instances of the same method. Fi-
nally, there is correlation between the number of patterns (resp. distinct row lengths)
and the sum of pattern lengths (resp. sum of row lengths) in RowPattern, GenOSKI,
and CSRbyNZ methods. This is also normal; the sum of pattern lengths increases as
the number of patterns increases. We nevertheless kept these features in our set be-
cause they indicate important and separate properties about the generated code size.

We determined the set of features according to the specialization methods and the
code generation approach. If a new method is added to the system, related features
would have to be included. Similarly, changes in the architecture may trigger an up-
date to the list. For instance, the ratio of consecutive column indices is potentially a
useful matrix feature in case of vectorization.

4.3. Classifier
There are several multi-class classifiers to use as the learning model. We experimented
with many, including Random Forest and Decision Tree Classifier. We found that C-
Support Vector Classification (SVC) with an RBF (Gaussian) kernel gives the best
results. We tried a variety of C and gamma parameters for RBF; we used the results
for the parameter values that yielded the best prediction rates.

4.4. Classes
In the learning phase, the classifier is fed with the features and the classes of the ma-
trices. The classifier uses these data to create a model that associates matrix features
with the corresponding classes. We tried different approaches to specify the class:
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Fig. 3. Correlations between features of the full feature set.

Naive approach: We used the best performing method for a matrix as its class. In this
approach, there are as many classes as SpMV methods (6 in our case). This naive defi-
nition of classes has a potential problem, though; it ignores the fact that methods may
perform very close to each other. For example, suppose CSRbyNZ is the best method
for a matrix, but RowPattern is also very good – good enough that, from the point of
view of the user, picking RowPattern as the SpMV method instead of CSRbyNZ would
also be acceptable. However, from the point of view of the classifier, picking RowPat-
tern instead of CSRbyNZ is simply incorrect, because that is not the class that the
matrix belongs to. In other words, defining the class of a matrix as its best method
loses information about what other methods are also good choices. We observed that
the average performance ratio of the best and the second best methods is 1.13-1.16×
in our test setup. The ratio is less than 1.01× in 6-8% of the matrices, less than 1.02×
in 12-16%, less than 1.05× in 24-36%. We try to remedy this potential problem with
the next approach.
Pair of methods: We used the top two performing methods for a matrix as its class.
So, a class label is a pair of method names. In this approach, the prediction output of
the classifier also contains two methods: a method predicted to be the winner and an-
other that is predicted to be the runner-up. To decide which method to use for code gen-
eration, we ignore the runner-up and take the first method. To illustrate, let us take the
previous example. There, the matrix’s actual class would be CSRbyNZ-RowPattern in-
stead of just CSRbyNZ. If the classifier makes the prediction, say, CSRbyNZ-Baseline,
we generate code for CSRbyNZ. This is the best case for prediction. If the prediction is
RowPattern-Unfolding or RowPattern-CSRbyNZ, we generate code using the RowPat-
tern method. Not the best one, but still a good choice.

Using the paired approach, more information is fed into the learner; however, a
potential problem is that the number of possible classes increases significantly as
compared to the naive approach. If M SpMV methods exist, there are a maximum
of M × (M − 1) classes. Having more classes may negatively impact the prediction’s
success because there will be fewer samples per class during the training phase, and
there are more classes to distinguish from each other.
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Table V. Target Platforms
Name Processor @ Freq (GHz) Cores Cache Sizes (Bytes) Mem Linux OS compiler

(Microarchitecture) L1 (I/D) L2 L3 (GB)
turing Intel R© Xeon R© E5-2620 @ 2.00 6 32K 256K 15M 16 Ubuntu 12.04 icc 14.0

(SandyBridge)
milner AMD FX-8350 @ 4.00 8 64K/16K 2M 8M 8 ArchLinux 3.14.4 gcc 4.8.2

(Piledriver)

Another potential problem with the paired approach is that if the best method is
substantially better than the second one, this information is not disseminated to the
learner. To address this issue, we tried a variation of the paired labeling approach
where we set a threshold value: if the best method is better than the second best
method by more than the threshold, we repeated the best method also as the second
method in the class name. For instance, suppose for some matrix, CSRbyNZ is the best
method, Unfolding is the second best, CSRbyNZ performs 1.30× of Unfolding, and the
threshold value is 1.05×. We labeled the matrix to be in the CSRbyNZ-CSRbyNZ class.
This way we emphasized to the learner that for this matrix CSRbyNZ is really the best
method. This approach introduces as many new classes as the number of methods.

Labeling happens automatically, with no human effort. For each matrix, the auto-
tuner looks at the performance measurements of the SpMV methods, and determines
the class using the chosen approach. The results of the naive and paired labeling ap-
proaches are presented in Section 6. Thresholding did not sufficiently improve the
prediction results; we give a brief discussion about this in Section 6.

5. EXPERIMENTAL SETUP
In our experimental evaluation, we use a set of 610 matrices obtained from the Matrix
Market [1997] and the University of Florida collection [Davis and Hu 2011]. All our
matrices are square and sparse. Their number of nonzero elements range from 100K
to 15M, dimensions range from 2K to 2.4M. 129 of the matrices are pattern matri-
ces. In this case, the matrix data downloaded from the collection do not provide any
nonzero values, only the positions of elements are stated. We populate such matrices
with distinct values. Some matrices are symmetric, but we ignore this property.

Several of the matrices in our set are compiled from previously published papers
[Buluç et al. 2009; Kourtis et al. 2011; Williams et al. 2009]. Others are arbitrarily cho-
sen from the matrix collections without any specific criteria except that we preferred
the matrices not to have more than 15M nonzeros to make the experiments runnable in
a reasonable amount of time. The matrices come from a variety of domains including
circuit simulation, duplicate model reduction, electromagnetics, quantum chemistry,
power network, computer graphics, etc.

We executed code on two unloaded X86 64 machines, one with an Intel, the other
with an AMD processor. The properties of our testbed computers are in Table V. On
both machines we generated code using 5 specialization methods (CSRbyNZ, Row-
Pattern, GenOSKI44, GenOSKI55, Unfolding). We also collected the runtime of In-
tel MKL’s SpMV function, and we use Intel MKL as the baseline when we calculate
speedups. So, in total, 6 SpMV methods are used on the machines. We have also run
the benchmarks on a third computer with an Intel R© Xeon R© E3-1220 CPU, and found
the results to be similar to turing; we do not include that machine’s timings here.

We collected the running times as follows: For each matrix and SpMV code, we mea-
sured the time it takes to run the code for a few hundreds or thousands of times. The
number of iterations is determined according to the matrix size, but we made sure that
the measured time is long enough (e.g. at least 2 seconds) to avoid fluctuation. We then
divided the measured time by the number of iterations to find the running time of one
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Fig. 4. Left: Number of times each method is the best (610 matrices in total). Right: Average speedup w.r.t.
the baseline performance when using the best method for each matrix.

SpMV operation. We repeated this test three times, and took the lowest time (i.e. the
fastest execution time) with the intuition that it reflects the execution with the least
interference from external events. We measured feature collection, matrix conversion,
and code generation times again by running them three times and taking the smallest
measurement. We executed SpMV code both sequentially and in parallel. For parallel
executions, we set the number of threads to be equal to the number of CPU cores (6
on turing, 8 on milner). We refer to the sequential runs as turing-1 and milner-1,
parallel runs as turing-6 and milner-8.

For prediction experiments, we used the scikit-learn module of Python (version 2.7.9)
[Pedregosa et al. 2011]. We applied 10-fold cross validation for training and testing.
This is a standard approach in machine learning. We first shuffled the data, then split
into 10 groups, each comprising of 61 matrices. For each group, training is done using
the other 9 groups (549 matrices). The chosen group is used for testing whether the
predictions made by the trained classifier is correct.

We used Principal Component Analysis (PCA), a technique in machine learning to
reduce the number of features in order to assist the classifier by supplying more cor-
related data, but we did not observe any improvement in the quality of predictions.
Thus, the results we report do not include any application of PCA.

6. EXPERIMENTAL RESULTS
In this section we discuss the prediction results of the classifier. Figure 4 shows the dis-
tribution of best methods. Figure 5 shows the distribution of class labels when using
the paired approach. In Figure 6 we show the prediction results for turing-1, turing-6,
milner-1, and milner-8. For each, we show the number of correct, semi-correct, incor-
rect, and bad predictions (definitions given below), as well as the average speedup
achieved when using the predicted methods (on top of each bar). We tried all four com-
binations of naive/paired labeling and full/capped feature sets.

In the naive class labeling approach, a single method name is used as the class of
a matrix. Hence, if the autotuner’s classification for a given matrix is the same as the
actual best method, it is a correct prediction. Otherwise it is an incorrect prediction.

In the paired class labeling approach, two method names are used as the class of
a matrix. The autotuner’s classification output is hence a pair of method names. As
previously explained, we take the first method as the predicted one and ignore the
second. If this first method is the same as the actual best method, we categorize this
prediction as correct; if it is the same as the actual second best method, we categorize
this prediction as semi-correct. Otherwise, the prediction is considered incorrect. In
both naive and paired labeling approach, an incorrect or semi-correct prediction may
have worse performance than the baseline. We call this a bad prediction.
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Fig. 5. Class labels and corresponding counts for 610 matrices using the paired approach.
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Fig. 6. Prediction results.

We achieve average speedups of 1.31, 1.41, 1.37, and 1.77 when using paired label-
ing and the capped feature set (P-C bars in Figure 6). The speedups are slightly better
when using the naive approach or the full set. Recall from Figure 4 that if always the
best methods are used, the speedups are 1.33, 1.45, 1.39, and 1.83, respectively. So, pre-
dictions obtain 97-99% of the maximum speedups. The best method can be predicted
in 71-86% of the matrices, and the second best method can be predicted in 11-20% of
the matrices. Only 5-8% of the predictions choose a method worse than the baseline.
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Full vs. Capped Feature Set
The full feature set gives only slightly better predictions than the capped feature set.
The average speedups are either the same or only differ by 0.01. Taking into account
that the capped feature set can be extracted faster than the full set (detailed in the
next section), we favor the capped set and consider the marginal loss in the quality of
predictions an acceptable trade-off.
Naive vs. Paired Labeling
The naive and paired approaches yield similar speedups and prediction accuracy. The
advantage of the paired approach to the naive approach is the confidence it provides
from the machine learning (ML) point of view. Even though good speedup is achieved
with naive labeling, about 14-29% of the predictions are “incorrect”. This would make
a machine-learning-savvy person feel uncomfortable; a success rate of about 70% is not
considered the best in the ML community. By using the paired approach, we relax the
definition of class labels and feed more information into the learner. This gives more
confidence that the achieved speedups are good not just by luck.
Thresholding
We also experimented with the thresholding approach presented in Section 4. We
used 1.01, 1.02, 1.03, 1.05, 1.10, and 1.15 as the threshold values. Usually, using the
threshold yielded slight improvement in terms of correct predictions (∼5 more) and
bad predictions (∼4 fewer). The achieved speedups did not change. However, the num-
ber of semi-correct and incorrect predictions were altered significantly. For instance,
for turing-1, we obtained 69 semi-correct and 23 incorrect predictions when a thresh-
old is not used, but 19 semi-correct and 67 incorrect when a threshold value of 1.02
is used. This is because some classes contain repeated method names (e.g. CSRbyNZ-
CSRbyNZ) when a threshold is used. For those classes, there is no chance for a semi-
correct prediction, a prediction is either correct or incorrect, according to our definition.
For this reason, we decided not to use the thresholding approach.

7. LATENCY
SpMV specialization is likely to occur at runtime, unless the matrix (or at least its
pattern) is available offline. If the matrix data is available only at runtime, the SpMV
library has to be quick in producing the specialized function in order for specialization
to bring profit. In this section, we discuss the issue of latency: How much time needs
to be spent for prediction and code generation? How many SpMV iterations should
be taken so that specialization compensates its costs and starts to bring benefits? We
show that, on the average, the total cost of specialization is equivalent to 58 and 53
calls to the baseline SpMV operations, respectively, on two machines where we ran our
experiments. For the matrices for which the predicted method brings 1.1× or better
speedup, we obtained average break-even points of 272 and 237 baseline SpMV opera-
tions on our testbed computers. These costs and break-even points are low enough that
runtime specialization of SpMV for many real-world matrices in practical applications
of iterative solvers is feasible.

In our SpMV library, we assume we are given a matrix defined in the standard Com-
pressed Sparse Row (CSR) format. SpMV specialization for a matrix and a particular
specialization method involves the following steps:

— Matrix analysis: Before generating code, the matrix is analyzed to collect method-
related information, e.g.: what block patterns exist and which blocks have which
patterns in GenOSKI. The result of matrix analysis is used for matrix conversion
(next step), and when emitting instructions (the step after), e.g.: for each block pat-
tern in GenOSKI, a loop is generated.
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Table VI. Costs of code generation steps and feature extraction in
terms of one baseline SpMV operation.

turing-1 milner-1
if best overall if best overall

CSRbyNZ
Analysis 1.7 1.3 1.0 0.8

Conversion 3.6 4.6 3.4 4.2
Emission 0.8 2.0 0.7 1.5

Boiler-plate 1.1 2.3 1.0 1.8
RowPattern

Analysis 19.4 27.9 16.2 20.5
Conversion 3.9 5.6 3.0 4.4

Emission 1.5 31.4 1.0 21.4
Boiler-plate 2.1 25.1 1.5 18.8

GenOSKI44
Analysis 34.3 40.9 29.0 30.5

Conversion 3.2 3.2 3.4 3.2
Emission 1.5 2.3 0.9 1.7

Boiler-plate 1.3 1.6 1.0 1.1
GenOSKI55

Analysis 38.0 42.7 27.3 32.2
Conversion 3.5 3.3 3.0 3.2

Emission 2.0 6.6 0.8 4.9
Boiler-plate 1.6 3.0 0.9 2.1

Unfolding
Analysis 3.0 4.0 2.3 3.3

Conversion 0.0 0.0 0.0 0.0
Emission 60.6 108.6 44.0 77.0

Boiler-plate 13.1 38.4 10.6 28.5
Full feature set

Extraction 71.2 57.0
End-to-end specialization 90.3 75.8

Capped feature set
Extraction 39.0 34.6

End-to-end specialization 58.0 52.9

— Matrix conversion: The matrix data is converted from CSR format to the format
needed by the particular specialization method. This usually involves reordering
the matrix data.

— Instruction emission: X86 64 instructions are emitted in accordance with the spe-
cialization method, using the code generation approach explained in Section 3.

— Boiler-plate: A number of low-level tasks need to be carried out to execute the emit-
ted code at runtime. These tasks include creating a target-specific (e.g. Mach-O or
Elf) in-memory buffer to emit the instructions, and dynamically loading this buffer
for runtime execution. For these tasks, we use LLVM’s machine-code layer.

Average costs of the code generation steps in terms of one baseline SpMV operation
are given in Table VI. We provide two costs, “if best” and “overall”, for each method.
“Overall” column gives the cost averaged over the whole set of matrices; “if best” gives
the cost averaged over the matrices for which the particular method is the best per-
former. We see that, in general, costs are lower when the method happens to be the
best. This is because shorter codes are often better than long codes, and short code is
generated quicker. For instance, if there is a large number of row patterns in a matrix,
both the analysis, instruction emission, and boiler-plate steps take significantly longer
time. A similar observation can be made for GenOSKI and Unfolding as well. Com-
pared to the other methods, CSRbyNZ is usually very fast to analyze and generate.

Table VI also provides the costs for extraction of full and capped feature sets, as
well as end-to-end specialization. The full feature extraction cost of a matrix is less
than the sum of CSRbyNZ, RowPattern, Unfolding, GenOSKI44, and GenOSKI55 ma-
trix analysis costs, because feature extraction tracks less data than matrix analysis.
For instance, while the feature extraction step collects only the counts of patterns
and blocks for GenOSKI, matrix analysis also needs to collect which patterns apply to
which blocks. End-to-end specialization is calculated as
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Feature extraction + Predicted method’s (Analysis + Conversion + Emission + Boiler-plate)

When calculating end-to-end specialization, we take the analysis cost as zero if the
predicted method is CSRbyNZ or Unfolding, because the needed information is already
computed during feature extraction. The feature extraction and end-to-end specializa-
tion costs we report are averaged over all matrices.

The cost of end-to-end specialization is equivalent to 58.0 baseline SpMV calls on
turing, and 52.9 on milner when using the capped feature set. This means, even when
the baseline method or a method whose performance is very close to the baseline is
predicted, the amount of work that is spent due to specialization is about 50-60 itera-
tions of SpMV. Considering that several hundreds of iterations in iterative solvers is
typical, this may be an acceptable trade-off.

Table VI shows values for only single-threaded execution, because we did not paral-
lelize code generation phases yet. The boiler-plate step is delegated to LLVM, and we
are not sure if it can be parallelized, but it is possible for all the other steps to run
concurrently by splitting the matrix and the analysis data into partitions.

Considering the end-to-end specialization costs, we calculate the break-even point for
each matrix: how many times should we have to iterate SpMV so that specialization
compensates its cost, and starts to bring advantage over the baseline implementation?
Figure 7 shows the distribution of break-even points. The values in this figure have
been prepared according to the predictions made using the paired labeling approach.
The number of iterations used in iterative solvers depends on the desired accuracy of
the solution, but several hundreds or a few thousands is common in practice. Consid-
ering this fact, the break-even points shown in Figure 7, in particular those when the
capped feature set is used, are practically useful, as for many matrices speedup would
be gained. Note that for some matrices, the baseline method is predicted. For those
matrices, no break-even point exists and no cost other than the feature extraction has
to be paid. The bad predictions are the cases for when the predicted method performs
worse than the baseline. For these cases, the library may simply default back to using
the baseline implementation after detecting that the generated code performs poorly.

Belgin et al. report average break-even points from 500 to 700 excluding code gener-
ation cost in their work where they introduce the pattern-based representation (PBR)
for SpMV [2011]. They report these break-even points for matrices for which at least
1.1× speedup was observed (39 out of 53 matrices). Because we use different methods
and our matrix set is not the same (we have 610), our numbers are not directly com-
parable to theirs. However, to give a similar evaluation, our average break-even point
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Table VII. Count and break-even points of predictions that yield 1.1x or better speedup.
Full feature set Capped feature set

turing-1 milner-1 turing-1 milner-1
No. of predictions with ≥1.1×
speedup

417 435 414 432

Avg. break-even point of pre-
dictions with ≥1.1× speedup

406 314 272 237

for predictions that yield at least 1.1× speedup (when the capped feature set is used
and code generation cost is included) is 272 on turing (414 cases out of 610) and 237
on milner (432 cases out of 610), also shown in Table VII. Belgin et al. generate code
by writing C files on the disk and invoking a compiler. Therefore, when runtime code
generation is included, their break-even points increase to several thousands. Our code
emission costs are much smaller, due to our purpose-built code generator.

8. RELATED WORK
Previous autotuning approaches for SpMV focus on choosing an optimal storage for-
mat, because even the basic sparsity regime of a matrix can have profound effect on the
performance [Bell and Garland 2009]. To this end, there exist work using decision trees
[Li et al. 2013], dynamic-programming [Guo et al. 2014], reinforcement learning [Arm-
strong and Rendell 2008], heuristic-based autotuning [Abu-Sufah and Abdel Karim
2013], and model-driven approaches [Neelima et al. 2014; Choi et al. 2010]. To the
best of our knowledge, ours is the first study on applying autotuning to pick among
several specialization methods. This is challenging as the generated code structure
also needs to be considered in addition to the data format. We used a Support Vector
Machine (SVM) based approach for autotuning. SVM is used in many autotuning sys-
tems including the Nitro framework [Muralidharan et al. 2014]. Recently, a two-level
approach to autotuning was shown effective to address the complexities of mapping
features to algorithmic configurations [Ding et al. 2015]. We leave it a future work to
see whether this approach improves the prediction accuracy for our experiments. Most
of the other autotuning work have smaller matrix sets than ours, e.g. ∼14-150 [Grewe
and Lokhmotov 2011; Muralidharan et al. 2014; Neelima et al. 2014; Guo et al. 2014].
There also are studies with bigger matrix sets, e.g. ∼2000 in [Li et al. 2013], 1000
(synthetic) in [Armstrong and Rendell 2008].

There exist several work that employ runtime specialization for SpMV. Willcock
and Lumsdaine [2006] generate matrix-specific compression/decompression functions.
Kourtis et al. [2011] also study data compression; they generate specialized SpMV
routines for their CSX format in the LLVM intermediate representation. We, too, use
LLVM, but only for boiler-plate tasks regarding object file management. They employ
matrix sampling to reduce analysis costs by allowing minor loss in speedups; we use
capped analysis for the same purpose. Sun et al. [2011] introduce a runtime code gen-
erator for OpenCL that produces code variants for diagonal patterns for their CRSD
format. Belgin et al. [2011] propose a new format PBR which identifies recurring block
structures that share the same pattern of nonzeros within a matrix. (The GenOSKI
method we use is a variant of PBR.) A runtime code generator produces optimized cus-
tom kernel for each pattern. They generate source-level code and invoke an external
compiler. They also have a code cache that can be used to dynamically link object files
for already-compiled code. They show that priming this cache with common block pat-
tern code reduces runtime costs. Mateev et al. [2000] introduce a generic programming
API to generate efficient sparse code using high-level algorithms and sparse matrix
format specifications. A similar work is presented in [Grewe and Lokhmotov 2011],
where efficient and system-specific SpMV kernels for GPUs are generated based on
a storage format description. While this line of research generates code according to
storage formats, we specialize code for a specific matrix.
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Code generation for SpMV or related problems (i.e. matrix multiplication and vector
dot product) is found as a case study in several previous papers. Fabius [Lee and Leone
1996] is a compiler that generates native code at runtime by deriving the generator
from source code that contains binding-time annotations. Carette and Kiselyov [2011]
show how to eliminate abstraction overheads from generic programs using multi-stage
programming on Gaussian elimination. Rompf et al. [2013] combine various compiler
extension techniques to generate high-performance low-level code. They demonstrate
optimization of operations on sparse matrices, loop unrolling and loop parallelization.
SpMV, in the context of Hidden Markov Models, was also proposed as a Shonan Chal-
lenge [Aktemur et al. 2013].

We developed our code generator manually. It would be possible to derive it system-
atically from source code using a code generation/staging approach as in Fabius [Lee
and Leone 1996], LMS [Rompf and Odersky 2010], or Tempo [Consel et al. 2004]. How-
ever, we would either compromise the efficiency of the generated code or the speed of
generation, as discussed in Section 3.

Earlier examples of using code generation to optimize linear algebra operations in-
clude [Gustavson et al. 1970] and [Fukui et al. 1989]. They generate machine code
based on the matrix structure. Giorgi and Vialla [2014] generate SpMV kernels based
on characteristics of the input matrix. Venkat et al. [2015] address indirect loop index-
ing and irregular data accesses in SpMV kernels and introduce new compiler trans-
formations and automatically generated runtime inspectors. Our RowPattern method
also eliminates indirect indexing. Neither of these papers do runtime generation.

9. CONCLUSIONS
In this paper we have shown that it is possible to use runtime specialization to form ef-
ficient SpMV when the same matrix is multiplied by many vectors. We have developed
an end-to-end special-purpose compiler that generates efficient SpMV code which is
specialized for a given matrix. Our compiler directly emits machine instructions with-
out going through any intermediate representation to avoid time-consuming compiler
passes. We took this approach to minimize runtime code generation cost.

We experimented with 5 specialization methods and also Intel MKL. We used multi-
class classification and two class labeling approaches to predict a best method. Our
experiments on two different machines using 610 matrices show that for 91–96% of the
matrices, either the best or the second best method can be predicted. For autotuning,
we used 29 matrix features; several of these are unique to our work. We used a capped
feature extraction approach to reduce matrix preprocessing costs. We show that end-
to-end specialization costs are equivalent to 53–58 baseline SpMV operations on the
average. These costs are low enough that runtime specialization of SpMV for many
real-world matrices in practical applications of iterative solvers is feasible.
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