
Towards Subtyped Program Generation in F#

Baris Aktemur
∗

Özyeğin University
Istanbul, Turkey

baris.aktemur@ozyegin.edu.tr

ABSTRACT
Program Generation is the technique of combining code frag-
ments to construct a program. In this work we report on our
progress to extend F# with program generation constructs.
Our prototype implementation uses a translation that allows
simulating program generators by regular programs. The
translation enables fast implementation and experimenta-
tion. We state how a further extension with subtyping can
be integrated by benefiting from the translation.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—code gen-
eration, compilers, interpreters

General Terms
Languages

Keywords
Meta-programming, program generation, F#, subtyping

1. INTRODUCTION
Program Generation (PG) is the technique of putting code

fragments together to construct a program. PG systems use
a quotation syntax to denote code fragments and an an-
tiquote syntax to splice fragments into other fragments –
similar to quasiquotations (i.e. macros) in Lisp. PG sys-
tems typically provide an eval operator to execute generated
programs at runtime. Because an extra generation stage is
introduced, PG is also called staged programming.

A major problem in PG is to make sure that generators do
not produce ill-typed programs. This is a difficult problem
because the program source in PG is not statically available;
it is formed at runtime. In this ongoing work, our goal is to
integrate a PG type system with subtyping into F#.

∗Supported by Microsoft Research Software Engineering In-
novation Foundation (SEIF) Award, 2010.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TOPI ’11, May 28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0599-0/11/05 ...$10.00.

Figure 1: Specialization of polynomial calculation.

We use <[...]> syntax as code quotation, ∼(...) as an-
tiquotation. The run operator evaluates quoted fragments.
The lift operator converts values to quoted code. Gen-
erating a specialized polynomial calculation function for a
particular polynomial is shown in Figure 1, where a polyno-
mial is represented as a list that contains the coefficients.

In our prototype implementation we extended the F#
parser in the usual way. For evaluation of fragments we used
a translation that allows sound simulation of staged seman-
tics using regular operational semantics [1]. This way, we
reuse existing features of the F# interpreter for fast proto-
typing and add PG constructs incrementally, each time test-
ing a small step. We use the translation to also type-check
fragments in the style of λopen

poly [2], where a quoted expression

is typed as �(Γ . A), meaning “the fragment will result in a
value of type A if used in an environment Γ.” λopen

poly uses rho
variables for polymorphism of fragments. Because there is
no rho polymorphism in F#, we currently assume environ-
ments contain two variables –x and y– as seen in Figure 1 in
the type of genpoly. To improve expressiveness of the type
system, we are enriching it with subtyping. In this ongoing
work, again with the help of the translation, we are lever-
aging subtyping for regular programs to the staged domain.
Pottier provides the type system needed for this purpose [3].

2. REFERENCES
[1] W. Choi, B. Aktemur, K. Yi, and M. Tatsuta. Static

analysis for multi-staged programs via unstaging
translation. POPL 2011: 81–92.

[2] I.-S. Kim, K. Yi, and C. Calcagno. A polymorphic
modal type system for lisp-like multi-staged languages.
POPL 2006: 257–268.

[3] F. Pottier. A versatile constraint-based type inference
system. Nordic J. of Computing, 7(4):312–347, 2000.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TOPI’11, May 28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0599-0/11/05 ...$10.00

58

