
Rumadai: A Plug-In to Record and Replay Client-Side Events of
Web Sites with Dynamic Content

Asım Yıldız
Özyeğin University

Istanbul, Turkey
asim.yildiz@ozu.edu.tr

Barış Aktemur
Özyeğin University

Istanbul, Turkey
baris.aktemur@ozyegin.edu.tr

Hasan Sözer
Özyeğin University

Istanbul, Turkey
hasan.sozer@ozyegin.edu.tr

Abstract—Reproducing user events when testing web pages is
challenging because of the dynamic nature of the web content
and potential dependency on third party content providers.
We present Rumadai, a Visual Studio plug-in, that helps web
programmers test web pages by recording and replaying client-
side events. Rumadai injects code into web pages to be deployed
at servers. The injected code, written in JavaScript, records
user events as well as client-side dynamic content requests (e.g.
via Ajax or Jsonp) and their responses. Recorded events and
responses are then sent to a remote database via HTTP POST.
Web page developers can query the saved client data, again
using Rumadai seamlessly from Visual Studio, to replay all or
a subset of events on a browser.

Keywords-Web testing; Plug-in; JavaScript; User event
record&replay.

I. INTRODUCTION

Modern web sites are complicated. They depend on dy-
namic content computed at the server-side (e.g., using PHP,
ASP), at the client-side (e.g., JavaScript), and at external
sources (e.g., using Jsonp). They also rely on asynchronous
client-server communication. These features make testing
and debugging of web applications a challenging task.

Capture-and-replay tools record and deterministically re-
produce user events at the developer-site. They are adopted
to preserve the integrity of web applications [1] and to sup-
port the debugging process [4,5]. Currently, these tools either
run as browser plug-ins [2,3], or they employ customized
browsers [4]. There are also stand-alone systems and proxies
[5] used for the same purpose. However, the use of a proxy
breaks the end-to-end security enforced by HTTPS [4]. Also,
dynamic content obtained from external sources may not be
captured by proxies.

We introduce Rumadai, a capture-and-replay tool that runs
as a plug-in of an Integrated Development Environment
(IDE), instead of a browser. Due to the complexity of
web pages, programmers at large use IDEs to develop web
projects. Furthermore, many enterprise web projects are
being developed in teams since the scale of these projects
has increased substantially over the years. With Rumadai,
the developer does not have to leave the development
environment, either to prepare the web page for recording
events or to replay the captured events. In addition, logging

of captured events is facilitated by a web service. This
way, multiple developers can register for a single project
and the pool of events can be made accessible to a team
of developers/testers. The logging service is also accessed
and controlled within the development environment. Hence,
testing, event capturing, recording, replaying and debugging
tasks can all be performed through a uniform interface.
A distinguishing feature of Rumadai is that it provides
replayability even when a web document obtains data from
external sources, e.g. using cross-domain communication.

We implemented Rumadai as a Visual Studio plug-in.
There is no fundamental reason why we could not implement
our tool as a plug-in of another IDE, such as Eclipse. Visual
Studio has been our preference because of our previous
experiences in using it. Integrating Rumadai into the IDE has
been a smooth process. It took us less than one man-day to
complete the integration (i.e., reading the tutorials, adding
the necessary menus, making hook calls, etc.) – we have
significant experience in C#, but had no prior experience
in writing a Visual Studio plug-in. Rumadai is available at
http://srl.ozyegin.edu.tr/projects/rumadai.

II. SYSTEM OVERVIEW

Rumadai has the following workflow:
1) A developer registers to the Rumadai logging service

using the domain name of the web project and a user-
name & password. Recorded events can be obtained
later using the same registration information. Multiple
users can register for the same web project; a user may
register to multiple projects.

2) The developer injects the event-capturing script into
her web page documents using the Rumadai menu.

3) Optionally, the developer may have unique identifiers
generated for all elements on the current web page
documents that do not already have id’s. Having id’s
associated with the document elements makes it more
efficient to find a component during replay.

4) The developer deploys the web pages to the server.
5) A client requests the web documents from the server.

Code injected at step 2 runs inside the client browser.
Events are captured.

978-1-4673-1820-4/12/$31.00 c© 2012 IEEE TOPI 2012, Zurich, Switzerland88

6) Captured events are sent to the Rumadai logging
service. They are saved in a database.

7) The developer browses the events using Rumadai,
without having to leave the development environment.

8) The developer selects a subset of the events, replays
them to visualize what happened at the client-side.

Rumadai has four major components: (i) plug-in, (ii)
recorder, (iii) logging service, (iv) replayer. The plug-in
is used for the steps 1, 2, 3, and 7 above. The recorder
code injected by the plug-in is written in JavaScript. With
the help of JavaScript’s high flexibility and reflection fea-
tures, it is possible to capture and log certain events.
The script captures mouse events (click and mouseover),
DOM element change events, keyboard events, Ajax requests
and responses, JavaScript runtime errors, and finally cross-
domain communication made using Jsonp (through JQuery’s
getJSON function). An Ajax response may be successful
or it may fail. In the case of success, the contents of the
returned result are recorded. The same applies to Jsonp
return values. Rumadai also checks for missing images
and broken links by sending HTTP GET requests to these
links. The recorder does not require any modification on
the client browser. We make extensive use of JQuery [6]
and XMLHttpRequest [7] libraries to achieve a high level
of browser compatibility.

Recorder script stores the distinguishing properties of
events using in-memory string representations. Accumulated
events are sent to the logging service periodically. In case
the event is an image load, the logging service downloads
the image from its source, which may be a third-party server,
and saves the byte data. During replay, the saved image is
shown instead of the linked one. This reduces the risk of
an ill-replay because the image that resides at the external
source might have changed after the recording.

Rumadai’s logging service is a database available as a
web service. We made this design decision because web
sites of non-trivial sizes are developed in teams. There are
typically several testers who need access to the client-side
logs and several clients who submit logs. Therefore, it makes
sense to have a server accessible by both the testers and
clients. Recorder script talks to the logging service using
HTTP POST. This is because event data may be larger
than the size allowed in a GET request. However, browsers
do not allow cross-domain POST requests. To remedy this
problem, we embed a small Silverlight object together with
the recorder script. Silverlight is allowed to perform cross-
domain POST. An alternative approach is to divide the data
into chunks small enough to fit in GET requests at the
expense of increased number of requests.

Recorded events can be browsed using Rumadai’s event
viewer. When the developer hits the play button, the plug-
in first generates a sequence of JavaScript method calls,
each corresponding to an event. The generated code is then
combined with helper functions to obtain a replayer script,

which is injected into the stored web page. When the page
makes an Ajax/Jsonp request, the replayer aborts the request.
When a response is received, the data are replaced with what
was saved during recording. This ensures true reproduction
of the recording-time behavior. Replayer uses the saved
identifier and DOM tree path to access DOM elements.

We use the WebBrowser class in the .NET library for
replay. Because Rumadai plug-in is implemented in C# –a
.NET language– we achieve seamless integration.

III. LIMITATIONS

Rumadai does not capture all the mouse movements; only
the mouse over events are recorded. This is a trade-off
we made considering the cost (i.e. performance overhead)
of capturing/replaying all the mouse movements. For a
better replay, Rumadai calibrates the mouse cursor location
according to the client-side and replay-side screen resolution
differences. This calibration is subject to errors in some
exceptional cases. For a detailed discussion of replay-time
interaction limitations, see [5].

For cross-domain communication, we only capture Jsonp
calls made using JQuery’s getJSON function. There are
other ways of performing cross-domain data transfer, in
particular using the <script> tags, which Rumadai does
not check. However, getJSON is the most popular method;
we believe capturing it covers a wide range of uses.

In some cases, Rumadai may miss or artificially intro-
duce browser-specific problems during replay, because the
WebBrowser class we use for replay may be different than
the client browser. This is a trade-off we made in favor
of IDE integration. Also, replaying the mouse movements
would not be possible if we used an unmodified, independent
browser; browsers do not allow JavaScript to control the
mouse for security reasons.

REFERENCES

[1] K. Vikram, A. Prateek, and B. Livshits, “Ripley: automatically
securing web 2.0 applications through replicated execution,” in
Proceedings of CCS ’09, 2009, pp. 173–186.

[2] “Selenium IDE,” http://seleniumhq.org, 2012.

[3] “WET,” http://www.wet.qantom.org, 2012.

[4] S. Andrica and G. Candea, “WaRR: A tool for high-fidelity
web application record and replay,” in Proceedings of DSN
’11, 2011, pp. 403–410.

[5] J. Mickens, J. Elson, and J. Howell, “Mugshot: deterministic
capture and replay for javascript applications,” in Proceedings
of NSDI’10, 2010, pp. 159–174.

[6] “JQuery JavaScript Library,” http://jquery.com/, 2012.

[7] World Wide Web Consortium, “XMLHttpRequest specifica-
tion,” http://www.w3.org/TR/XMLHttpRequest/, 2012.

89

