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Abstract—The first goal of this paper is to introduce a simple
and customizable soft CPU named VerySimpleCPU (VSCPU),
which could be easily implemented on FPGAs with a complete
toolchain including instruction set simulator, assembler, and C
compiler. The second goal is to offer to use this CPU as a teaching
material within computer architecture/organization courses for
students to understand the essentials and inner workings of a
CPU better by designing a simple one. In addition to this, it is
also aimed to teach writing code both in assembly level and C
level for the CPU designed to understand what a compiler is and
why it is needed.

Index Terms—VSCPU, processor, compiler, FPGA, education

I. INTRODUCTION

CPUs are indispensable in computing. Different than other
hardware implementations, they are the most obvious exam-
ples that separate hardware from software abstraction (that is
why they offer extreme flexibility via software programming).
Hence, understanding of CPUs is essential for an electrical
or computer engineering student in order for him/her to thor-
oughly understand the concepts of hardware and software. As a
result, curriculum of a typical computer architecture/organiza-
tion course must include hands-on design and implementation
of a CPU. Based on the facts above, we can say the following:

• It is not possible to understand advanced concepts such as
pipelining, memory hierarchy, branch prediction, caching,
etc. without understanding essentials of processors.

• Students must code in assembly language of the processor
to understand how a processor works.

• Students could design their own CPU but in order for
them to fully employ their CPU in an application, a
basic understanding of how a compiler works and how it
allocates memory is also important.

It is clear that it is not reasonable for an engineering school
to design and manufacture a CPU chip. However, thanks to
FPGAs, they eliminate the need to access to expensive CAD
tools and manufacturing facilities and make digital design
affordable for such institutions and individuals.

In this paper, we introduce VerySimpleCPU (VSCPU),
which is a simple, customizable, educational, and easily im-
plementable CPU with a complete toolchain.

This work is supported by TÜBİTAK under contract 117E090.

II. BACKGROUND

In this part, our findings in the literature are given on
improving the content of computer architecture courses and
teaching processor design at undergraduate level.

Li et al. [1] described design and implementation of an
8-bit pipelined processor. The processor was designed using
Cadence EDA tools and implemented on a Xilinx FPGA.
Students were asked to design the processor, to perform
functional simulations, to implement the design, etc. The
processor mentioned is a custom RISC-based pipelined design.
The exercises of the course include analysis of processor
instruction set, design of data path and control unit, circuit
schematic, functional simulation, netlist generation, pin as-
signment, placement and routing, etc. No high-level language
support was provided.

Gray [2] introduced XSOC Project, which includes the xr16
RISC CPU core (both 16-bit and 32-bit), SoC infrastructure,
peripheral cores, C compiler, and simulator. The author claims
that FPGA-based SoCs can be alternatives to ASICs to estab-
lish a community of designers, a library of cores, motivate
students to design and build custom processing systems.

Šulık et al. [3] described the design of an 8-bit RISC
microcontroller using Handel-C.

Carpinelli [4] described a Java-based simulator which sup-
ports visualization of how an 8-bit processor fetches, decodes,
and executes instructions. Assembly language programs are
assembled by the simulator to run a cycle-accurate simulation
of the processor.

Ellard et al. [5] aimed to create a framework to teach
VLSI circuit design and implementation, machine architecture,
assembly language programming, compiler code generation,
and operating systems. It was created since the existing x86,
MIPS, and similar architectures are complicated to master
them. A 32-bit RISC architecture was used.

Nakano et al. [6], [7], and Nakamura et al. [8] described
the design of a 16-bit processor (TINYCPU), cross assembler
(TINYASM), and cross compiler (TINYC). The processor was
designed using Verilog HDL. TINYASM was written in Perl
and TINYC was written in Flex/Bison. The processor was
implemented on Xilinx FPGAs.

Angelov et al. [9] described the design of a 16-bit RISC
processor. The design entry is done as schematic and partly



using a core generator. No HDL was used. Primary goal is to
teach without any previous knowledge of digital electronics or
HDL.

Ribas [10] described the design of an 8-bit MCU-like
educational processor with support of assembler, simulator,
etc.

Qian et al. [11] described the design of a 14-bit small CPU
and interface chip.

Lee et al. [12] described a pipelined 32-bit CPU design
which was implemented on an FPGA. It combines three
pedagogical methods: problem-based learning (PBL), hands-
on learning, and incremental approach.

Chen et al. [13] described a 32-bit CPU which is a reduced
version of MIPS CPU.

Yamazaki et al. [14] described the organization of a work-
shop which includes topics related to computer architecture in
order to assess the knowledge of the students. A survey was
also conducted to get feedback from the students. Z80 CPU
core was used.

Zavala et al. [15] described the design of an 8-bit RISC soft-
core processor which was implemented on Xilinx FPGAs.

Table I represents a comparison between these educational
CPU designs in terms of toolchain support. VSCPU is also
included at the bottom of the table to see the advantage of our
VSCPU toolchain with respect to others.

TABLE I
COMPARISON OF CPUS IN TERMS OF TOOLCHAIN SUPPORT

CPU Assembler Simulator Compiler Web-based Use
[1] - - - -
[2] + + + -
[3] - - - -
[4] - + - -
[5] + + - -

[6] [7] [8] + - + -
[9] - + - -
[10] + + - +
[11] - - - -
[12] - - + -
[13] - - - -
[14] - - - -
[15] - - - -

VSCPU [16] + + + +

III. VSCPU

VSCPU [16] is a simple and customizable 32-bit soft CPU
core. The instruction set architecture (ISA) of VSCPU has
sixteen instructions and supports unsigned integer arithmetic
operations.

Main features of VSCPU can be summarized as follows:
• 16 instructions
• Multi-cycle execution
• 64KB memory
• Up to 16 MIPS throughput at 50MHz
• Registers:

– PC: Program Counter (14-bit)
– IW: Instruction Word (32-bit)
– R1: General-Purpose Register (32-bit)

– R2: General-Purpose Register (32-bit) (Optional)

• Interrupt support
• Peripheral support via memory-mapped I/O:

– General-Purpose Input-Output (GPIO)
– Pulse-Width Modulation (PWM)
– Inter-Integrated Circuit (I2C)
– Serial Peripheral Interface (SPI)
– Universal Asynchronous Receiver-Transmitter

(UART)
– Video Graphics Array (VGA)

VSCPU, memory interface, interconnect logic, and all pe-
ripheral interfaces are designed in Verilog RTL.

A. VSCPU ISA

VSCPU ISA has sixteen instructions and supports unsigned
integer arithmetic operations. Table II shows instruction word
format for VSCPU ISA.

TABLE II
VSCPU INSTRUCTION WORD

Instruction Word
bit position [31:29] [28] [27:14] [13:0]
field name opcode immediate operand A operand B
bit width 3-bit 1-bit 14-bit 14-bit

The leftmost three bits in instruction word includes instruc-
tion opcode which defines operation type of the instruction.
operand A can refer to either address of operand or destination
address or both of them. operand B can refer to either address
of the operand or value of the operand itself depending on
the value of immediate bit (the case is different for CPIi
instruction). Table III lists the instruction set of VSCPU.

B. VSCPU Instruction Cycle

VSCPU instructions are multi-cycle. Therefore, we can
represent instruction cycle of VSCPU as a finite state machine.
Figure 1 shows the state machine representation of VSCPU.

In Figure 1, states with green color represents the regular
instruction cycle. As shown here, each VSCPU instruction
takes more than one cycle (state) to complete its instruction
cycle. Depending on the instruction type, it can take either
three or four cycles to finish an instruction. VSCPU could also
handle interrupts with a simple mechanism. States with yellow
color are used for this purpose and represents the additional
actions taken when an interrupt occurs. Actions taken within
each state can be summarized in Table IV.



Fig. 1. State machine representation of VSCPU

TABLE IV
STATE DESCRIPTIONS OF VSCPU

States Description

fetch instruction fetch the next instruction from
memory which is pointed by PC

fetch operand A decode the instruction and fetch
the first operand from memory

fetch operand B fetch the second operand from
memory

execute instruction and write back perform ALU operations, store the
result in memory, set PC

interrupt stage 0 get the address of interrupt service
routine (ISR)

interrupt stage 1 store current PC in memory to
continue while returning from
ISR, go to ISR

VSCPU has no special instruction to return from interrupt.
Instead, there are two reserved addresses (five and six) in
memory to handle interrupts. At the fifth address, we keep
the address of interrupt service routine (ISR) to handle the
interrupt. At the sixth address, we keep the address of the
next instruction to be executed after returning from the in-
terrupt. Since there is no instruction to return from interrupt,
BZJ 6 3 instruction is used to return from the interrupt and

continue the program where it left off. For this reason, every
ISR should end with this instruction.

IV. VSCPU TOOLCHAIN

We developed several assemblers and instruction set simu-
lators with different languages up to now. A C Compiler is
also available which supports a small subset of C syntax.

A. Instruction Set Simulator & Assembler

We developed a Python-based instruction set simulator and
assembler which can simulate VSCPU assembly code and
generate the corresponding machine code. Listing 1 shows a

working example of Python-based script on how simulation is
done.
# ./assembler_iss_mem_init_gen.py -i example.asm -a 1 -s 1
Starting simulation

step-by-step mode selected

Press any key to continue

* * * * * * * * * * * * * * * * * * * * * * * * *
current_instruction: ADD 10 11
program counter : 0
Memory content before executing instruction
mem[ 10 ] : 5
mem[ 11 ] : 2
Memory content after executing instruction
mem[ 10 ] : 7
mem[ 11 ] : 2

* * * * * * * * * * * * * * * * * * * * * * * * *

Press any key to continue

* * * * * * * * * * * * * * * * * * * * * * * * *
current_instruction: BZJi 20 1
program counter : 1
mem[ 20 ] : 0

* * * * * * * * * * * * * * * * * * * * * * * * *
Finishing simulation. Instruction called itself.

Listing 1. VSCPU Assembler and ISS Script Working Example

A web application [17] [18] is also available for the instruc-
tion set simulator and the assembler.

B. C Compiler

We developed a compiler from a subset of C to VSCPU.
The compiler is written as a Clang frontend action [19]. Given
a C source file, the program is preprocessed, parsed, and
semantically analyzed using Clang – an industrial-strength C
compiler. Syntax and semantic errors (e.g. type mismatches)
are detected, and Clang’s high-quality error/warning messages
are displayed. If no errors are detected, the abstract syntax tree
(AST) of the input program is passed to the VSCPU frontend
handler, which traverses the tree and emits the corresponding
VSCPU assembly code.



TABLE III
VSCPU INSTRUCTION SET

Mnemonic Description Microoperations

Arithmetic & Logic Instructions

ADD A B
unsigned
add

R1 <- mem[A]
R2 <- mem[B]
mem[A] <- (R1 + R2)
PC <- PC + 1

ADDi A B
unsigned
add
immediate

R1 <- mem[A]
R2 <- B
mem[A] <- (R1 + R2)
PC <- PC + 1

NAND A B
bitwise
NAND

R1 <- mem[A]
R2 <- mem[B]
mem[A] <- ∼(R1 & R2)
PC <- PC + 1

NANDi A B
bitwise
NAND
immediate

R1 <- mem[A]
R2 <- B
mem[A] <- ∼(R1 & R2)
PC <- PC + 1

SRL A B
shift
right/left

R1 <- mem[A]
R2 <- mem[B]
mem[A] <- (R2 < 32) ? (R1 >> R2) : (R1 << (R2-32))
PC <- PC + 1

SRLi A B
shift
right/left
immediate

R1 <- mem[A]
R2 <- B
mem[A] <- (R2 < 32) ? (R1 >> R2) : (R1 << (R2-32))
PC <- PC + 1

LT A B
compare
and
set

R1 <- mem[A]
R2 <- mem[B]
mem[A] <- (R1 < R2) ? 1 : 0
PC <- PC + 1

LTi A B

compare
and
set
immediate

R1 <- mem[A]
R2 <- B
mem[A] <- (R1 < R2) ? 1 : 0
PC <- PC + 1

MUL A B
unsigned
multiply

R1 <- mem[A]
R2 <- mem[B]
mem[A] <- (R1 * R2)
PC <- PC + 1

MULi A B
unsigned
multiply
immediate

R1 <- mem[A]
R2 <- B
mem[A] <- (R1 * R2)
PC <- PC + 1

Data Transfer Instructions

CP A B
copy
data

R2 <- mem[B]
mem[A] <- R2
PC <- PC + 1

CPi A B
copy
data
immediate

R2 <- B
mem[A] <- R2
PC <- PC + 1

CPI A B
copy
data
indirect

R1 <- mem[B]
R2 <- mem[R1]
mem[A] <- R2
PC <- PC + 1

CPIi A B

copy
data
indirect
immediate

R1 <- mem[A]
R2 <- mem[B]
mem[R1] <- R2
PC <- PC + 1

Program Control Instructions

BZJ A B
branch
on zero

R1 <- mem[A]
R2 <- mem[B]
PC <- (R2 == 0) ? R1 : (PC + 1)

BZJi A B
unconditional
branch

R1 <- mem[A]
R2 <- B
PC <- (R1 + R2)

As of time of writing this paper, the compiler is able to
handle pointer arithmetic, array operations, functions with
void and non-void return types, direct or indirect recursion,
const and non-const global variables, for-loops and while-
loops with break and continue. The following types
are supported by the compiler: int (32-bit), pointer to a
supported type (e.g. int*, int**), one dimensional array
of a supported type (e.g. int[], int*[]). The compiler has
certain limitations as well. Currently, there is no support for
structs and the switch statement. A standard library does
not exist (i.e no dynamic memory management via malloc
and free). The code generated for division and remainder
operations are based on subtraction and looping, and hence,
very slow.

Figure 2 shows a sample C program and the corresponding
assembly code produced by our compiler. The assembly code

int x = 1234;
const int pi = 314;

void modify() {
x = 456;

}

int main() {
modify();
return 99 + x;

}

0: BZJi 3 33 // Goto main -- Jump to main
// $REGISTERS_SECTION:
1: 73 // Address of $main_base -- SP
2: 73 // Address of $main_base -- BP
3: 0 // Zero
4: 4294967295 // Negative one
5: 0 // VSCPU Special 1
...
10: 0 // VSCPU Special 6
11: 0 // GP Reg 1
...
16: 0 // GP Reg 6
// $TEXT_SECTION:
// modify:
17: ...
...
// main:
33: ...
...
// $CONSTANT_DATA_SECTION:
// @pi:
67: 314 // pi
// @456:
68: 456
// @99:
69: 99
// $GLOBAL_DATA_SECTION:
// @x:
70: 1234 // x
// $STACK_SECTION:
71: 64 // Return address (RA) of main
72: 0 // A dummy oldBP value
// $main_base:

Fig. 2. Left: A sample C program. Right: The VSCPU assembly code
produced by the compiler.

Registers

Program text

Constants

Globals

Stack

m

Stack frame of the
caller function

Return address (RA)
Old base pointer (old BP)

Local variables ← BP points here

Temporaries

unused space ← SP points here

Fig. 3. Left: Layout of the assembly code emitted by the compiler. Right:
Layout of the stack frame (i.e. activation record) of a function.

consists of five main sections as shown in the left hand side
of Figure 3. Program text section contains the instructions to
call the main function, and the instructions of each function
in the program (words 17–66 in Figure 3). This section is
read-only. Constants section contains the integer literals that
appear in the source code, and the data for global variables
that have been defined using the const qualifier (words 67–
68 in Figure 3). This section is read-only. Globals section
contains the data for the non-const global variables (word 69
in Figure 3). The program text, constants, and globals sections
have a fixed size for each input program. Registers section
of the memory (words 1–16 in Figure 3) is reserved for the
following purposes:

1) Special-purpose registers. There are four of these:
• SP: The stack pointer (SP) stores the address of the

top of the stack. We use this value whenever we
want to push/pop something to/from the stack.

• BP: The base pointer (BP) stores the address of the
base of the stack frame (explained below) that is on
top of the stack.

• Zero: This word always stores the value 0. It is
useful when the program needs to compare a value



against zero.
• NegOne: This word always stores the value -1

in two’s complement form. It is useful when the
program needs to decrement a value; e.g., the SP
after a pop operation.

2) VSCPU-specific addresses for interrupt handling and
memory-mapped operations. There are 6 of these.

3) General-purpose registers. There are 6 of these. A typical
use-case is to pop a couple values from the stack to GP
registers, perform a particular operation on these values
(e.g. and ADD), then push the result back to the stack
from a GP register.

Stack section is used for storing the stack frames (i.e.
activation records) of called functions (starts at word 70 in
Figure 3). The function whose stack frame is on top of
the stack is the currently running, active function. The stack
frame of a function contains the information necessary for the
function to execute properly. The layout of a frame is shown
in the right hand side of Figure 3. At any time, the SP register
points to the next available word on the stack. The BP register
points to the starting address of the local variables of the active
stack frame. This address is referred as the base address of
the frame. The return address (RA) is the address that the
function will jump to when it completes execution. The old
BP is the base address (the value of the BP register) of the
caller function’s frame. When the active function returns, the
BP register’s value for the caller function is recovered from
the old BP value. The local variables are the values of the
arguments and the locally declared variables of the function.
A local variable is typically accessed by using its offset
from the BP. The temporaries are the values of intermediate
computations that are not assigned to named variables in the
program. The stack section grows and shrinks continuously
during runtime as functions are called or return, as new
local variables are declared, and as compound expressions are
computed. The memory layout and the stack frame structure
follows a standard approach [20], [21].

The careful reader will notice that there is a jump instruction
at address 0 in Figure 3, which we did not include in any
of the sections. VSCPU starts executing a given program at
address 0. Therefore, as the content of the first word, we emit
an unconditional branch instruction that jumps to the main
function in the program text section.

V. PERIPHERAL SUPPORT FOR VSCPU
VSCPU could be used to access various peripherals which

support different types of peripherals and interfaces such as
GPIO, PWM, RS232, VGA, I2C, SPI, etc. We used memory-
mapped I/O to access peripherals from VSCPU.

A memory-mapped system employs the address space so
that both memory and peripherals can be accessed by the
processor (i.e., VSCPU). Hence, when a specific address is
accessed by VSCPU using the same instruction set, it can
refer to either physical memory or peripherals like switch, push
button, LED, accelerometer, etc. Figure 4 shows an example
memory map for VSCPU which shows of physical memory

and peripherals of this system with their corresponding start
and finish addresses.

0x0000

0x03ff

Local Memory



Instruction and Data Memory

0x0400

0x040f

LED

0x0410

0x041f

Switch

0x0420

0x042f

PWM

0x0430

0x043f

Accelerometer



Peripherals

Fig. 4. Example memory map for VSCPU which has access to various
peripherals

Figure 5 shows top-level block diagram of memory-mapped
VSCPU system. Here, Core represents VSCPU itself. Mem-
ory is a bridge between VSCPU, physical memory, and
peripherals. It manages address translation and data transfer
between them. CPU module is responsible for interfacing
to peripherals and host. Host module is used for debugging
purposes.

Fig. 5. Top-level block diagram of VSCPU memory-mapped system



VI. INTEGRATION OF VSCPU AS A COURSE MATERIAL
INTO CURRICULUM

VSCPU has being used for several years within digital
design and computer architecture courses at Yeditepe and
Özyeğin Universities successfully. Although it is not directly
included into the course content, it is given as a short term
project which spans three to four weeks. At the beginning
of the project, students were given the related documentation
along with the instruction set architecture and the toolchain
(instruction set simulator, assembler, and C compiler). In the
first part of the project, students were asked to design VSCPU
by writing its RTL code in Verilog and to perform simulations
on PC. This part tests students’ understanding of hardware.
In the second part of the project, students were asked to use
VSCPU they designed to implement a simple memory-mapped
system which has access to switches, push buttons, LEDs,
VGA port, etc. on an FPGA board. In this part of the project,
students were given the RTL code of memory interface,
interconnect logic, and peripheral interface and asked them
to implement a working memory-mapped system and write
programs in either assembly or C which require to access
the peripherals. This part tests students’ understanding of the
difference between hardware and software.

Besides these, two students designed and implemented
VSCPU-based line follower robot and sumo robot within their
term projects.

VII. CONCLUSION

This paper proposes a simple and customizable soft CPU
which can be easily implemented on FPGAs. Its simple nature
makes it an ideal candidate to be used within undergraduate-
level computer architecture/organization courses as a teaching
material. We have already been using VSCPU at two univer-
sities for several years. According to the feedback we receive
from students, we can say that understanding of how a modern
CPU works first requires to design a simple one.
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