Code Transformation

CS 544
Baris Aktemur

Contents taken from Vikram Adve’s lecture notes.

Loop Invariant Code Motion
(LICM)

« Given a statement w
.S:.X = A + B;...
inside a natural loop L;

» Goal:

— move A+B out of L, if legal.
— move assignment to X out of L, if legal.

Natural Loop
(def. from the Dragon Book)

* A natural loop is defined by two essential
properties

— It must have a single-entry node, called the

header. This entry node dominates all nodes

in the loop, or it would not be the sole entry to
the loop.

— There must be a back edge that enters the
loop header. Otherwise, it is not possible for
the flow of control to return to the header
directly from the "loop" ; i.e., there really is no
loop. 3

LICM

» Analysis: Find reaching defs of each
variable in RHS and check if they are all
outside the loop, or only one def reaches
the variable and it is loop-invariant

« Consequences
— Fewer computations (often, much fewer)

— Adds some copy instructions = cheaper than
any operation

— May stretch some live ranges

LICM

» Opportunities
— Array indexing expressions
— Structure indexing expressions
— Effect of previous transformations

LICM Examples

Example 1: Invariant def overwritten by later def
for (i=0; i < N; ++i) {

X = a * b; // hoist a*b but not def of X
Y =X * i;
X=Y + 1; }

Example 2: Def does not dominate exit
for (i=0; i < N; ++i) {
if (...)
X = a * b; // hoist a*b but not def of X }

Example 3: Multiple defs reach a use
for (i=0; i < N; ++i) {
X =a * b; // hoist a*b but not def of X
if (...)
X =X * i;
Y = X; }

LICM Legality

» Moving expression evaluation out of L
— (E1) Strict: S must dominate all exit nodes
from loop L
— (E1') Relaxed: S must dominate all exit nodes
from loop L or A + B must not cause any
exceptions

LICM Legality

* Moving def of X out of L:

—(D1) S must dominate all exit nodes from L
except exit nodes where X is dead

—(D2) No other statement in the loop must
store to X

—(D3) No use of X in L must be reached by
any other def of X.

* Note: With SSA form, we only need D1!

LICM Algorithm (1/2)

Inputs

Procedure in 3-address form
Natural loop L, with preheader block P
Def-use and Use-def chains for the procedure

LICM()
repeat (until no new statements are marked)
for (each statement S:X=expr in L)
IsInvariant = true;
for (all operands u € S)
if (any defs reaching u are within L)
if (more than one def reaches u
|| (the single def d reaching u is
not constant and not invariant))
{ IsInvariant = false; break }
if (IsInvariant) /expris loop-invariant
Mark s invariant

LICM Algorithm (2/2)

for (each statement S:X=expr in L) do
if (S is marked invariant)
if (BB containing S dominates all loop exits
|| exor causes no exceptions)

insert tmp=expr just before loop L

if (conditions (D1)...(D3) are satisfied) {
insert X=tmp just before loop L;
delete S

} else
replace S with X=tmp

10

Global Common Subexpression

Elimination (GCSE)

» Goal:

— Eliminate redundant evaluation of an
expression if it is available on all incoming
paths

« Analysis: AVAIL proves that the value is

current

* Transformation:

— Introduce new temporary for each CSE
discovered

—don’t add evaluations to any path

1"

GCSE

» Consequences
— same or fewer evaluations on every path

— add some copy instructions
=> many copies coalesce away during
allocation

— major cost: can stretch live ranges
= may need forward substitution to undo
some CSE results

12

GCSE

» Opportunities
— Array indexing expressions
— Structure indexing expressions
— Clean user-written code

13

Inputs

GCSE Algorithm (1/2)

(1) 3-address code + CFG for a procedure

(2) Numbered set of expressions U = {ey,...en}
Use lexically identical expressions; apply reassociation first

(3) Available expressions, AVAIL,,(B), for each block B

GCSE()
EverRedundant[i] = false, V1<i<N;
for each block B
for each statement S: X =Y op Z in B
if (e;=%Y op Z" € AVAIL;,(B)
and e; is not killed before S in B)
{

EverRedundant[]j] = true
Create new temporary itmp;
Replace S with X =tmp; }

GCSE Algorithm (2/2)

for each block B
for each original statement T:X =Y op Z in B
if (EverRedundant[k]) // where e, =“Y op Z"
{
replace T with the pair:
tmp; =Y op Z
W = tmp;

15

