
1

Code Transformation

CS 544
Baris Aktemur

Contents taken from Vikram Adve’s lecture notes.

1

Loop Invariant Code Motion
(LICM)

•  Given a statement
S: X = A + B;

 inside a natural loop L;
•  Goal:

– move A+B out of L, if legal.
– move assignment to X out of L, if legal.

2

What’s
this?

2

Natural Loop
(def. from the Dragon Book)

•  A natural loop is defined by two essential
properties
–  It must have a single-entry node, called the

header. This entry node dominates all nodes
in the loop, or it would not be the sole entry to
the loop.

– There must be a back edge that enters the
loop header. Otherwise, it is not possible for
the flow of control to return to the header
directly from the "loop" ; i.e., there really is no
loop. 3

LICM

•  Analysis: Find reaching defs of each
variable in RHS and check if they are all
outside the loop, or only one def reaches
the variable and it is loop-invariant

•  Consequences
– Fewer computations (often, much fewer)
– Adds some copy instructions ⇒ cheaper than

any operation
– May stretch some live ranges

4

3

LICM

•  Opportunities
– Array indexing expressions
– Structure indexing expressions
– Effect of previous transformations

5

LICM Examples

6

4

LICM Legality

•  Moving expression evaluation out of L
–  (E1) Strict: S must dominate all exit nodes

from loop L
–  (E1′) Relaxed: S must dominate all exit nodes

from loop L or A + B must not cause any
exceptions

7

LICM Legality

•  Moving def of X out of L:
–  (D1) S must dominate all exit nodes from L

except exit nodes where X is dead
–  (D2) No other statement in the loop must

store to X
–  (D3) No use of X in L must be reached by

any other def of X.
•  Note: With SSA form, we only need D1!

8

5

LICM Algorithm (1/2)

9

LICM Algorithm (2/2)

10

6

Global Common Subexpression
Elimination (GCSE)

•  Goal:
– Eliminate redundant evaluation of an

expression if it is available on all incoming
paths

•  Analysis: AVAIL proves that the value is
current

•  Transformation:
–  Introduce new temporary for each CSE

discovered
– don’t add evaluations to any path 11

GCSE

•  Consequences
– same or fewer evaluations on every path
– add some copy instructions
⇒ many copies coalesce away during
allocation

– major cost: can stretch live ranges
⇒ may need forward substitution to undo
some CSE results

12

7

GCSE

•  Opportunities
– Array indexing expressions
– Structure indexing expressions
– Clean user-written code

13

GCSE Algorithm (1/2)

14

8

GCSE Algorithm (2/2)

15

