
2/3/17

1

CS 444/544 Compilers
Ozyegin University

http://aktemur.github.io/cs544

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies 
of these materials for their personal use.  
Faculty from other educational institutions may use these materials for nonprofit 
educational purposes, provided this copyright notice is preserved.

0

Note by Baris Aktemur: 
Our slides are adapted from Cooper and Torczon’s slides that they prepared for COMP 412 
at Rice.

Instructing a CPU

1
nextmedia.com.au



2/3/17

2

2wi
ki

pe
di

a

3wi
ki

pe
di

a



2/3/17

3

Instructing a CPU
• Wires go in, wires come out
• Low voltage, high voltage
• 0 and 1

4

i
i=1

n

∑

5

i
i=1

n

∑

11001111 11111010 11101101 11111110 00000111 00000000
00000000 00000001 00000011 00000000 00000000 00000000
00000001 00000000 00000000 00000000 00000011 00000000
...
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 01010101 01001000
10001001 11100101 10000101 11111111 01111110 00010011
10001101 01001111 11111110 10001101 01000111 11111111
01001000 00001111 10101111 11000001 01001000 11010001
11101000 10001101 01000100 00111000 11111111 01011101
11000011 00110001 11000000 01011101 11000011 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00011111 00000000 00000000 00000000 00000000
00000000 00000000 00000001 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00010100 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000001 01111010
01010010 00000000 00000001 01111000 00010000 00000001
00010000 00001100 00000111 00001000 10010000 00000001
00000000 00000000 00100100 00000000 00000000 00000000
00011100 00000000 00000000 00000000 10100000 11111111
11111111 11111111 11111111 11111111 11111111 11111111
00011111 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 01000001 00001110 00010000
10000110 00000010 01000011 00001101 00000110 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000001 00000000
00000000 00000110 00001110 00000000 00000000 00000000
00001110 00000011 00000000 00000000 01000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000001 00000000 00000000 00000000 00001111 00000001
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000110 00000000
00000000 00000000 00001111 00000011 00000000 00000000
01011000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 01011111 01100110 01101111
01101111 00000000 01011111 01100110 01101111 01101111
00101110 01100101 01101000 00000000 01000101 01001000
01011111 01100110 01110010 01100001 01101101 01100101
00110000 00000000 0. 



2/3/17

4

6

i
i=1

n

∑

pushq %rbp
movq %rsp, %rbp
movl %edi, -4(%rbp)
movl $0, -8(%rbp)
movl $0, -12(%rbp)

LBB0_1:
movl -12(%rbp), %eax
cmpl -4(%rbp), %eax
jge LBB0_4
movl -12(%rbp), %eax
movl -8(%rbp), %ecx
addl %eax, %ecx
movl %ecx, -8(%rbp)
movl -12(%rbp), %eax
addl $1, %eax
movl %eax, -12(%rbp)
jmp LBB0_1

LBB0_4:
movl -8(%rbp), %eax
popq %rbp
ret

55
48 89 e5
89 7d fc
c7 45 f8 00 00 00 00
c7 45 f4 00 00 00 00

8b 45 f4
3b 45 fc
0f 8d 1b 00 00 00
8b 45 f4
8b 4d f8
01 c1
89 4d f8
8b 45 f4
05 01 00 00 00
89 45 f4
e9 d9 ff ff ff

8b 45 f8
5d
c3

int sum = 0;
for(int i=1; i<=n; i++){
sum += i;

}
return sum;

7

int sum = 0;
for(int i=1; i<=n; i++){
sum += i;

}
return sum;

Compiler

55
48 89 e5
85 ff
7e 13
8d 4f fe
8d 47 ff
48 0f af c1
48 d1 e8
8d 44 78 ff
5d
c3
31 c0
5d
c3



2/3/17

5

Comp 412, Fall 2010 8

Compilers
• What is a compiler?

— A program that translates an executable program in one 
language into an executable program in another language

— The compiler should improve the program, in some way

• What is an interpreter?                                                    
— A program that reads an executable program and produces the 

results of executing that program  

• C,C++ are typically compiled. Scheme, Python are typically 
interpreted. Haskell, F#, Ocaml are compiled or interpreted, 
depending on the context.

• Java is compiled to bytecodes (code for the Java VM)
— which are then interpreted
— Or a hybrid strategy is used

® Just-in-time compilation

Common mis-statement:
X is an interpreted language 
(or a compiled language)

Comp 412, Fall 2010 9

Why Study Compilation?
• Compilers are important

— Responsible for many aspects of system performance
— Attaining performance has become more difficult over time

® In 1980, typical code got 85% or more of peak performance
® Today, that number is closer to 5 to 10% of peak
® Compiler has become a prime determiner of performance

• Compilers are interesting
— Compilers include many applications of theory to practice
— Writing a compiler exposes algorithmic & engineering issues

• Compilers are everywhere
— Many practical applications have embedded languages

® Commands, macros, formatting tags …
— Many applications have input formats that look like languages



2/3/17

6

Reducing the Price of Abstraction
Computer Science is the art of creating virtual objects and 

making them useful.
• We invent abstractions and uses for them
• We invent ways to make them efficient
• Programming is the way we realize these inventions

Well written compilers make abstraction affordable
• Cost of executing code should reflect the underlying work 

rather than the way the programmer chose to write it
• Change in expression should bring small performance change
• Cannot expect compiler to devise better algorithms

— Don’t expect bubblesort to become quicksort

Comp 412, Fall 2010 10

Comp 412, Fall 2010 11

Making Languages Usable

It was our belief that if FORTRAN, during its first months, 
were to translate any reasonable “scientific” source program into 
an object program only half as fast as its hand-coded 
counterpart, then acceptance of our system would be in serious 
danger... I believe that had we failed to produce efficient 
programs, the widespread use of languages like FORTRAN would 
have been seriously delayed.

— John Backus on the subject of the 1st FORTRAN compiler



2/3/17

7

Simple Examples
Which is faster?

Comp 412, Fall 2010 12

for (i=0; i<n; i++)
for (j=0; j<n; j++)

A[i][j] = 0;

p = &A[0][0];
t = n * n;
for (i=0; i<t; i++)

*p++ = 0;

All three loops have distinct 
performance. 

for (i=0; i<n; i++)
for (j=0; j<n; j++)

A[j][i] = 0;

0.51 sec on 10,000 x 10,000 array

1.65 sec on 10,000 x 10,000 array

0.11 sec on 10,000 x 10,000 array

All data collected with gcc 4.1, -O3, running on 
a queiscent, multiuser Intel T9600 @ 2.8 GHz

bzero((void*) &A[0][0],(size_t) n*n*sizeof(int))

Conventional wisdom suggests using 

0.52 sec on 10,000 x 10,000 array

A good compiler should know these tradeoffs, 
on each target, and generate the best code.
Few real compilers do.

Simple Examples
Abstraction has its price    (& it is often higher than expected)

Comp 412, Fall 2010 13

struct point {    /* Point on the plane of windows */
int x; int y; 

}

void Padd(struct point p, struct point q, struct point * r)
{
r->x = p.x + q.x;
r->y = p.y + q.y;

}

int main( int argc, char *argv[] )
{
struct point p1, p2, p3;

p1.x = 1; p1.y = 1;
p2.x = 2; p2.y = 2;

Padd(p1, p2, &p3);

printf(”Result is <%d,%d>.\n”, p3.x, p3.y);
}

Example from Rn Programming 
Environment, Rice, circa 1984



2/3/17

8

Comp 412, Fall 2010

_main:  (some boilerplate code ellided for brevity’s sake)
L5:

popl    %ebx
movl    $1, -16(%ebp)
movl    $1, -12(%ebp)
movl    $2, -24(%ebp)
movl    $2, -20(%ebp)
leal    -32(%ebp), %eax
movl    %eax, 16(%esp)
movl    -24(%ebp), %eax
movl    -20(%ebp), %edx
movl    %eax, 8(%esp)
movl    %edx, 12(%esp)
movl    -16(%ebp), %eax
movl    -12(%ebp), %edx
movl    %eax, (%esp)
movl    %edx, 4(%esp)
call    _PAdd
movl    -28(%ebp), %eax
movl    -32(%ebp), %edx
movl    %eax, 8(%esp)
movl    %edx, 4(%esp)
leal    LC0-"L00000000001$pb"(%ebx), %eax
movl    %eax, (%esp)
call    L_printf$stub
addl    $68, %esp
popl    %ebx
leave
ret

Assignments to p1 and p2

Setup for call to PAdd

Setup for call to printf

Simple Example   (point add)

14

gcc 4.1, -S option

Address calculation for format 
string in printf call

Code for Intel Core 2 Duo

Comp 412, Fall 2010

_PAdd:
pushl   %ebp
movl    %esp, %ebp
subl    $8, %esp
movl    8(%ebp), %edx
movl    16(%ebp), %eax
addl    %eax, %edx
movl    24(%ebp), %eax
movl    %edx, (%eax)
movl    12(%ebp), %edx
movl    20(%ebp), %eax
addl    %eax, %edx
movl    24(%ebp), %eax
movl    %edx, 4(%eax)
leave
ret

Simple Example   (point add)

15

gcc 4.1, -S option

Code for PAdd

Actual work

The code does a lot of work to execute two add instructions.
→ Factor of 10 in overhead 
→ And a window system does a lot of point adds
Code optimization (careful compile-time reasoning & transformation) 
can make matters better.



2/3/17

9

Simple Example (point add)

Comp 412, Fall 2010 16

gcc 4.1, -S –O3 option

_main:  (some boilerplate code ellided for brevity’s sake)
L5:

popl    %ebx
subl    $20, %esp
movl    $3, 8(%esp)
movl    $3, 4(%esp)
leal    LC0-"L00000000001$pb"(%ebx), %eax
movl    %eax, (%esp)
call    L_printf$stub
addl    $20, %esp
popl    %ebx
leave
ret

It inlined PAdd and folded the known 
constant values of p1 and p2. 

With the right information, a good compiler can work wonders.
→ It kept the body of PAdd because it could not tell if it was dead 

What if it could not discern the values of p1 and p2?

Simple Example (point add)

Comp 412, Fall 2010 17

gcc 4.1, -S –O3 option

_main:  (some boilerplate code ellided for brevity’s sake)
L5:

popl    %ebx
subl    $20, %esp
movl    _one-"L00000000001$pb"(%ebx), %eax
addl    _two-"L00000000001$pb"(%ebx), %eax
movl    %eax, 8(%esp)
movl    %eax, 4(%esp)
leal    LC0-"L00000000001$pb"(%ebx), %eax
movl    %eax, (%esp)
call    L_printf$stub
addl    $20, %esp
popl    %ebx
leave
ret

The optimizer recognized that 
p1.x = p1.y and p2.x = p2.y 

so 
p1.x + p2.x = p1.y + p2.y. 

This code shows the more general version.  It inlined PAdd and 
subjected the arguments to local optimization.  It still had to 
perform the adds, but it recognized that the second one was 
redundant.
→ Gcc did a good job on this example.

I put 1 and 2 in global variables 
named “one” and “two”.
The optimizer inlined PAdd

If I make PAdd static, it 
deletes the code for PAdd  



2/3/17

10

Comp 412, Fall 2010 18

Intrinsic Merit
Ø Compiler construction poses challenging and interesting 

problems:
— Compilers must process large inputs, perform complex 

algorithms, but also run quickly

— Compilers have primary responsibility for run-time performance

— Compilers are responsible for making it acceptable to use the 
full power of the programming language

— Computer architects perpetually create new challenges for the 
compiler by building more complex machines
® Compilers must hide that complexity from the programmer

Ø A successful compiler requires mastery of the many complex 
interactions between its constituent parts

Comp 412, Fall 2010 19

Intrinsic Interest

Ø Compiler construction involves ideas from many different 
parts of computer science

Artificial intelligence
Greedy algorithms
Heuristic search techniques

Algorithms Graph algorithms, union-find
Dynamic programming

Theory DFAs & PDAs, pattern matching
Fixed-point algorithms

Systems
Allocation & naming,  
Synchronization, locality

Architecture Pipeline & hierarchy management 
Instruction set use



2/3/17

11

Comp 412, Fall 2010 20

Why Does This Matter Today?
In the last years, most processors have gone multicore
• The era of clock-speed improvements is drawing to an end

— Faster clock speeds mean higher power (n2 effect)
— Smaller wires mean higher resistance for on-chip wires

• For the near term, performance improvement will come from 
placing multiple copies of the processor (core) on a single die
— Classic programs, written in old languages, are not well suited to 

capitalize on this kind of multiprocessor parallelism
® Parallel languages, some kinds of OO systems, functional languages

— Parallel programs require sophisticated compilers

• Think of the Intel/AMD bet on multicore as a full-
employment act for well-trained compiler writers


