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Implications
• Must recognize legal (and illegal) programs
• Must generate correct code
• Must manage storage of all variables (and code)
• Must agree with OS & linker on format for object code

Big step up from assembly language—use higher level notations

High-level View of a Compiler
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Traditional Two-pass Compiler

Implications
• Use an intermediate representation (IR)
• Front end maps legal source code into IR
• Back end maps IR into target machine code
• Admits multiple front ends & multiple passes      (better code)

Typically, front end is O(n) or O(n log n), while back end is NPC
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Classic principle from 
software engineering:
Separation of concerns
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Can we build n x m compilers with n+m components?
• Must encode all language specific knowledge in each front end
• Must encode all features in a single IR
• Must encode all target specific knowledge in each back end

Successful in systems with assembly level (or lower) IRs

A Common Fallacy
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Traditional Three-part Compiler

Code Improvement (or Optimization)
• Analyzes IR and rewrites (or transforms) IR
• Primary goal is to reduce running time of the compiled code

— May also improve space, power consumption, …
• Must preserve “meaning” of the code

— Measured by values of named variables
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Traditional Three-part Compiler
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Run-time Compilation
Systems such as HotSpot, Jalapeno, and Dynamo deploy
compiler and optimization techniques at run-time

Policy chooses between
interpreter & compiler
• LLVM compiles on 1st call
• Dynamo optimizes on 50th execution
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