
2/3/17

1

The View from 35,000 Feet
Comp 412

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies
of these materials for their personal use.
Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

COMP 412
FALL 2010

Note by Baris Aktemur:
Our slides are adapted from Cooper and Torczon’s slides that they prepared for COMP 412
at Rice.

Comp 412, Fall 2010 1

Implications
• Must recognize legal (and illegal) programs
• Must generate correct code
• Must manage storage of all variables (and code)
• Must agree with OS & linker on format for object code

Big step up from assembly language—use higher level notations

High-level View of a Compiler

Source
code

Machine
codeCompiler

Errors

2/3/17

2

Comp 412, Fall 2010 2

Traditional Two-pass Compiler

Implications
• Use an intermediate representation (IR)
• Front end maps legal source code into IR
• Back end maps IR into target machine code
• Admits multiple front ends & multiple passes (better code)

Typically, front end is O(n) or O(n log n), while back end is NPC

Source
code

Front
End

Errors

Machine
code

Back
EndIR

Depends primarily
on source language

Depends primarily
on target machine

Classic principle from
software engineering:
Separation of concerns

Comp 412, Fall 2010 3

Can we build n x m compilers with n+m components?
• Must encode all language specific knowledge in each front end
• Must encode all features in a single IR
• Must encode all target specific knowledge in each back end

Successful in systems with assembly level (or lower) IRs

A Common Fallacy

Fortran

Scheme

C++

Python

Front
end

Front
end

Front
end

Front
end

Back
end

Back
end

Target 2

Target 1

Target 3Back
end

e.g., gcc’s rtl or llvm ir

2/3/17

3

Comp 412, Fall 2010 4

Traditional Three-part Compiler

Code Improvement (or Optimization)
• Analyzes IR and rewrites (or transforms) IR
• Primary goal is to reduce running time of the compiled code

— May also improve space, power consumption, …
• Must preserve “meaning” of the code

— Measured by values of named variables

Errors

Source
Code

Optimizer
(Middle End)

Front
End

Machine
code

Back
End

IR IR

Comp 412, Fall 2010 5

Traditional Three-part Compiler

2/3/17

4

Comp 412, Fall 2010 6

Run-time Compilation
Systems such as HotSpot, Jalapeno, and Dynamo deploy
compiler and optimization techniques at run-time

Policy chooses between
interpreter & compiler
• LLVM compiles on 1st call
• Dynamo optimizes on 50th execution

Offline
Compiler

Source
Code

Run-time environment

Interpreter

JIT
CompilerCode base

IR

