
1

Parsing

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies
of these materials for their personal use.
Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

Note by Baris Aktemur:
Our slides are adapted from Cooper and Torczon’s slides that they prepared for COMP 412
at Rice.

1

The Front End

Parser
• Checks the stream of words and their parts of speech

(produced by the scanner) for grammatical correctness
• Determines if the input is syntactically well formed
• Need a mathematical model of syntax — a grammar G
• Need an algorithm for testing membership in L(G)
• Need to keep in mind that our goal is building parsers, not

studying the mathematics of arbitrary languages

Source
code Scanner

IR
Parser

Errors

tokens

2

2

Limits of Regular Languages
Advantages of Regular Expressions
• Simple & powerful notation for specifying patterns
• Automatic construction of fast recognizers
• Many kinds of syntax can be specified with REs

Example — a regular expression for arithmetic expressions
Term ® [a-zA-Z] ([a-zA-Z] | [0-9])*

Op ® + | - | * | /
Expr ® (Term Op)* Term

([a-zA-Z] ([a-zA-Z] | [0-9])* (+ | - | * | /))* [a-zA-Z] ([a-zA-Z] | [0-9])

Limitation: Operator precedence?

3

Grammars

• Such a sequence of rewrites is called a derivation
• Process of discovering a derivation is called parsing

We denote this derivation: Expr Þ* id – num * id

Rule Sentential Form
— Expr
0 Expr Op Expr
2 <id,x> Op Expr
4 <id,x> - Expr
0 <id,x> - Expr Op Expr
1 <id,x> - <num,2> Op Expr
5 <id,x> - <num,2> * Expr
2 <id,x> - <num,2> * <id,y>

0 Expr ® Expr Op Expr
1 | number
2 | id
3 Op ® +
4 | -
5 | *
6 | /

3

4

Derivations
The point of parsing is to construct a derivation

• At each step, we choose a nonterminal to replace
• Different choices can lead to different derivations

Two derivations are of interest
• Leftmost derivation — replace leftmost NT at each step
• Rightmost derivation — replace rightmost NT at each step

These are the two systematic derivations
(We don’t care about randomly-ordered derivations!)

5

The Two Derivations for x – 2 * y

In both cases, Expr Þ* id – num * id
• The two derivations produce different parse trees
• The parse trees imply different evaluation orders!

Leftmost derivation Rightmost derivation

Rule Sentential Form
— Expr
0 Expr Op Expr
2 Expr Op <id,y>
5 Expr * <id,y>
0 Expr Op Expr * <id,y>
1 Expr Op <num,2> * <id,y>
4 Expr - <num,2> * <id,y>
2 <id,x> - <num,2> * <id,y>

Rule Sentential Form
— Expr
0 Expr Op Expr
2 <id,x> Op Expr
4 <id,x> - Expr
0 <id,x> - Expr Op Expr
1 <id,x> - <num,2> Op Expr
5 <id,x> - <num,2> * Expr
2 <id,x> - <num,2> * <id,y>

4

6

Derivations and Parse Trees
Leftmost derivation

G

x

E

E Op

–

2

E

E

E

y

Op

*
This evaluates as x – (2 * y)

Rule Sentential Form
— Expr
0 Expr Op Expr
2 <id,x> Op Expr
4 <id,x> - Expr
0 <id,x> - Expr Op Expr
1 <id,x> - <num,2> Op Expr
5 <id,x> - <num,2> * Expr
2 <id,x> - <num,2> * <id,y>

7

Derivations and Parse Trees
Rightmost derivation

x 2

G

E

Op EE

E Op E y

–

*

This evaluates as (x – 2) * y

This ambiguity is NOT good

Rule Sentential Form
— Expr
0 Expr Op Expr
2 Expr Op <id,y>
5 Expr * <id,y>
0 Expr Op Expr * <id,y>
1 Expr Op <num,2> * <id,y>
4 Expr - <num,2> * <id,y>
2 <id,x> - <num,2> * <id,y>

5

8

Derivations and Precedence

These two derivations point out a problem with the grammar:
It has no notion of precedence, or implied order of evaluation

To add precedence
• Create a nonterminal for each level of precedence
• Isolate the corresponding part of the grammar
• Force the parser to recognize high precedence

subexpressions first

For algebraic expressions
• Parentheses first (level 1)
• Multiplication and division, next (level 2)
• Subtraction and addition, last (level 3)

Adding the standard algebraic precedence produces:
0 Goal ® Expr
1 Expr ® Expr + Term
2 | Expr - Term
3 | Term
4 Term ® Term * Factor
5 | Term / Factor
6 | Factor
7 Factor ® (Expr)
8 | number
9 | id

9

Derivations and Precedence

This grammar is slightly larger
•Takes more rewriting to reach
some of the terminal symbols
•Encodes expected precedence
•Produces same parse tree under
leftmost & rightmost derivations
•Correctness trumps the speed
of the parser

Let’s see how it parses x - 2 * y

level
2

level
3

Cannot handle precedence
in an RE for expressions

Introduced parentheses, too
(beyond power of an RE)

level
1

One form of the “classic expression grammar”

6

10

Derivations and Precedence

The rightmost derivation

It derives x – (2 * y), along with an appropriate parse tree.
Both the leftmost and rightmost derivations give the same expression, because
the grammar directly and explicitly encodes the desired precedence.

G

E

–E

T

F

<id,x>

T

T

F

F*

<num,2>

<id,y>

Its parse tree

Rule Sentential Form
— Goal
0 Expr
2 Expr - Term
4 Expr - Term * Factor
9 Expr - Term * <id,y>
6 Expr - Factor * <id,y>
8 Expr - <num,2> * <id,y>
3 Term - <num,2> * <id,y>
6 Factor - <num,2> * <id,y>
9 <id,x> - <num,2> * <id,y>

Let’s leap back to our original expression grammar.
It had other problems.

• This grammar allows multiple leftmost derivations for x - 2 * y
• Hard to automate derivation if > 1 choice
• The grammar is ambiguous

11

Ambiguous Grammars

0 Expr ® Expr Op Expr
1 | number
2 | id
3 Op ® +
4 | -
5 | *
6 | /

Rule Sentential Form
— Expr
0 Expr Op Expr
2 <id,x> Op Expr
4 <id,x> - Expr
0 <id,x> - Expr Op Expr
1 <id,x> - <num,2> Op Expr
5 <id,x> - <num,2> * Expr
2 <id,x> - <num,2> * <id,y>

Different choice
than the first step

7

12

The Difference:
• Different productions chosen on the second step

• Both derivations succeed in producing x - 2 * y

Rule Sentential Form
— Expr
0 Expr Op Expr
2 <id,x> Op Expr
4 <id,x> - Expr
0 <id,x> - Expr Op Expr
1 <id,x> - <num,2> Op Expr
5 <id,x> - <num,2> * Expr
1 <id,x> - <num,2> * <id,y>

Two Leftmost Derivations for x – 2 * y

Original choice New choice

Rule Sentential Form
— Expr
0 Expr Op Expr
0 Expr Op Expr Op Expr
2 <id,x> Op Expr Op Expr
4 <id,x> - Expr Op Expr
1 <id,x> - <num,2> Op Expr
5 <id,x> - <num,2> * Expr
2 <id,x> - <num,2> * <id,y>

13

Ambiguous Grammars
Definitions
• If a grammar has more than one leftmost derivation for a

single sentential form, the grammar is ambiguous
• If a grammar has more than one rightmost derivation for a

single sentential form, the grammar is ambiguous
• The leftmost and rightmost derivations for a sentential

form may differ, even in an unambiguous grammar
— However, they must have the same parse tree!

Classic example — the if-then-else problem
Stmt ® if Expr then Stmt

| if Expr then Stmt else Stmt
| … other stmts …

This ambiguity is inherent in the grammar

8

14

Ambiguity
This sentential form has two derivations

if Expr1 then if Expr2 then Stmt1 else Stmt2

then

else

if

then

if

E1

E2

S2

S1

production 2, then
production 1

then

if

then

if

E1

E2

S1

else

S2

production 1, then
production 2

Part of the problem is
that the structure
built by the parser
will determine the
interpretation of the
code, and these two
forms have different
meanings!

15

Ambiguity
Removing the ambiguity
• Must rewrite the grammar to avoid generating the problem
• Match each else to innermost unmatched if (common sense rule)

With this grammar, example has only one rightmost derivation

0 Stmt ® if Expr then Stmt

1 ½ if Expr then WithElse else Stmt

2 ½ Other Statements

3 WithElse ® if Expr then WithElse else WithElse

4 ½ Other Statements

Intuition: once into WithElse, we cannot generate an unmatched else
… a final if without an else can only come through rule 2 …

The grammar forces the structure
to match the desired meaning.

9

16

Ambiguity
if Expr1 then if Expr2 then Stmt1 else Stmt2

This grammar has only one rightmost derivation for the example

Rule Sentential Form
— Stmt
0 if Expr then Stmt
1 if Expr then if Expr then WithElse else Stmt
2 if Expr then if Expr then WithElse else S2

4 if Expr then if Expr then S1 else S2

? if Expr then if E2 then S1 else S2

? if E1 then if E2 then S1 else S2

Other productions to derive Expr s

17

Parsing Techniques
Top-down parsers (LL(1), recursive descent)
• Start at the root of the parse tree and grow toward leaves
• Pick a production & try to match the input
• Bad “pick” Þ may need to backtrack
• Some grammars are backtrack-free

Bottom-up parsers (LR(1), operator precedence)
• Start at the leaves and grow toward root
• As input is consumed, encode possibilities in an internal state
• Bottom-up parsers handle a large class of grammars

10

Top-down Parsing

19

Top-down parsing algorithm:
Construct the root node of the parse tree
Repeat until lower fringe of the parse tree matches the input string
1 At a node labeled A, select a production with A on its lhs and, for

each symbol on its rhs, construct the appropriate child
2 When a terminal symbol is added to the fringe and it doesn’t

match the fringe, backtrack
3 Find the next node to be expanded (label Î NT)

The key is picking the right production in step 1
— That choice should be guided by the input string

Top-down Parsing

11

20

Remember the expression grammar?

And the input x – 2 * y

We will call this version “the classic expression grammar”

0 Goal ® Expr
1 Expr ® Expr + Term
2 | Expr - Term
3 | Term
4 Term ® Term * Factor
5 | Term / Factor
6 | Factor
7 Factor ® (Expr)
8 | number
9 | id

Let’s try x – 2 * y :

21

Rule Sentential Form Input
— Goal x - 2 * y

Example

Goal

 is the position in the input buffer

12

Let’s try x – 2 * y :

22

Rule Sentential Form Input
— Goal x - 2 * y
0 Expr x - 2 * y
1 Expr +Term x - 2 * y
3 Term +Term x - 2 * y
6 Factor +Term x - 2 * y
9 <id,x> +Term x - 2 * y
® <id,x> +Term x - 2 * y

Example

Goal

Expr

Term+Expr

Term

Fact.

<id,x>

This worked well, except that “–” doesn’t match “+”
The parser must backtrack to here

 is the position in the input buffer

23

Example
Continuing with x – 2 * y :

Goal

Expr

Term–Expr

Term

Fact.

<id,x>

Þ Now, we need to expand Term - the last NT on the fringe

Rule Sentential Form Input
— Goal x - 2 * y
0 Expr x - 2 * y
2 Expr -Term x - 2 * y
3 Term -Term x - 2 * y
6 Factor -Term x - 2 * y
9 <id,x> - Term x - 2 * y
® <id,x> -Term x - 2 * y
® <id,x> -Term x - 2 * y

Now, “-” and “-” match Now we can expand Term to match “2”

13

24

Where are we?
• “2” matches “2”
• We have more input, but no NTs left to expand
• The expansion terminated too soon
Þ Need to backtrack

Example
Trying to match the “2” in x – 2 * y :

Goal

Expr

Term-Expr

Term

Fact.

<id,x>

Fact.

<num,2>

Rule Sentential Form Input
® <id,x> - Term x - 2 * y
6 <id,x> - Factor x - 2 * y
8 <id,x> - <num,2> x - 2 * y
® <id,x> - <num,2> x - 2 * y

25

Example
Trying again with “2” in x – 2 * y :

Goal

Expr

Term–Expr

Term

Fact.

<id,x>

Fact.

<id,y>

Term

Fact.

<num,2>

*

This time, we matched & consumed all the input
ÞSuccess!

Rule Sentential Form Input
® <id,x> - Term x - 2 * y
4 <id,x> - Term * Factor x - 2 * y
6 <id,x> - Factor * Factor x - 2 * y
8 <id,x> - <num,2> * Factor x - 2 * y
® <id,x> - <num,2> * Factor x - 2 * y
® <id,x> - <num,2> * Factor x - 2 * y
9 <id,x> - <num,2> * <id,y> x - 2 * y
® <id,x> - <num,2> * <id,y> x - 2 * y

The Point:

The parser must make the right choice when it expands a NT.
Wrong choices lead to wasted effort.

14

26

Other choices for expansion are possible

This expansion doesn’t terminate
• Wrong choice of expansion leads to non-termination
• Non-termination is a bad property for a parser to have
• Parser must make the right choice

Another possible parse

Rule Sentential Form Input
— Goal x - 2 * y
0 Expr x - 2 * y
1 Expr +Term x - 2 * y
1 Expr + Term +Term x - 2 * y
1 Expr + Term +Term + Term x - 2 * y
1 And so on …. x - 2 * y

Consumes no input!

27

Left Recursion

Top-down parsers cannot handle left-recursive grammars

Formally,
A grammar is left recursive if $ A Î NT such that
$ a derivation A Þ+ Aa, for some string a Î (NT È T)+

Our classic expression grammar is left recursive
• This can lead to non-termination in a top-down parser
• In a top-down parser, any recursion must be right recursion
• We would like to convert the left recursion to right recursion

Non-termination is always a bad property in a compiler

15

28

Eliminating Left Recursion
To remove left recursion, we can transform the grammar

Consider a grammar fragment of the form
Fee ® Fee a

| b
where neither a nor b start with Fee

We can rewrite this fragment as
Fee ® b Fie
Fie ® a Fie

| e
where Fie is a new non-terminal

The new grammar defines
the same language as the
old grammar, using only
right recursion.

Added a reference
to the empty string

29

Eliminating Left Recursion

Expr ® Expr + Term

| Expr - Term

| Term

Term ® Term * Factor

| Term * Factor

| Factor

Expr ® Term Expr’
Expr’ ® + Term Expr’

| - Term Expr’
| e

Term ® Factor Term’

Term’ ® * Factor Term’
| / Factor Term’
| e

The expression grammar contains two cases of left recursion

Applying the transformation yields

These fragments use only right recursion
Right recursion often means right associativity. In this case,

the grammar does not display any particular associative bias.

16

30

Eliminating Left Recursion
Substituting them back into the grammar yields

• This grammar is correct, if
somewhat non-intuitive.

• It is left associative, as was
the original
⇒The naïve transformation

yields a right recursive
grammar, which changes the
implicit associativity

• A top-down parser will
terminate using it.

• A top-down parser may need
to backtrack with it.

0 Goal ® Expr
1 Expr ® Term Expr’
2 Expr’ ® + Term Expr’
3 | - Term Expr’
4 | e
5 Term ® Factor Term’
6 Term’ ® * Factor Term’
7 | / Factor Term’
8 | e
9 Factor ® (Expr)
10 | number
11 | id

31

Picking the “Right” Production

If it picks the wrong production, a top-down parser may backtrack
Alternative is to look ahead in input & use context to pick correctly

How much lookahead is needed?
• In general, an arbitrarily large amount
• Use the Cocke-Younger, Kasami algorithm or Earley’s algorithm

Fortunately,
• Large subclasses of CFGs can be parsed with limited lookahead
• Most programming language constructs fall in those subclasses

Among the interesting subclasses are LL(1) and LR(1) grammars

We will focus, for now, on LL(1) grammars & predictive parsing

17

32

Predictive Parsing
Basic idea

Given A ® a | b, the parser should be able to choose between a & b

FIRST sets
For some rhs aÎG, define FIRST(a) as the set of tokens that

appear as the first symbol in some string that derives from a
That is, x Î FIRST(a) iff a Þ* x g, for some g

33

Predictive Parsing
Basic idea

Given A ® a | b, the parser should be able to choose between a & b

FIRST sets
For some rhs aÎG, define FIRST(a) as the set of tokens that

appear as the first symbol in some string that derives from a
That is, x Î FIRST(a) iff a Þ* x g, for some g

The LL(1) Property
If A ® a and A ® b both appear in the grammar, we would like

FIRST(a) Ç FIRST(b) = Æ
This would allow the parser to make a correct choice with a lookahead

of exactly one symbol !
This is almost correct
See the next slide

18

34

Predictive Parsing

What about e-productions?
Þ They complicate the definition of LL(1)

If A ® a and A ® b and e Î FIRST(a), then we need to ensure
that FIRST(b) is disjoint from FOLLOW(A), too, where

FOLLOW(A) = the set of terminal symbols that can immediately
follow A in a sentential form

Define FIRST+(A®a) as
• FIRST(a) È FOLLOW(A), if e Î FIRST(a)
• FIRST(a), otherwise

Then, a grammar is LL(1) iff A ® a and A ® b implies
FIRST+(A®a) Ç FIRST+(A®b) = Æ

Comp 412, Fall 2010 35

Classic Expression Grammar
Symbol FIRST FOLLOW

num num Ø
id id Ø
+ + Ø
- - Ø
* * Ø
/ / Ø
((Ø
)) Ø

eof eof Ø
e e Ø

Goal (,id,num eof
Expr (,id,num), eof
Expr’ +, -, e), eof
Term (,id,num +, -,), eof
Term’ *, /, e +,-,), eof
Factor (,id,num +,-,*,/,),eof

FIRST+(A®b) is identical to FIRST(b)
except for productiond 4 and 8

FIRST+(Expr’® e) is {e,), eof}

FIRST+(Term’® e) is {e,+,-,), eof}

0 Goal ® Expr
1 Expr ® Term Expr’
2 Expr’ ® + Term Expr’
3 | - Term Expr’
4 | e
5 Term ® Factor Term’
6 Term’ ® * Factor Term’
7 | / Factor Term’
8 | e
9 Factor ® number
10 | id
11 | (Expr)

19

36

Classic Expression Grammar

Prod’n FIRST+
0 (,id,num
1 (,id,num
2 +
3 -
4 e,), eof
5 (,id,num
6 *
7 /
8 e,+,-,), eof
9 number
10 id
11 (

0 Goal ® Expr
1 Expr ® Term Expr’
2 Expr’ ® + Term Expr’
3 | - Term Expr’
4 | e
5 Term ® Factor Term’
6 Term’ ® * Factor Term’
7 | / Factor Term’
8 | e
9 Factor ® number
10 | id
11 | (Expr)

37

Example

0 Goal ® Expr
1 Expr ® Term Expr’
2 Expr’ ® + Expr
3 | - Expr
4 | e

5 Term ® Factor Term’
6 Term’ ® * Term
7 | / Term
8 | e

9 Factor ® number
10 | id

Clearly,
FIRST+(2), FIRST+(3), & FIRST+(4)

are disjoint, as are
FIRST+(6), FIRST+(7), & FIRST+(8)

The grammar now has the LL(1)
property

20

38

Predictive Parsing
Given a grammar that has the LL(1) property
• Can write a simple routine to recognize each lhs
• Code is both simple & fast

Consider A ® b1 | b2 | b3, with
FIRST+(A®bi) Ç FIRST+ (A®bj) = Æ if i ≠ j

/* find an A */
if (current_word Î FIRST(A®b1))

find a b1 and return true
else if (current_word Î FIRST(A®b2))

find a b2 and return true
else if (current_word Î FIRST(A®b3))

find a b3 and return true
else

report an error and return false

Of course, there is more detail to
“find a bi” (p. 103 in EAC, 1st Ed.)

Grammars with the LL(1)
property are called predictive
grammars because the parser
can “predict” the correct
expansion at each point in the
parse.
Parsers that capitalize on the
LL(1) property are called
predictive parsers.
One kind of predictive parser
is the recursive descent
parser.

39

Recursive Descent Parsing
Recall the expression grammar, after transformation

This produces a parser with six
mutually recursive routines:
• Goal
• Expr
• EPrime
• Term
• TPrime
• Factor
Each recognizes one NT or T
The term descent refers to the
direction in which the parse tree
is built.

0 Goal ® Expr
1 Expr ® Term Expr’
2 Expr’ ® + Term Expr’
3 | - Term Expr’
4 | e
5 Term ® Factor Term’
6 Term’ ® * Factor Term’
7 | / Factor Term’
8 | e
9 Factor ® (Expr)
10 | number
11 | id

21

40

Recursive Descent Parsing (Procedural)
A couple of routines from the expression parser

Goal()
token ¬ next_token();
if (Expr() = true & token = EOF)

then report success;
else

report syntax error;
return false;

Expr()
if (Term() = false)

then return false;
else return Eprime();

Factor()
if (token = Number) then

token ¬ next_token();
return true;

else if (token = Identifier) then
token ¬ next_token();
return true;

else if (token = Lparen)
token ¬ next_token();
if (Expr() = true & token = Rparen) then

token ¬ next_token();
return true;

// fall out of if statement
report syntax error;
return false;

looking for Number, Identifier, or
“(“, found token instead, or failed
to find Expr or “)” after “(”

EPrime, Term, & TPrime follow the same
basic lines (Figure 3.10, EaC2)

Bottom-up Parsing

22

42

Parsing Techniques
Bottom-up parsers LR(1)
• Start at the leaves and grow toward root
• As input is consumed, encode possibilities in an internal state
• Start in a state valid for legal first tokens
• Bottom-up parsers handle a large class of grammars
• Bottom-up parsers build a rightmost derivation in reverse
• Parsers can be auto-generated from grammars

• We will skip this topic…

43

Summary

Advantages

Fast
Good locality
Simplicity
Good error detection

Fast
Deterministic langs.
Automatable
Left associativity

Disadvantages

Hand-coded
High maintenance
Right associativity

Large working sets
Poor error messages
Large table sizes

Top-down
Recursive
descent,

LL(1)

LR(1)

