

				2 (
0	Expr	\rightarrow	Expr Op Expr	Rule	Sentential Form
1			number	_	Expr Exten On Exten
2		1	id	2	Expr Op Expr
3	Op	\rightarrow	+	2	<id,× expr<="" op="" td=""></id,×>
4	'	T	-	4	(id x) Expr
5		ï	*	1	vidy - Expr Op Expr
6		1	/	5	$(id_{x}) = (iu_{1}) (id_{x}) (id_{x}) = (iu_{1}) (id_{x}) (id_{x}) = (iu_{1}) (id_{x}) (id_{x}) = (iu_{1}) (id_{x}) (id_{x}) (id_{x}) = (iu_{1}) (id_{x}) (id_{x}) (id_{x}) = (iu_{1}) (id_{x}) (id_{x}) (id_{x}) (id_{x}) = (iu_{1}) (id_{x}) (id_{x$
0		I	/	2	$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$
Sı Pr	ich a s ocess	equ of o	ence of rewrites is discovering a derive	s called ation is	a <i>derivation</i> called <i>parsing</i>

Top-down Parsing

et's tr	y <u>x</u> - <u>2</u> *y:		Goal
Rule	Sentential Form	Input	
-	Goal	^ <u>x - 2 * y</u>	

	<u>Contontial Form</u>	¥ ·	(u	Goal
lle	Sentenna Form		(
5	Expr	1 <u>x - 2 × y</u> 1 <u>x - 2 × y</u>		
2	Expr - Term	↑ <u>x</u> - <u>2</u> * <u>y</u>	Expr	- Term
3	Term - Term	↑ <u>x</u> - <u>2</u> * <u>y</u>	<u> </u>	
5	Factor - Term	↑ <u>x</u> - <u>2</u> * <u>y</u>	Term	
9	<id,<mark>×> - Term</id,<mark>	↑ <u>x</u> - <u>2</u> * <u>y</u>	Faat	
\rightarrow	<id,<mark>×>⊙Ţerm</id,<mark>	<u>x î⊝2 * y</u>	(Fact.)	
\rightarrow	<id,x>-Term</id,x>	<u>x 12</u> * y	<id,x></id,x>	
N,"-"	and "-" match	Now w	e can expand Term	to match "2"

Rule	Sentential Form	Tnput	(Goal)
\rightarrow	<id,x> - Term</id,x>	x - ↑2 * y	Expr
4	<id,×> - Term* Factor</id,×>	≠ x - ↑2 * v	
6	<id,<u>×> - Factor * Factor</id,<u>	<i>x</i> - ↑2 * y	Expr - (lerm)
8	<id,<u>x> - <num,<u>2> * Factor</num,<u></id,<u>	<u>x</u> - 1 <u>2</u> * y	(Term) (Term) * (Fact.)
\rightarrow	<id,<u>x> - <num,<u>2> * Factor</num,<u></id,<u>	<u>x</u> - <u>2</u> ↑*y	\downarrow \downarrow \downarrow
\rightarrow	<id,<u>x> - <num,<u>2> * Factor</num,<u></id,<u>	<u>x</u> - <u>2</u> *↑ <u>y</u>	(Fact.) (Fact.) <id,y></id,y>
9	<id,<u>x> - <num,<u>2> * <id,<u>y></id,<u></num,<u></id,<u>	<u>x</u> - <u>2</u> * ↑ <u>y</u>	T T
\rightarrow	<id,<u>x> - <num,<u>2> * <id,<u>y></id,<u></num,<u></id,<u>	<u>x - 2 * (</u> 1)	

Another possible parse

Other choices for expansion are possible

This expansion doesn't terminate

- Wrong choice of expansion leads to non-termination
- Non-termination is a bad property for a parser to have

26

• Parser must make the right choice

Even	Even + Term	Tanm > Tanm * Factor
Lxpr	\rightarrow Lxpr + Term	
	Expr - Term	lerm * Factor
	Term	Factor
Appiying T <i>Expr</i>	$\rightarrow Term Expr'$	Term → Factor Term'
Expr'	→ + Term Expr'	Term' → * Factor Term'
	- Term Expr'	/ Factor Term'
	з	3
	ιδ	3

Predictive Parsing

Basic idea

Given $A \rightarrow \alpha \mid \beta$, the parser should be able to choose between α & β

FIRST sets

For some *rhs* $\alpha \in G$, define FIRST(α) as the set of tokens that appear as the first symbol in some string that derives from α That is, $\underline{x} \in \text{FIRST}(\alpha)$ *iff* $\alpha \Rightarrow^* \underline{x} \gamma$, for some γ

32

What about ϵ -productions?

- \Rightarrow They complicate the definition of LL(1)
- If $A \rightarrow \alpha$ and $A \rightarrow \beta$ and $\varepsilon \in \text{FIRST}(\alpha)$, then we need to ensure that $\text{FIRST}(\beta)$ is disjoint from FOLLOW(A), too, where

FOLLOW(A) = the set of terminal symbols that can immediately follow A in a sentential form

Define FIRST⁺($A \rightarrow \alpha$) as

- FIRST(α) \cup FOLLOW(A), if $\varepsilon \in$ FIRST(α)
- FIRST(α), otherwise

Then, a grammar is *LL(1)* iff $A \to \alpha$ and $A \to \beta$ implies FIRST⁺($A \to \alpha$) \cap FIRST⁺($A \to \beta$) = \emptyset

34

0	$Goal \rightarrow Expr$	Symbol	FIRST	FOLLOW
1	$Expr \rightarrow Term Expr'$	num	num	Ø
2	$Expr' \rightarrow + Term Expr'$	<u>id</u>	id	Ø
3	- Term Expr'	+	+	Ø
1		-	-	Ø
-	3 1	*	*	Ø
5	$lerm \rightarrow Factor lerm$	/	/	Ø
6	Term' \rightarrow * Factor Term'	Ĺ	Ĺ	Ø
7	/ Factor Term'))	Ø
8	3	<u>eof</u>	eof	Ø
9	Factor → <u>number</u>	3	3	Ø
10	id	Goal	<u>(,id,num</u>	eof
11	(Expr)	Expr	<u>(,id,num</u>	<u>)</u> , eof
TRS	$T^{+}(A \rightarrow \beta)$ is identical to ETRST(β)	Expr'	+, -, ε	<u>)</u> , eof
exce	of for productiond 4 and 8	Term	<u>(,id,num</u>	+, -, <u>)</u> , eof
- IRS	$T^{+}(Expr' \rightarrow \epsilon)$ is $\{\epsilon\}$ eof	Term'	*,/,ε	+,-, <u>)</u> , eof
	$T(T + i + i) = (a_{i,L}, a_{i,L})$	Factor	<u>(,id,num</u>	+,-,*,/, <u>)</u> ,eof

ecall	the expressi	on grammar, after transformation
0 1 2 3 4 5 6 7 8 9 10 11	$\begin{array}{rrrr} Goal & \rightarrow & Exp \\ Expr & \rightarrow & Ter \\ Expr' & \rightarrow & + & Te \\ & & & - & Te \\ & & & e \\ Term & \rightarrow & Fac \\ Term' & \rightarrow & * & Fac \\ & & & / & Fac \\ & & & / & Fac \\ Factor & \rightarrow & (, Ex \\ & & & num \\ & & & \underline{id} \end{array}$	orThis produces a parser with six mutually recursive routines:or Expr'• Goal • Expr • EPrime • Term • Termtor Term'• Factor • Factor Each recognizes one NT or T The term <u>descent</u> refers to the direction in which the parse tree is built.

Parsing Techniques

Bottom-up parsers LR(1)

- Start at the leaves and grow toward root
- As input is consumed, encode possibilities in an internal state
- Start in a state valid for legal first tokens
- Bottom-up parsers handle a large class of grammars
- Bottom-up parsers build a rightmost derivation in reverse
- Parsers can be auto-generated from grammars
- We will skip this topic...

Advantage	s Disadvantages
Top-downFastRecursiveGood localitdescent,SimplicityLL(1)Good error	Hand-coded Y High maintenance Right associativity detection
Fast Determinist <i>LR(1)</i> Left associo	ic langs. Large working sets Poor error messages Large table sizes