
1

Code Optimization

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies 
of these materials for their personal use.  
Faculty from other educational institutions may use these materials for nonprofit 
educational purposes, provided this copyright notice is preserved.

Note by Baris Aktemur: 
Our slides are adapted from Cooper and Torczon’s slides that they prepared for COMP 412 
at Rice.

1

Traditional Three-Phase Compiler

Optimization (or Code Improvement)
• Analyzes IR and rewrites (or transforms) IR
• Primary goal is to reduce running time of the compiled code

— May also improve space, power consumption, …
• Must preserve “meaning” of the code

— Measured by values of named variables
— A course (or two) unto itself

Errors

Source
Code OptimizerFront

End
Machine

code
Back
End

IR IR



2

2

The Optimizer

Typical Transformations
• Discover & propagate some constant value
• Move a computation to a less frequently executed place
• Specialize some computation based on context
• Discover a redundant computation & remove it
• Remove useless or unreachable code
• Encode an idiom in some particularly efficient form

Errors

Opt
1

Opt
3

Opt
2

Opt
n

...IR IR IR IR IR

Modern optimizers are structured as a series of passes

3

The Role of the Optimizer
• The compiler can implement a procedure in many ways
• The optimizer tries to find an implementation that is “better”

— Speed, code size, data space, …

To accomplish this, it
• Analyzes the code to derive knowledge about run-time behavior

— Data-flow analysis, pointer disambiguation, …
— General term is “static analysis”

• Uses that knowledge in an attempt to improve the code
— Literally hundreds of transformations have been proposed
— Large amount of overlap between them

Nothing “optimal” about optimization
• Proofs of optimality assume restrictive & unrealistic conditions



3

4

Redundancy Elimination as an Example
An expression x+y is redundant if and only if, along every
path from the procedure’s entry, it has been evaluated, and its 
constituent subexpressions (x & y) have not been re-defined.

If the compiler can prove that an expression is redundant
• It can preserve the results of earlier evaluations
• It can replace the current evaluation with a reference

Two pieces to the problem
• Proving that x+y is redundant, or available
• Rewriting the code to eliminate the redundant evaluation

One technique for accomplishing both is called value numbering

Assume a low-level, linear IR such as ILOC

5

Local Value Numbering
An example

With VNs

a3 ¬ x1 + y2

* b3 ¬ x1 + y2

a4 ¬ 17
* c3 ¬ x1 + y2

Rewritten

a3 ¬ x1 + y2

* b3 ¬ a3

a4 ¬ 17
* c3 ¬ a3 (oops!)

Options
• Use c3¬ b3

• Save a3 in t3

• Rename around it

Original Code
a ¬ x + y

* b ¬ x + y
a ¬ 17

* c ¬ x + y

Two redundancies
• Eliminate stmts 

with a *
• Coalesce results ?



4

6

Local Value Numbering
Example (continued):

With VNs

a0
3 ¬ x0

1 + y0
2

* b0
3 ¬ x0

1 + y0
2

a1
4 ¬ 17

* c0
3 ¬ x0

1 + y0
2

Notation:
• While complex, 

the meaning is 
clear

Original Code

a0 ¬ x0 + y0
* b0 ¬ x0 + y0

a1 ¬ 17
* c0 ¬ x0 + y0

Renaming:
• Give each value a 

unique name
• Makes it clear

Rewritten

a0
3 ¬ x0

1 + y0
2

* b0
3 ¬ a0

3

a1
4 ¬ 17

* c0
3 ¬ a0

3

Result:
• a0

3 is available
• Rewriting now 

works 

7

Value Numbering                        
The key notion
• Assign an identifying number, V(n), to each expression

— V(x+y) = V(j) iff x+y and j always have the same value
— Use hashing over the value numbers to make it efficient

• Use these numbers to improve the code

Improving the code
• Replace redundant expressions

— Same VN Þ refer rather than recompute
• Simplify algebraic identities
• Discover constant-valued expressions, fold & propagate them
• Technique designed for low-level, linear IRs, similar methods 

exist for trees (e.g., build a DAG)

Local algorithm due to Balke 
(1968) or Ershov (1954)

Within a basic block; 
definition becomes more 
complex across blocks



5

8

Local Value Numbering
The Algorithm
For each operation o = <operator, o1, o2> in the block, in order
1 Get value numbers for operands from hash lookup
2 Hash <operator,VN(o1),VN(o2)> to get a value number for o
3 If o already had a value number, replace o with a reference
4 If o1 & o2 are constant, evaluate it & replace with a loadI

If hashing behaves, the algorithm runs in linear time
— If not, use multi-set discriminationt or acyclic DFAstt

Handling algebraic identities
• Case statement on operator type
• Handle special cases within each operator

tsee p. 251 in EaC
ttDFAs for REs without closure can be 
built online to provide a “perfect hash”

9

Local Value Numbering
The Algorithm
For each operation o = <operator, o1, o2> in the block, in order
1 Get value numbers for operands from hash lookup
2 Hash <operator,VN(o1),VN(o2)> to get a value number for o
3 If o already had a value number, replace o with a reference
4 If o1 & o2 are constant, evaluate it & replace with a loadI

Complexity & Speed Issues
• “Get value numbers” — linear search versus hash
• “Hash <op,VN(o1),VN(o2)>” — linear search versus hash
• Copy folding — set value number of result
• Commutative ops — double hash versus sorting the operands

asymptotic constants



6

10

Simple Extensions to Value Numbering
Constant folding
• Add a bit that records when a value is constant
• Evaluate constant values at compile-time
• Replace with load immediate or immediate operand
• No stronger local algorithm

Algebraic identities
• Must check (many) special cases
• Replace result with input VN
• Build a decision tree on operation

Identities (on VNs)
x¬y, x+0, x-0, x*1, x÷1, x-x, x*0, 
x÷x, xÚ0, x Ù 0xFF…FF, 
max(x,MAXINT), min(x,MININT), 
max(x,x), min(y,y), and so on ...

11

Missed opportunities
(need stronger methods)

m ¬ a + b
n ¬ a + b

A

p ¬ c + d
r ¬ c + d

B

y ¬ a + b
z ¬ c + d

G

q ¬ a + b
r ¬ c + d

C

e ¬ b + 18
s ¬ a + b
u ¬ e + f

D e ¬ a + 17
t ¬ c + d
u ¬ e + f

E

v ¬ a + b
w ¬ c + d
x ¬ e + f

F

Value Numbering

Local Value Numbering
• 1 block at a time
• Strong local results
• No cross-block effects

LVN finds these redundant ops



7

Scope of Optimization
Local optimization
• Operates entirely within a single basic block
• Properties of block lead to strong optimizations

Regional optimization
• Operate on a region in the CFG that contains multiple blocks
• Loops, trees, paths, extended basic blocks

Whole procedure optimization  (intraprocedural )
• Operate on entire CFG for a procedure
• Presence of cyclic paths forces analysis then transformation

Whole program optimization (interprocedural )
• Operate on some or all of the call graph   (multiple procedures)
• Must contend with call/return & parameter binding

12

A basic block is a maximal length 
sequence of straightline code.

13

Superlocal Value Numbering

m ¬ a + b
n ¬ a + b

A

p ¬ c + d
r ¬ c + d

B

y ¬ a + b
z ¬ c + d

G

q ¬ a + b
r ¬ c + d

C

e ¬ b + 18
s ¬ a + b
u ¬ e + f

D e ¬ a + 17
t ¬ c + d
u ¬ e + f

E

v ¬ a + b
w ¬ c + d
x ¬ e + f

F

*

EBB: A maximal set of blocks B1, 
B2, …, Bn where each Bi, except B1, 
has only exactly one predecessor 
and that block is in the EBB. 

{A,B,C,D,E} is an EBB
•It has 3 paths: (A,B), (A,C,D), 
& (A,C,E)
•Can sometimes treat each path 
as if it were a block
{F} & {G} are degenerate EBBs

Superlocal: “applied to an EBB”

A Regional Technique



8

14

Superlocal Value Numbering

m ¬ a + b
n ¬ a + b

A

p ¬ c + d
r ¬ c + d

B

y ¬ a + b
z ¬ c + d

G

q ¬ a + b
r ¬ c + d

C

e ¬ b + 18
s ¬ a + b
u ¬ e + f

D e ¬ a + 17
t ¬ c + d
u ¬ e + f

E

v ¬ a + b
w ¬ c + d
x ¬ e + f

F

The Concept
• Apply local method to paths 

through the EBBs
• Do {A,B}, {A,C,D}, & {A,C,E}
• Obtain reuse from ancestors
• Avoid re-analyzing A & C
• Does not help with F or G

*

EBB: A maximal set of blocks B1, 
B2, …, Bn where each Bi, except B1, 
has only exactly one predecessor 
and that block is in the EBB. 

15

SSA Name Space (locally)
Example (from earlier):

With VNs

a0
3 ¬ x0

1 + y0
2

* b0
3 ¬ x0

1 + y0
2

a1
4 ¬ 17

* c0
3 ¬ x0

1 + y0
2

Notation:
• While complex, 

the meaning is 
clear

Original Code

a0 ¬ x0 + y0
* b0 ¬ x0 + y0

a1 ¬ 17
* c0 ¬ x0 + y0

Renaming:
• Give each value a 

unique name
• Makes it clear

Rewritten

a0
3 ¬ x0

1 + y0
2

* b0
3 ¬ a0

3

a1
4 ¬ 17

* c0
3 ¬ a0

3

Result:
• a0

3 is available
• Rewriting just 

works 



9

16

SSA Name Space (in general) 
Two principles
• Each name is defined by exactly one operation
• Each operand refers to exactly one definition

To reconcile these principles with real code
• Insert f-functions at merge points to reconcile name space
• Add subscripts to variable names for uniqueness

x¬ ... x ¬ ...

... ¬ x + ... 

x0¬ ... x1¬ ...

x2¬f(x0,x1)
¬ x2 + ... 

becomes

17

Superlocal Value Numbering

m0 ¬ a + b
n0 ¬ a + b

A

p0 ¬ c + d
r0 ¬ c + d

B

r2 ¬ f(r0,r1)
y0 ¬ a + b
z0 ¬ c + d

G

q0 ¬ a + b
r1 ¬ c + d

C

e0 ¬ b + 18
s0 ¬ a + b
u0 ¬ e + f

D e1 ¬ a + 17
t0 ¬ c + d
u1 ¬ e + f

E

e3 ¬ f(e0,e1)
u2 ¬ f(u0,u1)
v0 ¬ a + b
w0 ¬ c + d
x0 ¬ e + f

F

Our example in SSA form
• Φ-functions at join points for 

names that need them
• Minimal set of Φ-functions 

(see Chapter 9 in EaC)



10

Superlocal Value Numbering 
The SVN Algorithm

18

WorkList ← { entry block }
Empty ← new table
while (WorkList is not empty)

remove a block b from WorkList
SVN(b, Empty)

SVN( Block, Table)
t ← new table for Block, with Table linked as surrounding scope
LVN( Block, t)
for each successor s of Block

if s has just 1 predecessor 
then SVN( s, t )

else if s has not been processed 
then add s to WorkList

deallocate t

Table for base case

Blocks to process

Use LVN for the work

In the same EBB

Starts a new EBB

Assumes LVN has been parameterized 
around block and table

19

Superlocal Value Numbering

m0 ¬ a + b
n0 ¬ a + b

A

p0 ¬ c + d
r0 ¬ c + d

B

r2 ¬ f(r0,r1)
y0 ¬ a + b
z0 ¬ c + d

G

q0 ¬ a + b
r1 ¬ c + d

C

e0 ¬ b + 18
s0 ¬ a + b
u0 ¬ e + f

D e1 ¬ a + 17
t0 ¬ c + d
u1 ¬ e + f

E

e3 ¬ f(e0,e1)
u2 ¬ f(u0,u1)
v0 ¬ a + b
w0 ¬ c + d
x0 ¬ e + f

F

With all the bells & whistles
• Find more redundancy
• Pay minimal extra cost
• Still does nothing for F & G

Superlocal techniques 
• Some local methods extend 

cleanly to superlocal scopes



11

Loop Unrolling
Applications spend a lot of time in loops
• We can reduce loop overhead by unrolling the loop

• Eliminated additions, tests, and branches
— Can subject resulting code to strong local optimization!

• Only works with fixed loop bounds & few iterations
• The principle, however, is sound
• Unrolling is always safe, as long as we get the bounds right

20

A Regional Technique

do i = 1 to 100 by 1
a(i) ← b(i) * c(i)

end

a(1)     ← b(1) * c(1)
a(2)     ← b(2) * c(2)
a(2)     ← b(3) * c(3)

…
a(100) ← b(100) * c(100)

Complete unrolling

Loop Unrolling
Unrolling by smaller factors can achieve much of the benefit

Example: unroll by 4

Achieves much of the savings with lower code growth
• Reduces tests & branches by 25%
• LVN will eliminate duplicate adds and redundant expressions
• Less overhead per useful operation

But, it relied on knowledge of the loop bounds…
21

do i = 1 to 100 by 4
a(i)     ← b(i) * c(i)
a(i+1) ← b(i+1) * c(i+1)
a(i+2) ← b(i+2) * c(i+2)
a(i+3) ← b(i+3) * c(i+3)

end

Unroll by 4

do i = 1 to 100 by 1
a(i) ← b(i) * c(i)

end



12

Loop Unrolling
Unrolling with unknown bounds

Need to generate guard loops

Achieves most of the savings
• Reduces tests & branches by 25%
• LVN still works on loop body
• Guard loop takes some space

Can generalize to arbitrary upper & lower bounds, unroll factors
22

i ← 1
do while (i+3 < n )

a(i)     ← b(i) * c(i)
a(i+1) ← b(i+1) * c(i+1)
a(i+2) ← b(i+2) * c(i+2)
a(i+3) ← b(i+3) * c(i+3)
i ←i + 4

end
do while (i < n)

a(i)     ← b(i) * c(i)
i ← i + 1

end

Unroll by 4

do i = 1 to n by 1
a(i) ← b(i) * c(i)

end

Loop Unrolling
One other unrolling trick

Eliminate copies at the end of a loop

23

t1 ← b(0)
do i = 1 to 100 by 1

t2 ← b(i)
a(i) ← a(i)+t1+ t2
t1 ← t2

end

Unroll and rename

t1 ← b(0)
do i = 1 to 100 by 2

t2 ← b(i)
a(i) ← a(i) +t1+t2
t1 ← b(i+1)
a(i+1) ← a(i+1)+t2+t1

end

This result has been rediscovered many times.  [Kennedy’s thesis]



13

The Story So Far …
Introduced scope of optimization
• Local — a single basic block
• Regional — a subset of the blocks in a procedure
• Global — an entire procedure 
• Whole Program — multiple procedures

Some example optimizations
• Local Value Numbering
• Superlocal Value Numbering
• Loop Unrolling
• Data-analysis & an application
• Procedure Placement

24

Interprocedural

Intraprocedural

Finding Uninitialized Variables
We can use global data-flow analysis to find variables that 
might be used before they are ever defined

A variable v is live at point p iff ∃ a path in the CFG 
from p to a use of v along which v is not redefined.

Any variable that is live in the entry block of a procedure may 
be used before it is defined
•Represents a potential logic error in the code
•Compiler should discover and report this condition

We are looking at this issue because it gives us an opportunity 
to introduce the computation of liveness – a data-flow analysis.

— Data-flow analysis is a form of compile-time reasoning about 
the runtime flow of values.

25

A Global Technique


