Instruction Scheduling

Note by Baris Aktemur:
Our slides are adapted from Cooper and Torczon's slides that they prepared for COMP 412 at Rice.

Copyright 2010, Keith D. Cooper \& Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.
Faculty from other educational institutions may use these materials for nonprofit educational purposes, provided this copyright notice is preserved.

What Makes Code Run Fast?

- Many operations have non-zero latencies
- Modern machines can issue several operations per cycle
- Execution time is order-dependent (and has been since the 60's)

Operation	Cycles
load	3
store	3
loadI	1
add	1
mult	2
fadd	1
fmult	2
shift	1
branch	0 to 8

- Loads \& stores may or may not block on issue
$>$ Non-blocking \Rightarrow fill those issue slots
- Branch costs vary with path taken
- Branches typically have delay slots
> Fill slots with unrelated operations
$>$ Percolates branch upward
- Scheduler should hide the latencies

Assumed latencies for

 example on next slide.
Example

$$
a \leftarrow a^{*} 2 * b^{*} c * d
$$

Simple schedule

Start		Operations
1	10adAI	$\mathrm{rarp}, @ a \Rightarrow r_{1}$
4	add	$r_{1}, r_{1} \Rightarrow r_{1}$
5	loadAI	$r_{\text {arp }}, @ b \Rightarrow r_{2}$
8	mult	$r_{1}, r_{2} \Rightarrow r_{1}$
10	loadAI	$r_{\text {arp }}, @ c \Rightarrow r_{2}$
13	mult	$r_{1}, r_{2} \Rightarrow r_{1}$
15	10adAI	$r_{\text {arp }}, @ d \Rightarrow r_{2}$
18	mult	$r_{1}, r_{2} \Rightarrow r_{1}$
20	storeAI	$r_{1} \quad \Rightarrow r_{\text {arp }}$, @a

Schedule loads early

Start		Operations
1	1 oadAI	rarp, @a $\Rightarrow r_{1}$
2	loadAI	rarp, @b $\Rightarrow r_{2}$
3	loadAI	$r_{\text {arp }}$, @c $\Rightarrow r_{3}$
4	add	$r_{1}, r_{1} \Rightarrow r_{1}$
5	mult	$r_{1}, r_{2} \Rightarrow r_{1}$
6	loadAI	rarp, @d $\Rightarrow r_{2}$
7	mult	$r_{1}, r_{3} \Rightarrow r_{1}$
9	mult	$r_{1}, r_{2} \Rightarrow r_{1}$
11	storeAI	$r_{1} \quad \Rightarrow r_{\text {arp }}$, @a

Reordering operations for speed is called instruction scheduling

ALU Characteristics

This data is surprisingly hard to measure accurately

- Value-dependent behavior
- Context-dependent behavior
- Compiler behavior
- Have seen gcc underallocate \& inflate operation costs with memory references (spills)
- Have seen commercial compiler generate 3 extra ops per divide raising effective cost by 3
- Difficult to reconcile measured reality with the data in the Manuals (e.g. integer divide on Nehalem)

Intel E5530 operation latencies	
Instruction	Cost
64 bit integer subtract	1
64 bit integer multiply	3
64 bit integer divide	41
Double precision add	3
Double precision subtract	3
Double precision multiply	5
Double precision divide	22
Single precision add	3
Single precision subtract	3
Single precision multiply	4
Single precision divide	14

Comp 412, Fall 2010

[^0]
Instruction Scheduling (Engineer's View)

The Problem
Given a code fragment for some target machine and the latencies for each individual operation, reorder the operations to minimize execution time

The Concept

The Task

- Produce correct code
- Minimize wasted cycles
- Avoid spilling registers
- Operate efficiently

Instruction Scheduling (The Abstract View)

To capture properties of the code, build a precedence graph G

- Nodes $n \in G$ are operations with type(n) and delay(n)
- An edge $e=\left(n_{1}, n_{2}\right) \in G$ if \& only if n_{2} uses the result of n_{1}

The Code

The Precedence Graph

Instruction Scheduling

A correct schedule S maps each $n \in N$ into a non-negative integer representing its cycle number, and

1. $S(n) \geq 0$, for all $n \in N$, obviously
2. If $\left(n_{1}, n_{2}\right) \in E, S\left(n_{1}\right)+\operatorname{delay}\left(n_{1}\right) \leq S\left(n_{2}\right)$
3. For each type t, there are no more operations of type t in any cycle than the target machine can issue

The length of a schedule S, denoted $L(S)$, is $L(S)=\max _{n \in N}(S(n)+$ delay $(n))$

The goal is to find the shortest possible correct schedule.
S is time-optimal if $L(S) \leq L\left(S_{1}\right)$, for all other schedules S_{1}
A schedule might also be optimal in terms of registers, power, or space....

Instruction Scheduling (What's so difficult?)

Critical Points

- All operands must be available
- Multiple operations can be ready
- Moving operations can lengthen register lifetimes
- Placing uses near definitions can shorten register lifetimes
- Operands can have multiple predecessors

Together, these issues make scheduling hard (NP-Complete)

Local scheduling is the simple case

- Restricted to straight-line code
- Consistent and predictable latencies

Instruction Scheduling: The Big Picture

1. Build a precedence graph, P
2. Compute a priority function over the nodes in P
3. Use list scheduling to construct a schedule, 1 cycle at a time
a. Use a queue of operations that are ready
b. At each cycle
I. Choose the highest priority ready operation \& schedule it
II. Update the ready queue

Local list scheduling

- The dominant algorithm for thirty years
- A greedy, heuristic, local technique

Local List Scheduling

Scheduling Example

1. Build the precedence graph

Scheduling Exa		Operation load store	Cycles	
1. Build the prece 2. Determine prior		add	1	
		mult	2	weighted path
		fmult	2	
		shift	1	
		branch	0 to 8	
				a^{13}
b :	add r_{1}, r_{1}	$\Rightarrow r_{1}$		12
	loadAI rarp.e	b $\Rightarrow r_{2}$		$10^{\text {b }}$ / ${ }^{\text {c }}$
	mult r_{1}, r_{2}	$\Rightarrow r_{1}$		$10^{\text {d }} \mathrm{e}^{10}$
	loadAl rarp, ©	ct $\Rightarrow r_{3}$		$9^{d} /{ }^{\text {d }}$
	mult r_{1}, r_{2}	$\Rightarrow r_{1}$		f^{8}
	loadAI rarp, ©	فd $\Rightarrow r_{2}$		$7 \mathrm{f}{ }^{5}{ }^{\text {g }}$
	mult r_{1}, r_{2}	$\Rightarrow r_{1}$		
	storeAI r_{1}	$\Rightarrow r_{\text {arp }}$.@a		
	The Code			The Precedence Graph

Scheduling Example

1. Build the precedence graph
2. Determine priorities: longest latency-weighted path
3. Perform list scheduling
1) a: loadAl $\quad \mathrm{r} 0, @ \mathrm{ew} \Rightarrow \mathrm{r} 1$
2) c: loadAl $\mathrm{ro}, @ \mathrm{Q} \Rightarrow \mathrm{r} 2$
3) e: loadAl $\mathrm{r0}$, @y $\Rightarrow \mathrm{r} 3$
4) b : add $\quad \mathrm{rl}, \mathrm{r} 1 \quad \Rightarrow \mathrm{r} 1$
5) d: mult $\quad \mathrm{r} 1, \mathrm{r} 2 \quad \Rightarrow \mathrm{r} 1$
6) g : loadAl $\mathrm{r} 0, @ \mathrm{z} \quad \Rightarrow \mathrm{r} 2$
7) f: mult $\quad \mathrm{r} 1, \mathrm{r} 3 \quad \Rightarrow \mathrm{r} 1$
8) h : mult $\quad \mathrm{r} 1, \mathrm{r} 2 \Rightarrow \mathrm{r} 1$
9) i: storeAl $\quad \mathrm{r} 1 \quad \Rightarrow \mathrm{r0}$,@w

The Code
Used a new register name

The Precedence Graph

More List Scheduling

List scheduling breaks down into two distinct classes
Forward list scheduling

- Start with available operations
- Work forward in time
- Ready \Rightarrow all operands available

Backward list scheduling

- Start with no successors
- Work backward in time
- Ready \Rightarrow latency covers uses

Variations on list scheduling

- Prioritize critical path(s)
- Schedule last use as soon as possible
- Depth first in precedence graph (minimize registers)
- Breadth first in precedence graph (minimize interlocks)
- Prefer operation with most successors

Local Scheduling

F

	Int	Int	Mem
1	loadI $_{1}$	lshift	
2	loadI $_{2}$	loadI_{3}	
3	loadI_{4}	add_{1}	
4	add_{2}	add_{3}	
5	add_{4}	addI	store ${ }_{1}$
6	cmp		store $_{2}$
7			store $_{3}$
8			store $_{4}$
9			store $_{5}$
10			
11			
12			
13	cbr		

B	Int			Int
a	Mem			
c	1	loadI $_{4}$		
k	2	addI	lshift	
w	3	add $_{4}$	loadI $_{3}$	
a	4	add_{3}	loadI $_{2}$	store $_{5}$
r	5	add $_{2}$	loadI $_{1}$	store $_{4}$
d	6	add $_{1}$		store $_{3}$
S	7			store $_{2}$
c	7			store $_{1}$
h	8			
e	9			
d	10			
u	11	cmp		
l	12	cbr		
e	12			

Comp 412, Fall 2010
Using "latency to root" as the priority function

Scheduling Larger Regions

One step beyond a block is an Extended Basic Block (EBB)

- EBB is a maximal set of blocks s.t.
- Set has a single entry, B_{i}
- Each block B_{j} other than B_{i} has ; exactly one predecessor
- Example CFG has three EBBs,

Scheduling Larger Regions

One step beyond a block is an Extended Basic Block (EBB)

- EBB is a maximal set of blocks such that
- Set has a single entry, B_{i}
- Each block B_{j} other than B_{i} has exactly one predecessor
- Example has three EBBs
- Big EBB has two paths
$-\left\{B_{1}, B_{2}, B_{4}\right\} \&\left\{B_{1}, B_{3}\right\}$
- Many optimizations operate on EBBs (including scheduling)

Scheduling Larger Regions

Superlocal Scheduling

- Schedule entire paths through EBBs
- Example has four EBB paths

[^0]: Xeon E5530 uses the Nehalem microarchitecture, as does 17

