Register Allocation

Note by Baris Aktemur:
Our slides are adapted from Cooper and Torczon's slides that they prepared for COMP 412 at Rice.

Copyright 2010, Keith D. Cooper \& Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.
Faculty from other educational institutions may use these materials for nonprofit educational purposes, provided this copyright notice is preserved.

Register Allocation

Part of the compiler's back end

Critical properties

- Produce correct code that uses k (or fewer) registers
- Minimize added loads and stores
- Minimize space used to hold spilled values
- Operate efficiently $O(n), O\left(n \log _{2} n\right)$, maybe $O\left(n^{2}\right)$, but not $O\left(2^{n}\right)$

Global Register Allocation

The Big Picture

Optimal global allocation is NP-Complete, under almost any assumptions.

At each point in the code
1 Determine which values will reside in registers
2 Select a register for each such value
The goal is an allocation that "minimizes" running time
Most modern, global allocators use a graph-coloring paradigm

- Build a "conflict graph" or "interference graph"
- Find a k-coloring for the graph, or change the code to a nearby problem that it can k-color

Graph Coloring
 (A Background Digression)

The problem
A graph G is said to be k-colorable iff the nodes can be labeled with integers 1 ... k so that no edge in G connects two nodes with the same label

Examples

2-colorable

3-colorable

Each color can be mapped to a distinct physical register

Building the Interference Graph

What is an "interference" ? (or conflict)

- Two values interfere if there exists an operation where both are simultaneously live
- If x and y interfere, they cannot occupy the same register

To compute interferences, we must know where values are "live"

We've seen Liveness analysis in the Data Flow Analysis lecture.

Observation on Coloring for Register Allocation

- Suppose you have k registers-look for a k coloring
- Any vertex n that has fewer than k neighbors in the interference graph ($n^{\circ}<k$) can always be colored!
- Pick any color not used by its neighbors - there must be one

Chaitin's Algorithm

1. While \exists vertices with $<k$ neighbors in G_{I}
$>$ Pick any vertex n such that $n^{\circ}<k$ and put it on the stack
Lowers degree of n's neighbors
$>$ Remove that vertex and all edges incident to it from G_{I}
2. If G_{I} is non-empty (all vertices have k or more neighbors) then:
$>$ Pick a vertex n (using some heuristic) and spill the live range associated with n
$>$ Remove vertex n from G_{I}, along with all edges incident to it and put it on the "spill list"
$>$ If this causes some vertex in G_{I} to have fewer than k neighbors, then go to step 1; otherwise, repeat step 2
3. If the spill list is not empty, insert spill code, then rebuild the interference graph and try to allocate, again
4. Otherwise, successively pop vertices off the stack and color them in the lowest color not used by some neighbor

Chaitin's Algorithm in Practice

3 Registers

Stack
1 is the only node with degree < 3

Chaitin's Algorithm in Practice

3 Registers

Stack
Now, 2 \& 3 have degree < 3

Chaitin's Algorithm in Practice

3 Registers

Stack
Now all nodes have degree < 3

Chaitin's Algorithm in Practice

3 Registers

Stack

Chaitin's Algorithm in Practice

3 Registers

Stack

Chaitin's Algorithm in Practice

3 Registers

Colors:
(5)

1 :
2: \bigcirc

3:

Chaitin's Algorithm in Practice

3 Registers

Stack

Chaitin's Algorithm in Practice

3 Registers

Colors:

1:
2: \bigcirc
3:

Chaitin's Algorithm in Practice

3 Registers

Chaitin's Algorithm in Practice

3 Registers

Stack

Colors:

1 :

3 .

Improvement in Coloring Scheme

Optimistic Coloring

- If Chaitin's algorithm reaches a state where every node has k or more neighbors, it chooses a node to spill.
- Briggs said, take that same node and push it on the stack - When you pop it off, a color might be available for it!

2 Registers:

Chaitin's algorithm $\{$ immediately spills one of these nodes

- For example, a node n might have $k+2$ neighbors, but those neighbors might only use $3(<k)$ colors
\rightarrow Degree is a loose upper bound on colorability

Improvement in Coloring Scheme

Optimistic Coloring

- If Chaitin's algorithm reaches a state where every node has k or more neighbors, it chooses a node to spill.
- Briggs said, take that same node and push it on the stack
- When you pop it off, a color might be available for it!

2 Registers:
2-Colorable

- For example, a node n might have $k+2$ neighbors, but those neighbors might only use just one color (or any number < k)
\rightarrow Degree is a loose upper bound on colorability

Chaitin-Briggs Algorithm

1. While \exists vertices with $<k$ neighbors in G_{I}
$>$ Pick any vertex n such that $n^{\circ}<k$ and put it on the stack
$>$ Remove that vertex and all edges incident to it from G_{I}
\rightarrow This action often creates vertices with fewer than k neighbors
2. If G_{I} is non-empty (all vertices have k or more neighbors) then:
$>$ Pick a vertex n (using some heuristic condition), push n on the stack and remove n from G_{I}, along with all edges incident to it
$>$ If this causes some vertex in G_{I} to have fewer than k neighbors, then go to step 1; otherwise, repeat step 2
3. Successively pop vertices off the stack and color them in the lowest color not used by some neighbor
> If some vertex cannot be colored, then pick an uncolored vertex to spill, spill it, and restart at step 1

Chaitin-Briggs in Practice

2 Registers

Stack
No node has degree < 2

- Chaitin would spill a node

Comp 412, Fall 2010

- Briggs picks the same node \& stacks it

Chaitin-Briggs in Practice

2 Registers

Stack

Pick a node, say 1

Chaitin-Briggs in Practice

2 Registers

Stack
Pick a node, say 1

Chaitin-Briggs in Practice

2 Registers

Stack
Now, both 2 \& 3 have degree < 2
Pick one, say 3

Chaitin-Briggs in Practice

2 Registers

Stack
Both 2 \& 4 have degree < 2. Take them in order 2 , then 4.

Chaitin-Briggs in Practice

2 Registers

Stack

Chaitin-Briggs in Practice

2 Registers

Stack
Now, rebuild the graph

Chaitin-Briggs in Practice

2 Registers

Stack

Chaitin-Briggs in Practice

2 Registers

Colors:
1:
2: \bigcirc

Stack

Comp 412, Fall 2010

Chaitin-Briggs in Practice

2 Registers

Colors:
1 :

2:

Chaitin-Briggs in Practice

2 Registers

Colors:

1:

Approximate Global Allocation

Linear Scan Allocation

Coloring allocators are often viewed as too expensive for use in JIT environments, where compile time occurs at runtime

Linear scan allocators use an approximate interference graph
Algorithm does allocation in a "linear" scan of the graph
Linear scan produces faster, albeit less precise, allocations
Linear scan allocators hit a different point on the curve of cost versus performance

