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Register Allocation 
Part of the compiler’s back end 

Critical properties 
•  Produce correct code that uses k (or fewer) registers 
•  Minimize added loads and stores 
•  Minimize space used to hold spilled values 
•  Operate efficiently  

O(n), O(n log2n), maybe O(n2), but not O(2n) 
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Global Register Allocation 
The Big Picture 

At each point in the code 
1  Determine which values will reside in registers 
2  Select a register for each such value 
The goal is an allocation that “minimizes” running time 

Most modern, global allocators use a graph-coloring paradigm 
•  Build a “conflict graph” or “interference graph” 
•  Find a k-coloring for the graph, or change the code to a 

nearby problem that it can k-color 

Register 
Allocator 

m register 
 code 

k register 
 code 

Optimal global allocation 
is NP-Complete, under 
almost any assumptions. 
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Graph Coloring              (A Background Digression) 
The problem 

A graph G  is said to be k-colorable iff the nodes can be labeled 
with integers 1 … k so that no edge in G connects two nodes with 
the same label  

Examples 

 
 
Each color can be mapped to a distinct physical register 

2-colorable 3-colorable 
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Building the Interference Graph 
What is an “interference” ? (or conflict) 
•  Two values interfere if there exists an operation where both 

are simultaneously live 
•  If x and y interfere, they cannot occupy the same register 
To compute interferences, we must know where values are “live” 
 
We’ve seen Liveness analysis in the Data Flow Analysis lecture. 
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Observation on Coloring for Register Allocation 
•  Suppose you have k registers—look for a k coloring 

•  Any vertex n that has fewer than k neighbors in the 
interference graph (n° < k) can always be colored ! 
—  Pick any color not used by its neighbors — there must be one 
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Chaitin’s Algorithm 
1.  While ∃ vertices with < k neighbors in GI  

>  Pick any vertex n such that n°< k and put it on the stack 
>  Remove that vertex and all edges incident to it from GI 

2.  If GI is non-empty  (all vertices have k or more neighbors) then: 
>  Pick a vertex n (using some heuristic) and spill the live range 

associated with n 
>  Remove vertex n from GI , along with all edges incident to it 

and put it on the “spill list” 
>   If this causes some vertex in GI to have fewer than k 

neighbors, then go to step 1; otherwise, repeat step 2 

3.  If the spill list is not empty, insert spill code, then rebuild 
the interference graph and try to allocate, again  

4.  Otherwise, successively pop vertices off the stack and color 
them in the lowest color not used by some neighbor 

Lowers degree 
of n’s neighbors 

Comp 412, Fall 2010 7 

Chaitin’s Algorithm in Practice 
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1 is the only node with degree < 3 
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Chaitin’s Algorithm in Practice 

2 

3 

4 5 

3 Registers 

Stack 

1 

Now, 2 & 3 have degree < 3 
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Chaitin’s Algorithm in Practice 
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Now all nodes have degree < 3 
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Chaitin’s Algorithm in Practice 
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Chaitin’s Algorithm in Practice 
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Chaitin’s Algorithm in Practice 
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Chaitin’s Algorithm in Practice 
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Chaitin’s Algorithm in Practice 
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Chaitin’s Algorithm in Practice 
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Chaitin’s Algorithm in Practice 
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Improvement in Coloring Scheme 
Optimistic Coloring      
•  If Chaitin’s algorithm reaches a state where every node has 

k or more neighbors, it chooses a node to spill. 
•  Briggs said, take that same node and push it on the stack  

— When you pop it off, a color might be available for it! 

—  For example, a node n might have k+2 neighbors, but those 
neighbors might only use 3 (<k) colors 
→ Degree is a loose upper bound on colorability 

2 Registers: Chaitin’s algorithm 
immediately spills one 
of these nodes  

Briggs et al, PLDI 89 (Also, TOPLAS 1994) 
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Improvement in Coloring Scheme 
Optimistic Coloring 
•  If Chaitin’s algorithm reaches a state where every node has 

k or more neighbors, it chooses a node to spill. 
•  Briggs said, take that same node and push it on the stack  

— When you pop it off, a color might be available for it! 

—  For example, a node n might have k+2 neighbors, but those 
neighbors might only use just one color (or any number < k ) 
→ Degree is a loose upper bound on colorability 

2 Registers: 

2-Colorable 

Briggs algorithm 
finds an available 
color   
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Chaitin-Briggs Algorithm 
1.  While ∃ vertices with < k neighbors in GI  

>  Pick any vertex n such that n°< k and put it on the stack 
>  Remove that vertex and all edges incident to it from GI 

→  This action often creates vertices with fewer than k neighbors 

2.  If GI  is non-empty (all vertices have k or more neighbors) then: 
>  Pick a vertex n (using some heuristic condition), push n on the 

stack and remove n from GI , along with all edges incident to it 
>  If this causes some vertex in GI to have fewer than k 

neighbors, then go to step 1; otherwise, repeat step 2 

3.  Successively pop vertices off the stack and color them in 
the lowest color not used by some neighbor 
>  If some vertex cannot be colored, then pick an uncolored 

vertex to spill, spill it, and restart at step 1 
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Chaitin-Briggs in Practice 
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No node has degree < 2 
• Chaitin would spill a node 
• Briggs picks the same node & stacks it 
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Chaitin-Briggs in Practice 
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Chaitin-Briggs in Practice 
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Chaitin-Briggs in Practice 
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Now, both 2 & 3 have degree < 2 
Pick one, say 3 
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Chaitin-Briggs in Practice 
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Both 2 & 4 have degree < 2. 
Take them in order 2, then 4. 
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Chaitin-Briggs in Practice 
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Chaitin-Briggs in Practice 
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Now, rebuild the graph 
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Chaitin-Briggs in Practice 
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Chaitin-Briggs in Practice 
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Chaitin-Briggs in Practice 

4 

2 

3 

2 Registers 

Stack 

1 

Colors: 

1:   

2:   



16 

Comp 412, Fall 2010 30 

Chaitin-Briggs in Practice 
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Linear Scan Allocation 
Coloring allocators are often viewed as too expensive for use in 
JIT environments, where compile time occurs at runtime 

Linear scan allocators use an approximate interference graph  

Algorithm does allocation in a “linear”  
scan of the graph 
Linear scan produces faster, albeit less  
precise, allocations 

Linear scan allocators hit a different point 
on the curve of cost versus performance 

Comp 412, Fall 2010 31 Sun’s HotSpot server compiler uses a complete Chaitin-Briggs allocator. 

Approximate Global Allocation 


