
1

Register Allocation

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies
of these materials for their personal use.
Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

Note by Baris Aktemur:
Our slides are adapted from Cooper and Torczon’s slides that they prepared for COMP 412
at Rice.

Comp 412, Fall 2010 1

Register Allocation
Part of the compiler’s back end

Critical properties
•  Produce correct code that uses k (or fewer) registers
•  Minimize added loads and stores
•  Minimize space used to hold spilled values
•  Operate efficiently

O(n), O(n log2n), maybe O(n2), but not O(2n)

Register
Allocation

Errors

IR Instruction
Selection

k register
asm

Instruction
Scheduling

m register
asm

m register
asm

2

Comp 412, Fall 2010 2

Global Register Allocation
The Big Picture

At each point in the code
1  Determine which values will reside in registers
2  Select a register for each such value
The goal is an allocation that “minimizes” running time

Most modern, global allocators use a graph-coloring paradigm
•  Build a “conflict graph” or “interference graph”
•  Find a k-coloring for the graph, or change the code to a

nearby problem that it can k-color

Register
Allocator

m register
 code

k register
 code

Optimal global allocation
is NP-Complete, under
almost any assumptions.

Comp 412, Fall 2010 3

Graph Coloring (A Background Digression)
The problem

A graph G is said to be k-colorable iff the nodes can be labeled
with integers 1 … k so that no edge in G connects two nodes with
the same label

Examples

Each color can be mapped to a distinct physical register

2-colorable 3-colorable

3

Comp 412, Fall 2010 4

Building the Interference Graph
What is an “interference” ? (or conflict)
•  Two values interfere if there exists an operation where both

are simultaneously live
•  If x and y interfere, they cannot occupy the same register
To compute interferences, we must know where values are “live”

We’ve seen Liveness analysis in the Data Flow Analysis lecture.

Comp 412, Fall 2010 5

Observation on Coloring for Register Allocation
•  Suppose you have k registers—look for a k coloring

•  Any vertex n that has fewer than k neighbors in the
interference graph (n° < k) can always be colored !
—  Pick any color not used by its neighbors — there must be one

4

Comp 412, Fall 2010 6

Chaitin’s Algorithm
1.  While ∃ vertices with < k neighbors in GI

>  Pick any vertex n such that n°< k and put it on the stack
>  Remove that vertex and all edges incident to it from GI

2.  If GI is non-empty (all vertices have k or more neighbors) then:
>  Pick a vertex n (using some heuristic) and spill the live range

associated with n
>  Remove vertex n from GI , along with all edges incident to it

and put it on the “spill list”
>  If this causes some vertex in GI to have fewer than k

neighbors, then go to step 1; otherwise, repeat step 2

3.  If the spill list is not empty, insert spill code, then rebuild
the interference graph and try to allocate, again

4.  Otherwise, successively pop vertices off the stack and color
them in the lowest color not used by some neighbor

Lowers degree
of n’s neighbors

Comp 412, Fall 2010 7

Chaitin’s Algorithm in Practice

2

3

1 4 5

3 Registers

Stack

1 is the only node with degree < 3

5

Comp 412, Fall 2010 8

Chaitin’s Algorithm in Practice

2

3

4 5

3 Registers

Stack

1

Now, 2 & 3 have degree < 3

Comp 412, Fall 2010 9

Chaitin’s Algorithm in Practice

3

4 5

3 Registers

Stack

1

2

Now all nodes have degree < 3

6

Comp 412, Fall 2010 10

Chaitin’s Algorithm in Practice

3

5

3 Registers

Stack

1

2
4

Comp 412, Fall 2010 11

Chaitin’s Algorithm in Practice

3 Registers

Stack

1

2
4
3

5

Colors:

1:

2:

3:

7

Comp 412, Fall 2010 12

Chaitin’s Algorithm in Practice

5

3 Registers

Stack

1

2
4
3

Colors:

1:

2:

3:

Comp 412, Fall 2010 13

Chaitin’s Algorithm in Practice

3

5

3 Registers

Stack

1

2
4

Colors:

1:

2:

3:

8

Comp 412, Fall 2010 14

Chaitin’s Algorithm in Practice

3

4 5

3 Registers

Stack

1

2

Colors:

1:

2:

3:

Comp 412, Fall 2010 15

Chaitin’s Algorithm in Practice

2

3

4 5

3 Registers

Stack

1

Colors:

1:

2:

3:

9

Comp 412, Fall 2010 16

Chaitin’s Algorithm in Practice

2

3

1 4 5

3 Registers

Stack

Colors:

1:

2:

3:

Comp 412, Fall 2010 17

Improvement in Coloring Scheme
Optimistic Coloring
•  If Chaitin’s algorithm reaches a state where every node has

k or more neighbors, it chooses a node to spill.
•  Briggs said, take that same node and push it on the stack

— When you pop it off, a color might be available for it!

—  For example, a node n might have k+2 neighbors, but those
neighbors might only use 3 (<k) colors
→ Degree is a loose upper bound on colorability

2 Registers: Chaitin’s algorithm
immediately spills one
of these nodes

Briggs et al, PLDI 89 (Also, TOPLAS 1994)

10

Comp 412, Fall 2010 18

Improvement in Coloring Scheme
Optimistic Coloring
•  If Chaitin’s algorithm reaches a state where every node has

k or more neighbors, it chooses a node to spill.
•  Briggs said, take that same node and push it on the stack

— When you pop it off, a color might be available for it!

—  For example, a node n might have k+2 neighbors, but those
neighbors might only use just one color (or any number < k)
→ Degree is a loose upper bound on colorability

2 Registers:

2-Colorable

Briggs algorithm
finds an available
color

Comp 412, Fall 2010 19

Chaitin-Briggs Algorithm
1.  While ∃ vertices with < k neighbors in GI

>  Pick any vertex n such that n°< k and put it on the stack
>  Remove that vertex and all edges incident to it from GI

→  This action often creates vertices with fewer than k neighbors

2.  If GI is non-empty (all vertices have k or more neighbors) then:
>  Pick a vertex n (using some heuristic condition), push n on the

stack and remove n from GI , along with all edges incident to it
>  If this causes some vertex in GI to have fewer than k

neighbors, then go to step 1; otherwise, repeat step 2

3.  Successively pop vertices off the stack and color them in
the lowest color not used by some neighbor
>  If some vertex cannot be colored, then pick an uncolored

vertex to spill, spill it, and restart at step 1

11

Comp 412, Fall 2010 20

Chaitin-Briggs in Practice

4

2

1

3

2 Registers

Stack

No node has degree < 2
• Chaitin would spill a node
• Briggs picks the same node & stacks it

Comp 412, Fall 2010 21

Chaitin-Briggs in Practice

4

2

1

3

2 Registers

Stack

Pick a node, say 1

12

Comp 412, Fall 2010 22

Chaitin-Briggs in Practice

4

2

3

2 Registers

Stack

1

Pick a node, say 1

Comp 412, Fall 2010 23

Chaitin-Briggs in Practice

4

2

3

2 Registers

Stack

1

Now, both 2 & 3 have degree < 2
Pick one, say 3

13

Comp 412, Fall 2010 24

Chaitin-Briggs in Practice

4

2

2 Registers

Stack

1

3

Both 2 & 4 have degree < 2.
Take them in order 2, then 4.

Comp 412, Fall 2010 25

Chaitin-Briggs in Practice

4

2 Registers

Stack

1

3
2

14

Comp 412, Fall 2010 26

Chaitin-Briggs in Practice

2 Registers

Stack

1

3
2
4

Now, rebuild the graph

Comp 412, Fall 2010 27

Chaitin-Briggs in Practice

4

2 Registers

Stack

1

3
2

Colors:

1:

2:

15

Comp 412, Fall 2010 28

Chaitin-Briggs in Practice

4

2

2 Registers

Stack

1

3

Colors:

1:

2:

Comp 412, Fall 2010 29

Chaitin-Briggs in Practice

4

2

3

2 Registers

Stack

1

Colors:

1:

2:

16

Comp 412, Fall 2010 30

Chaitin-Briggs in Practice

4

2

1

3

2 Registers

Stack

Colors:

1:

2:

Linear Scan Allocation
Coloring allocators are often viewed as too expensive for use in
JIT environments, where compile time occurs at runtime

Linear scan allocators use an approximate interference graph

Algorithm does allocation in a “linear”
scan of the graph
Linear scan produces faster, albeit less
precise, allocations

Linear scan allocators hit a different point
on the curve of cost versus performance

Comp 412, Fall 2010 31 Sun’s HotSpot server compiler uses a complete Chaitin-Briggs allocator.

Approximate Global Allocation

