
Improving Region Analysis for Parallel Analysis of Programs

Buse Yilmaz BUSE.YILMAZ@OZU.EDU.TR
Baris Aktemur BARIS.AKTEMUR@OZYEGIN.EDU.TR

Computer Science, Özyeğin University

Abstract

A compiler performs several passes over a pro-
gram during the semantic analysis and optimiza-
tion phases before emitting executable code. The
time required to do program analysis can be sub-
stantially reduced by performing it in parallel.
Lee, Ryder and Fiuczynski’s Region Analysis is
a method that partitions the flow graph of a pro-
gram to enable better load balancing of analysis
tasks. In this study we show that Region Anal-
ysis’ results can be improved by using simple
heuristics. Numerous tests are done with differ-
ent problem types and sizes, giving promising re-
sults. As a future work we intend to apply these
heuristics on real-world large-scale applications
and implement parallel program analyses.

1. Introduction
Program analyses play an important role in the daily life
of a software developer. For example, a compiler performs
several analyses on a program to check if the program is
compilable or if certain transformations are applicable; var-
ious optimizations that improve the efficiency of code have
to use program analysis results; refactoring engines ana-
lyze programs to make sure that certain transformations are
eligible. Several different analyses need to be performed
by compilers and code transformation tools, such as data-
flow, interval, shape, pointer, control-flow analyses. Fur-
thermore, a transformation may invalidate some analyses
by changing the program graph; therefore, an analysis may
need to be recalculated several times during compilation.
Thus, analyses may take substantial amount of time dur-
ing compilation. To remedy this problem, program anal-
yses can be performed in parallel (e.g. (Edvinsson et al.,
2011)). Parallelizing an analysis has two sides: First, the
algorithm must be made parallel. This requires working on
the specific analysis problem and identifying opportunities
for parallelization. Second, the input to the parallel algo-
rithm, which is typically the program’s flow graph, must
be partitioned to be distributed to parallel tasks. A well-

Algorithm 1 Lee et al’s method of expanding a region
for all nodek in regionj do

for all c ∈ children(nodek) do
if 6 ∃ i . c ∈ regioni ∧ parents(c) ⊆ regionj∧
size constraint not violated then

include c in regionj

end if
end for

end for

balanced partitioning is crucial in making a parallel analy-
sis produce substantial speed-up.

Region analysis (RA) (Lee et al., 1995) is a method that
partitions flow graphs into disjoint, single-entry, multiple-
exit subgraphs, called regions. RA depends on the follow-
ing idea: Refining large graphs into smaller ones will offer
a better degree of parallelism and load balancing, assuming
equally likely computation costs among nodes. There are
two constraints for forming a region. (1) Entry Constraint:
a region has only one entry node which is its head-node. (2)
Size Constraint: a region contains at most S nodes, where
S is given as a parameter. Lee et al. (1995) provide two
algorithms for region analysis. (1) forward algorithm, (2)
bottom-up algorithm. Both are deterministic, greedy algo-
rithms. The forward analysis is initialized by adding the
root node of the graph to the first region. A new node is
added to a region if all of its immediate predecessors are
in the region and the size constraint is satisfied. This is
how a region can grow until the size constraint is met. See
Algorithm 1 for the pseudocode. When a region reaches
the maximum size, a new region is created with a head
node that is reachable from existing regions. The algo-
rithm hence “moves” in forward direction and maximizes
the number of nodes in a region before creating a new one.
However, this greedy aproach may result in suboptimal par-
titionings in some situations; an example, taken from (Lee
et al., 1995), is given in Figure 1. There are several poten-
tial region configurations of a graph, but the forward algo-
rithm does not explore these possibilities. The bottom-up
algorithm has similar drawbacks.



(a) (b)

Figure 1. Partitioning a graph into regions when the size con-
straint is 3 (taken from (Lee et al., 1995)). (a) The output of Lee
et al’s forward algorithm. (b) The optimal partitioning.

Contribution: Our work is based on the observation that
Region Analysis can be considered a grouping problem
such as the graph coloring problem or the knapsack prob-
lem. There are many state-of-the-art algorithms in the liter-
ature (Hertz et al., 2008; Galinier & Hao, 1999; Lü & Hao,
2010) targeting grouping problems. These algorithms are
examples of meta-heuristics and hybrid approaches yield-
ing better-quality solutions for sufficiently large graphs,
compared to their counterparts with the greedy approach.
Hence, it is expected to have a better partitioning of a flow
graph when grouping techniques are applied to region anal-
ysis. Based on this observation, we propose an extension
to Lee et al.’s algorithm that relaxes its strict greediness
and determinism. We provide experimental results show-
ing that partitionings with better load balancing can be
achieved. In many cases, our extension is able to achieve
optimal partitionings.

2. Our Approach
Our goal in this paper is to improve on Lee et al.’s forward
algorithm’s region partitioning by using heuristics from the
grouping problem domain. The set of all valid region con-
figurations (i.e. those that satisfy the entry and size con-
straints) of a flow graph form the search space. The opti-
mal solution is the partitioning(s) with the least number of
regions. We search for the optimal solution in the search
space using a local search operator (LSO). The forward al-
gorithm always starts from the root node and proceeds de-
terministically, maximally filling up a region before creat-
ing a new one. To make it possible that a variety of region
partitions are created, we employ the following heuristics.

H1: Head nodes are picked deterministically as in the for-
ward algorithm, but the size constraint S is not kept
constant. Instead, a random size in [1, S] is picked for
each region created.

H2: Head nodes are picked randomly. The size constraint
is constant, S.

H3: Head nodes are picked randomly. For each new re-
gion, size is randomly picked in range [1, S].

Figure 2. Region configuration using heuristic H2 (blue dotted
lines), and potential merges (blue transparent areas).

Because we relax the size constraint independently on each
region in H1 and H3, we may produce a partition where
there are several regions with small number of nodes.
These regions have the potential to be merged so that the
configuration’s quality is improved. For this reason, we
employ merging as our LSO. We first randomly pick a size
SR in range [1, S). Then a region R with size SR is chosen
randomly. If there exists another region R′ with size SR′

such that SR+SR′ ≤ S, then R and R′ are checked against
possible violation of the entry constraint. If the constraint
is satisfied, R′ is merged into R. Note that not every merge
attempt can succeed due to constraint violations. The ratio
of successful attempts to the total number of attempts gives
the merge rate. Merge rate can be used to adjust the number
of merge attempts performed. Figure 2 shows the potential
solution obtained for the graph given in Figure 1. Heuristic
H2 produces a configuration with 17 nodes (denoted with
blue dotted lines). Merging (denoted by blue transparent
areas) can reduce the number of regions to 11. Note that the
forward algorithm produces a 21-node partitioning (Figure
1-a), and the optimal solution has 11 regions (Figure 1-b).

In the genetic algorithm terminology, ours is a population-
based approach where an individual of a population is a
partitioning of a flow graph into n regions. The number of
regions, n, depends on the particular heuristic used. LSO
is applied on each individual for mergeCount times to find
an improved configuration. The general algorithm is given
in Algorithm 2.

Algorithm 2 Population-based approach to region analysis
using heuristics.

input: heuristic H
initialize the population
while iteration count not reached do

for all individualk in the population do
construct a region configuration based on the heuristic H
while mergeCount not reached do

Apply LSO to individualk
end while

end for
end while



3. Experimental Results
In this section, experimental results for forward algorithm
and the heuristics along with the optimal number of regions
are provided. We experimented with several graphs and
obtained promising results.

In Table 1, we list the results for 6 sample program graphs
taken from various papers. In these tests, our algorithm has
been iterated for 50 times. Size constraint was 8. We used a
population count of 20. For each individual, LSO is applied
30 times (i.e. mergeCount is 30). mergeRate indicates the
ratio of successful merge attempts to the total number of
attempts. For each input, we give the number of regions in
the optimal solution and the number of regions constructed
by the forward algorithm. For heuristics H1, H2 and H3,
we give the average, the minimum and the maximum num-
ber of regions found. Note that minimum number indicates
the best case. Except for the bottom up graph, heuristics
are able to achieve the optimal solutions.

4. Conclusion
In this study, a population-based local search algorithm for
partitioning control flow graphs is proposed, with the aim
of providing better load balancing for parallel analysis of
programs. Along with three different heuristics for creating
region configurations, a simple, yet effective local search
operator is proposed. The experimental results show that
the proposed approach is able to achieve better results than
the forward algorithm of (Lee et al., 1995), and get very
close to the optimal solutions. As future work we plan to
benchmark bigger graphs, parallelize several analyses and
finally implement our approach for the LLVM compiler tar-
geting multi-core machines.

Input graph
Approach (Lee et al., 1995) 5 level tree irreducible (Rountev et al., 2006) (Lee & Ryder, 1994) 4 level tree
optimal 2 5 1 5 3 2
forward 3 10 3 5 4 8

H1 (mean) 5.30 10.22 3.21 5.79 3.81 4.40
H2 (mean) 5.92 8.15 3.20 6.27 3.95 3.67
H3 (mean) 4.20 9.01 3.18 5.50 3.93 5.00

H1 (min) 3 5 3 5 3 2
H2 (min) 3 5 3 5 3 2
H3 (min) 3 5 3 5 3 2

H1 (max) 7 17 5 8 7 8
H2 (max) 9 13 5 12 6 8
H3 (max) 7 17 5 8 7 8

H1 (mergeRate) .1650 .4049 .0719 .4810 .1806 .2450
H2 (mergeRate) .3272 .8450 .0750 .8986 .3300 .4360
H3 (mergeRate) .1976 .4478 .0244 .3438 .1886 .2450

Table 1. Comparison of forward algorithm with heuristics.

References
Edvinsson, M., Lundberg, J., & Löwe, W. (2011). Paral-

lel points-to analysis for multi-core machines. Proceed-
ings of the 6th International Conference on High Perfor-
mance and Embedded Architectures and Compilers (pp.
45–54). New York, NY, USA: ACM.

Galinier, P., & Hao, J. (1999). Hybrid evolutionary algo-
rithms for graph coloring. Journal of Combinatorial Op-
timization, 3, 379–397.

Hertz, A., Plumettaz, M., & Zufferey, N. (2008). Variable
space search for graph coloring. Discrete Applied Math-
ematics, 156, 2551–2560.

Lee, Y.-F., Ryder, B., & Fiuczynski, M. (1995). Region
analysis: a parallel elimination method for data flow
analysis. Software Engineering, IEEE Transactions on,
21, 913 –926.

Lee, Y. F., & Ryder, B. G. (1994). Effectively exploiting
parallelism in data flow analysis. The Journal of Super-
computing, 8, 233–262.

Lü, Z., & Hao, J.-K. (2010). A memetic algorithm for
graph coloring. European Journal of Operational Re-
search, 203, 241 – 250.

Rountev, A., Kagan, S., & Marlowe, T. (2006). Interproce-
dural dataflow analysis in the presence of large libraries.
In A. Mycroft and A. Zeller (Eds.), Compiler construc-
tion, vol. 3923 of Lecture Notes in Computer Science,
2–16. Springer Berlin / Heidelberg.


