
Optimizing Marshalling by Run-Time

Program Generation�

Barış Aktemur1, Joel Jones2, Samuel Kamin1, and Lars Clausen3

1 University of Illinois at Urbana-Champaign, USA
{aktemur, kamin}@cs.uiuc.edu
2 University of Alabama, USA

jones@cs.ua.edu
3 State’s Library, Aarhus, Denmark

lc@statsbiblioteket.dk

Abstract. Saving the internal data of an application in an external form
is called marshalling. A generic marshaller is difficult to optimize because
the format of the data that will be marshalled is unknown at the time
the marshaller is implemented. On the other hand, efficient marshallers
can be written for specific kinds of data. In this paper we use run-time
program generation (RTPG) to produce specialized marshallers. We use
Jumbo, a Java compiler supporting programmer-specified RTPG. We
show that RTPG is easily employable. Speedups in order of magnitude
can be achieved in some cases. We study the case where the data consist
of a large number of objects of a single class and the case where there
are objects of many classes. In the latter case, “just-in-time” heuristics
allow us to limit RTPG costs and gain considerable speedups.

1 Introduction

Marshalling is the term used for saving the internal data of an application in an
external form. Once marshalled, objects can be passed to other applications. Java
RMI (remote method invocation) and CORBA are examples of systems which
marshal data for transmission to remote machines. Another term for marshalling
is serialization. The reverse process is called unmarshalling.

Serialization generally involves writing large amounts of data, and so is often
a performance bottleneck. (According to [1], Java serialization accounts for 25–
65% of a remote method invocation.) For any particular type of data, it can be
heavily optimized. However, optimizing a general-purpose marshaller is difficult
because the format of the data to be marshalled is not known at compile-time.
Such marshallers are guided by a description of the data that becomes available
only at run-time; it is provided either by the client of the marshalling code, or,
as in the case we consider here, by the language’s reflection mechanism.

Run-time program generation (RTPG) is the use of programs that write
other programs at run-time. RTPG can produce efficiencies by taking advantage

� Partial support for this work was received from NSF under grant CCR-0306221.

R. Glück and M. Lowry (Eds.): GPCE 2005, LNCS 3676, pp. 221–236, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

222 B. Aktemur et al.

of information not known at compile time. Since this is precisely the situation
we have just described, marshalling is a natural application for RTPG.

Our research group has developed Jumbo [2,3], a compiler for Java that
incorporates an easy-to-use run-time program generation mechanism. Jumbo is
distinguished by its implementation strategy [4] and by its consequent generality:
virtually any Java program can be generated at run-time. This makes Jumbo
particularly easy to learn and use. Thus, we believe it can make the writing of
run-time program generators a routine matter [5,6].

In this paper, we demonstrate the practicality of RTPG by applying Jumbo
to the problem of optimizing marshalling in Java [7,8,9]. Interestingly, the im-
plementers of the generic marshaller in Sun’s standard Java library (java.-
io.ObjectOutputStream) thought its efficiency so important that critical parts
of their implementation are written in C++. This takes this class beyond the
routine and has the specific drawback that the code cannot be verified. It also
renders the implementation unsuitable as a starting point for our experiment.
Hence, we start from a pure Java implementation of serialization, provided by
Kaffe [10]. We demonstrate that run-time program generation is easy to employ
— requiring no more skill than ordinary programming — and can deliver very
substantial speedups relative to the pure Java code. (We were not specifically
attempting to catch up with Sun’s implementation, but we have done so in some
cases; we discuss this in section 7.)

On standard marshalling benchmarks — mainly long arrays or lists — a
straightforward use of RTPG speeds up the Kaffe implementation by an order
of magnitude. Cases involving many classes are more difficult because the cost
of the run-time program generation itself cannot be so readily amortized; an
adaptive method similar to that used in just-in-time compilers can be employed.

Our contributions in this paper are:

– Demonstrating that, with Jumbo, obtaining generative code based on non-
generative code is straightforward.

– Showing significant speedups for marshalling with RTPG.
– Showing that adaptive methods can be applied to reduce the cost of run-time

compilation.

The paper is structured as follows. In section 2, we discuss marshalling in
Java in more detail and give some ideas about where RTPG might help. Section
3 introduces Jumbo, and section 4 shows how Jumbo can be used to implement
the suggestions made in section 2. Section 5 gives performance comparisons
between Kaffe and Jumbo for the benchmark cases — large, homogeneous and
near-homogeneous collections, and heterogeneous collections. In section 6, we
discuss usage of “just in time” program generation to reduce the cost of run-
time compilation for heterogeneous data. In section 7, we briefly return to Sun’s
implementation that uses native code and ask two questions: Can our safe, run-
time-generated code compete with Sun’s implementation, and can we use RTPG
to produce further optimizations of that code? Finally, section 8 reviews related
work and section 9 presents our conclusions.

Optimizing Marshalling by RTPG 223

2 Marshalling in Java

Java provides a simple API for serialization. A Java programmer doesn’t need
to write any serialization code, but must simply declare her classes to implement
the empty interface java.io.Serializable. If a class implements this interface,
an instance can be marshalled by passing it to java.io.ObjectOutputStream’s
(OOS) writeObject() method.

Sun provides a specification of serialization [11], and an implementation.
However, that implementation uses native methods, written in C/C++, to gain
efficiency. Therefore, it is not appropriate for our experiment. An implementation
in pure Java1 is provided by Kaffe [10]; we start our study there.

Throughout this paper we refer to Sun’s and Kaffe’s implementation as Sun
OOS and Kaffe OOS, respectively. The implementation for marshalling which
uses RTPG is referred as Jumbo OOS. (Actually there are two versions of Jumbo
OOS, but it will be clear from the context to which one we’re referring.) When
it doesn’t matter which OOS we’re referring to, we just say OOS.

We now explain Java serialization in detail, to highlight the places that can
be optimized by RTPG. The serialization format is roughly as follows: For each
object, first write a descriptor for its class and then write the object’s fields;
primitive fields are written directly, and object fields are written recursively using
the same format. To prevent outputting multiple copies of class descriptors or
objects – and to avoid infinite loops – each class and object is assigned an id
number, or handle; every class and object written is stored in a hashtable the
first time it is seen, and only its handle is output on subsequent sightings. The
pseudo code below outlines Kaffe OOS’s writeObject() method.

writeObject(obj) { //method in Kaffe OOS
if obj is null {
writeNull

} else if obj was already written { // look up the object in the hashtable
write object handle

} else if obj is an instance of Class or String {
write obj according to the specification for that particular case

} else if the object is an Array {
for each element i in obj

writeObject(i) //a recursive call
} else{ // first write class description of object

if class of obj was already written
write class handle

else
writeObject(class of obj) //recursive call to serialize class descriptor

// then write content of object
if obj is Serializable {

for each classDescriptor in the class hierarchy of obj
for each field in the classDescriptor

1 Actually there is one call to a native method, to test whether a class has a static
initializer. This test is not available in the reflection API [10].

224 B. Aktemur et al.

if the field is primitive
writePrimitive(field)

else
writeObject(field) // recursive call

} else { throw Exception(”obj is not serializable”) }
}

}

To summarize, each object is passed through a set of checks: Is the object
null? Was it already written to the stream? Is it an array? Was its class descriptor
already written? Is it Serializable? Finally, for each class descriptor in the
inheritance hierarchy of the object, we find the fields of that class. For each field,
if it is primitive, we write the actual value directly to the stream. Otherwise, we
marshal it by making a recursive call. Note the use of reflection in the above,
using class descriptors to discover the fields of the class.

We can optimize the serialization of objects of any class by generating a
marshaller specific to it when we first see an instance of that class. After the
specialized marshaller is generated, it can be used to serialize subsequent in-
stances. With this alteration, the general marshalling procedure becomes:

writeObject(obj) { //method in Jumbo OOS
if obj is null
writeNull

else if obj was already written // look up the object in the hashtable
write object handle

else{
// look for specialized marshaller in the hashtable
marshaller = getMarshallerFor(class of obj)
if marshaller is not null // marshaller is found

marshaller.write(obj)
else if obj is an instance of Class or String

// ... as above
if obj is Serializable {

// generate specialized marshaller and put it into hashtable
marshaller = ProgGen.generateMarshallerFor(obj)
storeMarshaller(marshaller)

// ... as above
}

}
}

The bold faced lines in the code above show when to look for a specialized
marshaller and when to generate it. As a technical point, the reader will note that
a specialized marshaller is not used for marshalling right after it is generated.
This is because the generated code writes only the handle of the class, but the
class descriptor needs to be written the first time an object of the class is seen.

We now introduce Jumbo. Readers familiar with it can skip the next section.
In section 4, we continue the present discussion by showing how to go from the
Kaffe code for serialization to the Jumbo code.

Optimizing Marshalling by RTPG 225

3 Jumbo

Jumbo [3,5] is a staged compilation system for Java, allowing run-time program
generation. It provides a high degree of programmer control, source level speci-
fication, and binary-level operation.

In Jumbo, the programmer specifies code to be generated at run-time by
placing it within special quotation brackets: $< and >$. From the programmer’s
point of view, these brackets behave very much like ordinary string quotes, but
the values represented are of type Code, not string, and ordinary string opera-
tions cannot be applied. For this to work, the enclosed piece of program cannot
be arbitrary, but must be a parsable fragment. The effect of this restriction is
that these fragments can be partially compiled, with the result that no external
compiler has to be invoked at run-time to generate code. Since many computers
have a Java run-time, but no compiler, this is an important practical feature.

A quoted Java fragment can have holes that will get filled with Code values
not known at code-writing time. The syntax for holes is backquote (‘) followed
by a syntax category, followed by a Java expression of type Code in parentheses.
Consider

public Code infiniteLoopGen(Code body){

return $< while(true){

‘Stmt(body)

} >$;

}

The call infiniteLoopGen($< if(i == 3) break; i++; >$); would give us
Code equivalent to:

while(true){

if(i == 3)

break;

i++;

}

This code can now be used in a context where i is defined.
For expressions of primitive type, there is a second kind of anti-quotation,

one which evaluates the expression at program-generation time and then inserts
the value into the generated code as a constant. For example, ‘Int(x) means
that x is an int variable and its current value is to be inserted into the enclosing
Code (this is called lifting [12]).

Code is the main class in the Jumbo implementation. A Code value repre-
sents the partially compiled version of a program fragment and is represented
as a method. Its argument is the information about the usage context of that
fragment that is needed to fully compile the fragment; its result is the virtual
machine code thus calculated. Because it is a method, this program fragment is
represented as virtual machine code, rather than as source or as a syntax tree.

Detailed information on Jumbo is available in [3,5,2]. Jumbo can be obtained
at loome.cs.uiuc.edu/Jumbo/index.php.

loome.cs.uiuc.edu/Jumbo/index.php

226 B. Aktemur et al.

4 Jumbo Code for Marshalling

In section 2, we showed how to make use of program generation in Jumbo OOS.
In this section we discuss how to write the specialized marshaller generator
using Jumbo. We have implemented a class, called ProgGen, which produces the
marshallers. Before we explain ProgGen, let’s look at the specialized marshaller
that would be produced for the following class, representing a linked-list node:

public class Node implements Serializable{

int data;

Node next;

}

Its generated marshaller would be:

public class NodeMarshaller implements Marshaller {

JumboObjectOutputStream oos;

Field[][] fields;

int handle;

public void init(JumboObjectOutputStream oos,

Class clazz, int handle) {

this.oos = oos;

this.handle = handle;

... // initialize fields[][] here - omitted

}

public void write(DataOutput stream, Object obj) {

// Write the OBJECT tag and class handle to the stream

// These magic numbers are defined in Sun’s specification.

stream.writeByte(115);

stream.writeByte(113);

stream.writeInt(handle);

// write the ’data’ field

stream.writeInt(fields[0][0].getInt(obj));

// send the ’next’ field to Jumbo OOS to have it serialized

oos.writeObject(fields[0][1].get(obj));

}

}

Note that Jumbo generates byte code – not source code. We have given source
code for readability: the byte code generated is just what would be produced by
a Java compiler if presented with this source code.

When compared with the original OOS, the specialized marshaller is much
simpler. The next field of Node will also be serialized via the specialized mar-
shaller (provided that its run-time type is Node). The marshalling process will
end when next is a null pointer or an already serialized object.

ProgGen is obtained by a fairly straightforward massaging of the Kaffe OOS.
Basically, ProgGen and Kaffe OOS have code in one-to-one correspondence. How-
ever, ProgGen does not write data into a stream like Kaffe OOS does. Instead, it

Optimizing Marshalling by RTPG 227

forms Code which does that job. To illustrate, let’s examine the writeFields()
method of Kaffe OOS. This is the method that actually writes the fields of an
object.

private void writeFields(Object obj, ObjectStreamClass osc){

ObjectStreamField[] fields = osc.fields;

String field_name;

Class type;

for (int i = 0; i < fields.length; i++){

field_name = fields[i].getName();

type = fields[i].getType();

if (type == Boolean.TYPE)

realOutput.writeBoolean(

getBooleanField(obj, osc.forClass(), field_name));

else if ... // check for other primitive types

else // non-primitive

writeObject(getObjectField(obj, osc.forClass(),

field_name, fields[i].getTypeString ()));

}

}

This method first gets all the fields in a class descriptor. Then, by using each
field’s descriptor, it fetches the value of the field from the object. This is done
in getXField() of OOS, which uses the getField() method below (exception-
handling is omitted here for clarity):

private int getIntField (Object obj, Class klass, String fname) {

Field f = getField(klass, fname);

return f.getInt(obj);

}

Field getField (Class klass, String name) {

final Field f = klass.getDeclaredField(name);

AccessController.doPrivileged(new PrivilegedAction() {

public Object run() {

f.setAccessible(true);

return null;

}});

return f;

}

This work is done for each object, even if another object of that class was
already written. We shouldn’t have to find the field specifiers and field types
each time. Instead we can generate code with these values built in:

private Code writeFields(ObjectStreamClass desc, int hier) {

ObjectStreamField[] fieldDecls = desc.fields;

Code c = $< ; >$;

for (int i = 0; i < fieldDecls.length; i++){

Class type = fieldDecls[i].getType();

228 B. Aktemur et al.

if (type == Boolean.TYPE)

c = $< ‘Stmt(c)

stream.writeBoolean(

fields[‘Int(hier)][‘Int(i)].getBoolean(obj));

>$;

else if ... // other primitive types

else // non-primitive type. write the field via Jumbo OOS

c = $< ‘Stmt(c)

oos.writeObject(

fields[‘Int(hier)][‘Int(i)].get(obj));

>$;

}

return c;

}

In the code above, fields[][] holds the field specifiers. The first index
corresponds to the position of the class descriptor in the hierarchy, and the
second index corresponds to the position of the field in that class descriptor.
Note that the method requires hier as an argument. It doesn’t need the Object
obj parameter anymore, in contrast to the implementation of writeFields in
Kaffe OOS. The code shows that if the field is non-primitive, it is passed to
the Jumbo OOS to be written. In fact, we keep a one-element cache in the
specialized marshaller associated with each non-primitive field; if the run-time
type of the field is the same as the one in cache, we call the associated specialized
marshaller without passing the object to Jumbo OOS. This saves us from the
hashtable lookup that would occur in Jumbo OOS. If there is a cache miss, we
pass the object to Jumbo OOS, it does a hashtable lookup, writes the object and
then we update the cache. We do not give this code because of space limitations.

After we have the methods that return Code to serialize an object, we need
to generate the init method2, which will set up the data in the generated
marshaller. In particular, this method is where the class handle is assigned to
a data member of the serializer and where the fields[][] matrix is set. Note
that this happens only once per generated serializer. This initializer method is
constructed using code pieces from Kaffe OOS. Therefore writing this method is
again straightforward, and to save space we don’t provide the source code here.

The generated marshallers implement an interface called Marshaller, which
defines the methods init and write. Interfaces, or abstract classes, are normally
required in Java when ordinary code is to call generated code [3,5,2].

5 Performance

When using RTPG, the cost of run-time program generation must be taken into
account. For this cost to pay off, we need to use the generated program a lot; that
2 Java doesn’t provide the ability to pass arguments to the constructors of dynamically

loaded classes, so the class can only have a zero-argument constructor [3,13]. Thus
we define a normal method, init, and call it right after the object is created via the
zero-argument constructor.

Optimizing Marshalling by RTPG 229

is, we need to marshal a large data set. Still, the running time of the generated
code — excluding compile time — is a useful quantity to know, because it gives
the upper limit of speed-up (to which the actual speed-up will converge, over
time). In this section, we give the performance of specialized marshallers, both
including and excluding the cost of run-time compilation.

The performance of marshalling code is highly dependent upon the properties
of the data being marshalled. Furthermore, it is not clear what should count as
a “realistic” workload for marshalling. Large data sets — which are the ones
we most care about, since these will be the most time-consuming to marshal
— are likely to consist of large numbers of a few kinds of objects; this would
be characteristic of video or audio streams, for example. On the other hand,
most data in Java consists of objects of many different types. From the point
of view of run-time program generation, these two scenarios have very different
performance characteristics. Accordingly, we show benchmarks of both kinds.
Specifically, we start by marshalling large, homogeneous collections of a class
called Dummy, which has several fields. Then we test a linked-list class, and a
class similar to Dummy, but with fields which can contain either of two types
of objects (one a subclass of the other). After showing benchmarks for these
homogeneous and near-homogeneous collections, we discuss a non-homogeneous
data set, containing objects of 66 different classes.

Table 1. Performance table for Dummy class. Crossover point is 250 objects

Object Bytes Jumbo Jumbo + Kaffe Kaffe Kaffe

Count written OOS compilation OOS Jumbo Jumbo+comp.

1000 30000 6.6 26.9 152.9 23.1 5.68

10000 300000 121.1 140.6 1545.0 12.75 10.99

20000 600000 257.8 277.0 3121.4 12.1 11.27

These benchmarks are run as follows: All the tests are executed on a Linux
Debian, AMD Athlon XP 1700+ machine with 900MB memory. The timings are
in milliseconds. We use HotSpot as the Java Virtual Machine, which is the most
popular JVM3. When running a test, we first marshal a substantial number of
objects to give the virtual machine time to warm up. During this time, the JVM
loads classes and performs just-in-time optimization. Our experience has shown
that this approach gives more consistent results. After warming up the JVM,
we begin the test. We create a certain number of serializable objects, then pass
the objects to the OOS’s and measure the time spent. We call this a benchmark.
After a benchmark is done, we discard the objects and OOS’s —together with the
hashtables they contain— and run another benchmark with a different number
of objects. Thus, each benchmark begins with the Jumbo API and OOS’s loaded

3 Performance measurements with IBM’s JVM [14] actually show significantly better
speedups for Jumbo, but space prevents us from including these timings.

230 B. Aktemur et al.

and optimized, the specialized marshallers not generated. In the tables below,
each row represents a benchmark.

5.1 Homogeneous and Near-Homogeneous Data

Table 1 gives the results for marshalling objects of the Dummy class:

public class Dummy implements Serializable {

Simple simple1;

Simple simple2;

int id;

}

public class Simple implements Serializable {

int id;

}

The Jumbo OOS column does not include the run-time compilation cost, but
Jumbo+compilation does. We have shown timings for marshalling 1000 to 20000
objects. The “Bytes written” column gives the size of the data written to the
output stream. Jumbo OOS is at least 12 times faster than Kaffe OOS, when
run-time generation cost is not included.4

Table 2. Performance table for linked-lists of Dummy objects. Each list has fifty nodes.

Number Bytes Jumbo Jumbo + Kaffe Kaffe Kaffe

of lists written OOS compilation OOS Jumbo Jumbo+comp.

10 19363 6.7 48.9 145.0 21.42 2.96

50 84479 45.1 71.9 723.9 16.04 10.06

100 186877 107.7 131.3 1496.6 13.88 11.39

150 246075 115.8 135.4 2145.9 18.52 15.84

200 352161 144.6 174.4 2896.0 20.02 16.60

In our next test, we marshal linked-lists of Dummy nodes (same as Node class,
but with data of type Dummy). Each linked list has 50 nodes. Jumbo OOS is up
to 20 times faster than Kaffe OOS in this test. (See Table 2.)

Inheritance affects the cost of marshalling because it requires that we test
the type of each field and not simply call the marshaller for the declared type of
the field5. In the previous benchmarks, we did not marshal any objects whose
classes had subclasses; thus, the actual type of every marshalled object was the
4 The crossover points we give were determined by direct observation, not by interpo-

lation from the presented data. We have omitted the timings for smaller data sets
for lack of space.

5 Remember that to eliminate some hashtable lookups, we associate a one-element
cache with each field. See Section 4.

Optimizing Marshalling by RTPG 231

same as its declared type, and, in particular, the one-element cache always held
the right class. For the next benchmark (Table 3), we marshal Dummy objects,
but allow the fields of type Simple to contain either a Simple or a SimpleChild
object, determined randomly. The SimpleChild class is shown below.

public class SimpleChild extends Simple{

int otherId;

}

Table 3. Performance table for Dummy objects, allowing the fields to be either Simple

or SimpleChild. Crossover point is 280 objects.

Object Count Bytes written Jumbo OOS Jumbo + comp. Kaffe OOS Kaffe / Jumbo Kaffe / Jumbo+comp.

1000 30136 9.9 55.3 154.7 15.55 2.80

10000 334320 136.3 167.2 1637.0 12.0 9.79

20000 641548 285.1 303.9 3237.3 11.35 10.65

5.2 Non-homogeneous Data

Data commonly consist of many objects of a variety of classes. This has a sig-
nificant effect on the performance of our code because it implies a lot more
classes being generated and therefore a lot more program generation time. In
this section we examine the behaviour of Jumbo OOS on such data.

Table 4. Performance table for heterogeneous data. The objects come from a total of
66 classes.

Object Count Bytes written Jumbo OOS Jumbo + comp. Kaffe OOS Kaffe / Jumbo Kaffe / Jumbo+comp.

13210 128140 76.5 1504.1 1830.0 23.92 1.22

39630 372578 239.5 1690.9 5486.0 22.9 3.24

66050 617016 368.2 1837.9 9248.0 25.11 5.03

92470 861454 524.3 1899.5 12789.2 24.39 6.73

118890 1105892 657.4 2065.5 16499.7 25.09 7.99

For this purpose, we serialize Code objects. Code is the type of partially-
compiled program fragments, as described earlier. In total, the Code objects
indirectly touch 13210 objects, from 66 classes; 127 kilobytes were written to
the stream. The timings are given in Table 4. We start by marshalling just one
Code object, and increment by two on each row (i.e. marshal the object two
more times than on the previous row). In this test, Jumbo OOS is faster than
Kaffe OOS by approximately 25 times, when the cost of program generation is
not counted. However, when code generation time is counted, the improvement
relative to the Kaffe OOS goes down to about 1.22 in the worst case. The speed-
up will approach 25 as the size of the data set increases, but it only achieves an
eight-fold increase on the largest data set we tried.

232 B. Aktemur et al.

The generated code shows much less speed-up than for the homogeneous
case. Recall that the crossover point when marshalling Dummy objects was about
250 objects; now it is about 10500 objects. The problem, of course, is that we
are generating code for many classes that have a small number of instances. We
discuss this issue in the next section.

6 Just-in-time Program Generation

When marshalling heterogeneous data like Code, many classes are represented
by only a few objects, and the cost of generating the marshalling code for those
classes is not repaid. Our analysis of the test with heterogeneous data showed
that only 14 out of the 66 classes allocated more than 250 objects. (Recall that,
for Dummy objects, the crossover point was 250 objects.) Clearly, the remaining
52 classes will create a significant drag on the overall marshalling process.

To test the hypothesis that avoiding code generation for classes with few
objects will yield better results, we ran a set of tests using varying threshold
values: For each threshhold value, we generated code only for those classes which
produce at least that many objects in the benchmark. This depends upon our
having counted the number of objects for each class beforehand, so this does
not represent a viable implementation strategy; we are only attempting to prove
our hypothesis. We see (Table 5) that at a threshold value of 100, the generated
code produces nearly a four times speedup over Kaffe OOS (compared to 1.22
fold speedup when all marshallers are generated). Note that, even at the optimal
threshold value of 100, the speedup we can obtain in this situation is much less
than we did with the simpler, homogeneous collections, because (1) the cost of
run-time compilation is great due to the large number of classes and (2) many
objects are marshalled by non-generated code.

Table 5. Performance comparison when threshold value is used. Marshallers are gen-
erated only for classes known to have more than threshold number of instances.

Threshold Object Count Jumbo + compilation Kaffe OOS Kaffe / Jumbo+compilation

20 13210 659.5 1861.2 2.82

60 13210 527.6 1871.3 3.54

100 13210 482.9 1872.0 3.87

140 13210 515.6 1869.9 3.62

180 13210 551.7 1855.4 3.36

300 13210 592.8 1871.0 3.15

400 13210 706.5 1868.1 2.64

In this experiment, the number of instances of each class was known prior
to marshalling. What shall we do when we don’t know that? The situation is
similar to JIT compilation [15]. HotSpot keeps track of method calls and when
a method is called a certain number of times, it is optimized.

Optimizing Marshalling by RTPG 233

Following this idea, our second version of the marshaller counts the number
of objects marshalled. Once it has reached the threshold value, it generates
specialized code and uses that for subsequent objects of the class. Note that
this version will be slower than the previous one, because all objects marshalled
prior to reaching the threshold value are marshalled by non-generated code. The
results are shown in table 6. Here, we don’t reach the previous speedup factor,
but instead reach 3.16 (again with a threshold value of 100).

Table 6. Marshalling 13210 objects, with different threshold values

Threshold Object Count Jumbo + compilation Kaffe OOS Kaffe / Jumbo+compilation

20 13210 920.3 1851.6 2.01

60 13210 669.5 1851.0 2.76

100 13210 585.6 1854.4 3.16

140 13210 594.8 1847.9 3.1

180 13210 606.9 1832.7 3.01

300 13210 629.8 1851.0 2.93

400 13210 732.5 1852.9 2.52

Our final version of the marshaller uses the “just-in-time” idea with a thresh-
old value of 100. We ask our last question: Does this version extract a significant
penalty when marshalling homogeneous data? Table 7 shows the timings for this
version of the marshaller, when marshalling collections of Dummy objects. This
table is comparable to Table 1, and it shows that the JIT approach has almost
no effect on performance for large homogeneous data sets.

Table 7. Performance when marshalling Dummy objects with threshold value of 100

Object Count Bytes written Jumbo + compilation Kaffe OOS Kaffe / Jumbo+compilation

1000 30000 37.0 151.7 4.09

10000 300000 149.9 1592.3 10.61

20000 600000 289.7 3167.4 10.93

It should be noted that if we have the opportunity to do off-line program
generation, using specialized marshallers is the obvious decision, because we
wouldn’t have the run-time compilation cost. In this case, we would generate the
specialized marshallers once before run-time and then at run-time we’d get the
benefit of using them. Unfortunately off-line compilation is not always possible.

7 Sun’s ObjectOutputStream

The aim of this paper is to show that RTPG using Jumbo is an easy and effective
way to achieve higher performance. In this, we have reached the end of our

234 B. Aktemur et al.

exposition. However, there are some loose ends to tie up. In particular, the
reader may wonder how our code stacks up against the marshalling code that is
delivered with HotSpot, which, as we have mentioned, uses unsafe, native code.
(To be more specific, it uses the sun.misc.Unsafe class to access arbitrary
memory addresses.) Another natural question is whether the kind of program
generation we have done can be applied to the HotSpot code.

Table 8. Performance of Jumbo OOS vs. Sun OOS. Marshalling Dummy objects, pro-
gram generation cost included, threshold value 100, incorporating lightweight hashtable

Object Count Bytes written Jumbo + compilation Sun OOS Jumbo+compilation / Sun

1000 30000 45.1 11.1 4.06

10000 300000 123.3 85.1 1.44

20000 600000 201.5 187.5 1.07

In table 8, we show the result of a test marshalling Dummy objects again,
comparing Jumbo OOS (with threshold value of 100) to Sun OOS. To be fair to
Jumbo OOS, we note that, in addition to using native methods, Sun OOS uses
a custom, lightweight hashtable implementation, which is considerably more ef-
ficient than the standard implementation in this context. We incorporated this
hashtable implementation into our code, too. In this test, Jumbo OOS is only
7% slower than Sun OOS on the largest data set, with 20,000 objects.

So, to summarize, while remaining entirely in the realm of verifiable Java
code, we have obtained an implementation that can marshal large data sets
nearly as fast as Sun’s implementation.

Finally, we have experimented with applying RTPG to Sun OOS. We im-
plemented Jumbo OOS and ProgGen using the same principles we discussed in
Section 2 and 4, but based on Sun OOS instead of Kaffe OOS. (Although Sun
OOS achieves its speed from using native methods in critical places, much of it is
written in Java.) Comparing this version of Jumbo OOS to Sun OOS, we achieve
speedups as high as 30% when run-time compilation cost is excluded. However,
the crossover point is around 12,000 objects for homogeneous data sets.

8 Prior Work

Most work on optimizing marshalling is not directly comparable to ours in that
the goal is not to optimize the existing, generic marshaller, but to create more
efficient marshallers for special cases. For example, Nester et al. [1] require that
classes that are to be marshalled must provide their own writeObject method,
and also depart from the Sun serialization format in other ways which are valid
in their environment, but not in general.

Manta [7] and Ibis [9] both use run-time code generation to produce special-
ized marshallers at run time. Their methods are different from ours: In Manta,

Optimizing Marshalling by RTPG 235

a compiler is invoked at run time (again requiring that all computers have a
specified set-up in order to use their system); in Ibis, a specially built program
generator producing JVM code has been written just to generate serializers.

Run-time program generation is the topic of many papers. The system closest
to Jumbo is DynJava [16]. DynJava has certain restrictions, such as disallowing
run-time generation of class names, which suggest that the translation from
Kaffe OOS to DynJava might not be as straightforward as the translation to
Jumbo; these restrictions are fundamental, as DynJava is type-safe. Nonetheless,
we assume that, in general, DynJava could be used for marshalling much as we
have done. Serialization is used as an example in two papers on RTPG systems
that we know of. Neverov and Roe give the definition of a multi-stage language
called Metaphor [17], in which, in principle, serialization code can be generated
in a type-safe manner. However, they do not tackle the entire Java serialization
specification, and it is not clear whether their techniques could scale to this case.
Consel et al. [18] discuss marshalling for C, using the C-based Tempo system.

9 Conclusions

We have shown that marshalling code in Java can be highly optimized by gen-
erating marshallers at run-time. The speedup we obtained was an order of mag-
nitude when compared to the marshalling code of Kaffe. For some data sets we
nearly reached the speed of Sun’s object serializer, which extensively uses unsafe
native code, while staying entirely in the realm of verifiable byte code.

We applied a heuristic approach similar to just-in-time compilation to lower
the break-even point for heterogeneous data sets. Another method which can
further decrease runtime compilation cost is to optimize program generators
statically. This approach is discussed in [19].

We have also shown that the transformation from the classical code to pro-
gram generating code using Jumbo is straightforward. It does not require skills
beyond ordinary programming. We conclude that considering this fact and the
high speedup we obtained, optimizing marshalling is a potentially useful appli-
cation of run-time program generation.

Jumbo itself, and all the code used in the experiments for this paper, can be
obtained at loome.cs.uiuc.edu/Jumbo/index.php.

Acknowledgements

We would like to thank the (anonymous) reviewers, whose detailed comments
on this paper were extremely valuable.

References

1. Nester, C., Philippsen, M., Haumacher, B.: A more efficient RMI for Java. In:
Proc. of the ACM 1999 Java Grande, New York, NY, USA, ACM Press (1999)
152–159

loome.cs.uiuc.edu/Jumbo/index.php

236 B. Aktemur et al.

2. Kamin, S., Clausen, L., Jarvis, A.: Jumbo: Run-time Code Generation for Java
and its Applications. In: Proc. of the Intl. Symposium on Code Generation and
Optimization (CGO ’03), IEEE Computer Society (2003) 48–56

3. Clausen, L.: Optimizations In Distributed Run-time Compilation. PhD thesis,
University of Illinois at Urbana-Champaign (2004)

4. Kamin, S., Callahan, M., Clausen, L.: Lightweight and Generative Components-2:
Binary-Level Components. In: Intl. Workshop on Semantics, Applications, and
Implementation of Program Generation (SAIG ’00), Springer-Verlag (2000) 28–50

5. Kamin, S.: Routine Run-time Code Generation. In: Companion of the 18th ACM
SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA ’03), ACM Press (2003) 208–220

6. Kamin, S.: Program Generation Considered Easy. In: Proc. of the 2004 ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-based Program Ma-
nipulation (PEPM ’04), ACM Press (2004) 68–79

7. Maassen, J., van Nieuwpoort, R., Veldema, R., Bal, H.E., Kielmann, T., Jacobs, C.,
Hofman, R.: Efficient Java RMI for Parallel Programming. ACM Trans. Program.
Lang. Syst. 23 (2001) 747–775

8. Veldema, R., Philippsen, M.: Compiler Optimized Remote Method Invocation. In:
IEEE International Conference on Cluster Computing (CLUSTER’03). (2003) 127

9. van Nieuwpoort, R.V., Maassen, J., Wrzesinska, G., Hofman, R.F.H., Jacobs,
C.J.H., Kielmann, T., Bal, H.E.: Ibis: A Flexible and Efficient Java-based Grid Pro-
gramming Environment. Concurrency and Computation: Practice and Experience
17 (2005) 1079–1107

10. Kaffe JVM. (http://www.kaffe.org)
11. Java Object Serialization Specification. http://java.sun.com/j2se/1.4.2

/docs/guide/serialization/spec/serialTOC.html

12. Taha, W., Sheard, T.: MetaML and Multi-stage Programming with Explicit An-
notations. Theoretical Computer Science 248 (2000) 211–242

13. Java 1.4.2 API Documentation. (http://java.sun.com/j2se/1.4.2/docs/api/)
14. IBM-JVM. (http://www-106.ibm.com/developerworks/java/jdk/)
15. Advanced Programming for the Java 2 Platform: Ch. 8; Performance Fea-

tures, Tools. http://java.sun.com/developer/onlineTraining/Programming/

JDCBook/perf2.html

16. Oiwa, Y., Masuhara, H., Yonezawa, A.: DynJava: Type Safe Dynamic Code Gen-
eration in Java. In: The 3rd JSSST Workshop on Programming and Programming
Languages. (2001)

17. Neverov, G., Roe, P.: Metaphor: A Multi-stage, Object-Oriented Programming
Language. In: Proc. of the Third Intl. Conf. on Generative Programming and
Component Engineering (GPCE ’04). (Lecture Notes in Computer Science)

18. Consel, C., Lawall, J.L., Meur, A.F.L.: A Tour of Tempo: A Program Specializer
for the C Language. Sci. Comput. Program. 52 (2004) 341–370

19. Kamin, S., Aktemur, T.B., Morton, P.: Source-level optimization of run-time
program generators. In: Generative Programming and Component Engineering
(GPCE ’05). (2005)

http://www.kaffe.org
http://java.sun.com/j2se/1.4.2/docs/guide/serialization/spec/serialTOC.html
http://java.sun.com/j2se/1.4.2/docs/guide/serialization/spec/serialTOC.html
http://java.sun.com/j2se/1.4.2/docs/api/
http://www-106.ibm.com/developerworks/java/jdk/
http://java.sun.com/developer/onlineTraining/Programming/JDCBook/perf2.html
http://java.sun.com/developer/onlineTraining/Programming/JDCBook/perf2.html

	Introduction
	Marshalling in Java
	Jumbo
	Jumbo Code for Marshalling
	Performance
	Homogeneous and Near-Homogeneous Data
	Non-homogeneous Data

	Just-in-time Program Generation
	Sun's ObjectOutputStream
	Prior Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

