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Abstract—Test oracles differentiate between the correct and
incorrect system behavior. Automation of test oracles for visual
output systems mainly involves image comparison, where a
snapshot of the output is compared with respect to a refer-
ence image. Hereby, the captured snapshot can be subject to
variations such as scaling and shifting. These variations lead
to incorrect evaluations. Existing approaches employ computer
vision techniques to address a specific set of variations. We
introduce ADVISOR, an adjustable framework for test oracle
automation of visual output systems. It allows the use of a flexible
combination and configuration of computer vision techniques. We
evaluated a set of valid configurations with a benchmark dataset
collected during the tests of commercial Digital TV systems. Some
of these configurations achieved up to 3% better overall accuracy
with respect to state-of-the-art tools. Further, we observed that
there is no configuration that reaches the best accuracy for all
types of image variations. We also empirically investigated the
impact of significant parameters. One of them is a threshold
regarding image matching score that determines the final verdict.
This parameter is automatically tuned by offline training. We
evaluated runtime performance as well. Results showed that
differences among the ADVISOR configurations and state-of-the-
art tools are in the order of seconds per image comparison.

Index Terms—test automation, test oracle, black-box testing,
computer vision, adjustable framework

I. INTRODUCTION

Automation of testing activities is a commonly preferred
approach for reducing the costs of testing [1], [2], which can
account for at least half of the overall development costs [3].
One of these activities is performed by a test oracle [4], which
differentiates between the correct and incorrect system behav-
ior. An analysis of the literature [5] reveals that test oracle
automation has received significantly less attention compared
to the automation of other testing activities. However, it is
a necessity for achieving overall test automation. Otherwise,
one has to check the system behavior for all test cases
manually even if these test cases are generated and executed
automatically.

Test oracle automation becomes a straightforward compari-
son task if formal specifications regarding the intended system
behavior exist [6]. However, such specifications are not always
available and a trivial comparison is not usually effective,
especially when the expected output takes complex forms such
as an image [7]. Accordingly, test oracle implementations for
visual output systems tend to be fragile and they lead to many
false positives [8], where an error is reported although an error

does not exist, as well as false negatives, where an error is not
reported even though exists.

A common implementation of test oracles for visual output
systems involves image comparison, where a snapshot of the
observed output during test is compared with respect to a pre-
viously taken reference image. Hereby, the captured snapshot
can be subject to several variations due to for instance, scaling,
shifting, rotation or color saturation, depending on the method
used for capturing the image. These variations lead to false
positive evaluations, necessitating technical staff to manually
examine the cases and thus incurring labor costs. There are
many techniques available in the computer vision domain
to address such issues and perform an effective comparison
between images. Existing approaches in the literature [9], [10]
employ a combination of these techniques to address a specific
set of variations for a dedicated test oracle implementation.
However, some of these techniques might not be the most
effective one for addressing a particular variation, while some
other techniques might not be necessary in the absence of
a particular variation and as such, introduce an unnecessary
performance overhead. They are also liable to increase false
negatives if not tuned properly while attempting to decrease
false positives, causing important bugs to be missed. Hence,
a generically applicable, efficient and effective test oracle
implementation for visual output systems must be configurable
to employ and tune the most effective techniques from the
computer vision domain based on the application context and
the test setup.

In this paper, we introduce ADVISOR, an adjustable frame-
work for test oracle automation of visual output systems.
ADVISOR allows the use of a flexible combination and con-
figuration of alternative techniques from the computer vision
domain. Hereby, we did not develop a novel image comparison
algorithm from scratch. Hence, we do not introduce theo-
retical contributions for the image processing and computer
vision domains. Our main contribution is the analysis of
these domains and compiling the state-of-the-art techniques
for leveraging test oracle automation. We reviewed these
techniques in terms of their pros and cons for applicability
and composability in the context of software/system testing.
Then, we implemented them as part of our framework. To
the best of our knowledge, there does not exist such a generic
framework for test oracle automation of visual output systems.

We evaluated several instances of our framework with
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respect to state-of-the-art tools. We used a benchmark dataset,
which includes 1000 image pairs that are collected during the
tests of real Digital TV systems [11]. These image pairs are
manually labeled to distinguish those pairs that are associated
with failures. Although more than half of the image pairs
are not actually associated with failures, they are subject to
variations that can result in failing tests (i.e., false positives).
These image pairs are further categorized with respect to 3
types of variations they involve: i) pixel shifting, ii) scaling,
and iii) color saturation. Each image pair that is not associated
with any failure, is subject to either one of these variation
types. Hence, we were not only able to evaluate the overall
accuracy of alternative test oracle implementations, but also
their accuracy for image pairs that are particularly subject to
these types of variations.

Results show that the accuracy of a test oracle can be
improved if the involved techniques are selected and fine-tuned
for the application context. Several instances of ADVISOR
achieved up to 3% better overall accuracy compared to the
state-of-the-art tools. These instances are obtained by com-
bining various techniques for image transformation and image
matching. A set of invalid combinations are not allowed by
the tool. We evaluated the remaining, feasible configurations in
our experiments. We observed that there is no configuration
that reaches the best accuracy for all the 3 types of image
variations. This observation proves the need for a configurable
framework. One should be able to (de)select techniques based
on the test setup and the frequency of image variation types
taking place in the captured images. In our experiments, we
used the default values for almost all the parameters for
each of the utilized techniques. These are the parameters
that do not significantly impact the results. However, we
empirically investigated the effects of the other parameters
in more detail. One of these parameters is the threshold of
image matching score that determines the pass/fail verdict of
the oracle. ADVISOR sets this parameter automatically during
a preliminary (offline) training phase.

There might exist a trade-off between accuracy and runtime
performance if the overall test process is not fully automated.
However, we observed that the most accurate tool or configu-
ration is not necessarily the slowest one. Also, results showed
that differences among the evaluated tools and configurations
are in the order of seconds per image comparison.

The remainder of this paper is organized as follows. In
the following section, we summarize the related studies. In
Section III, we present a domain analysis of the relevant
techniques borrowed from the computer vision domain and de-
pict the solution space, which provides a common ground for
creating alternative test oracle implementations. In Section IV,
we explain the implementation of ADVISOR. In Section V, we
present an empirical evaluation of our framework, where we
compare a set of its instances with respect to the state-of-the-
art tools. Finally, in Section VI, we provide our conclusions.

II. RELATED WORK

Systems that provide graphical user interfaces (GUI) can
be considered as an important category of visual output
systems. Hence, GUI testing techniques are related to our
work. These techniques have been investigated for more than
two decades [12] at the time of writing this paper. The majority
of these techniques focus on the modeling and verification of
functional behavior rather than GUI appearance and they are
not purely black-box testing techniques. They run on the same
machine as the system under test [13], [14] and they assume
that GUI components (e.g., buttons, labels) or a document
object model (e.g., as in HTML) for Web applications [15],
[16] are available. However, this assumption may not hold for
all types of systems. For instance, testers do not usually have
any access to the internal events during the testing of em-
bedded systems such as those from the consumer electronics
domain. They do not have any access to the GUI components
either. Such components and a static structure regarding their
organization are not externally visible for some systems like
Digital TVs. Hence, the visual output that is observed on the
screen has to be validated in a black-box fashion.

Automated test oracles that employ image comparisons have
been proposed for pure black-box testing [17]. This approach
has become popular among researchers in the last few years
in particular [8], [10], [18]–[21]. Many of these recent studies
focus on Web applications [18]–[21]. For example, Selay et al.
proposed the use of image comparisons to detect layout fail-
ures in these applications [18], [19]. The proposed technique
utilizes previously observed failure patterns and compares a
selected set of regions in the compared images. However, it
assumes that these images are not subject to any variations
due to, for instance, scaling or color saturation. Therefore,
any difference detected among the selected regions is deemed
as a failure. Our framework can be configured to take such
variations into account, if there are any expected. Mahajan and
Halfond also aimed at detection of presentation failures in Web
applications [20], [21]. Their first study [20] employs pixel-
to-pixel comparison and ignores variations among images
as well. Later, they propose the use of perceptual image
differencing [22] to compare images [21]. This technique
takes a particular set of variations into account to avoid
spatial and luminance sensitivity in comparisons. Mahajan and
Halfond used an external tool, pdiff 1, for implementing their
approach. Unlike our generic framework, this tool considers
spatial and luminance sensitivity only. It was also shown to be
substantially inefficient in terms of running time with respect
to other recent test oracle implementations [10], [11]

Sub-image searching was used in a visual testing tool
called Sikuli [23], where test scripts and assertions can be
specified via a set of keywords and images of GUI elements.
These images are searched within a Web page, and assertions
can lead to failure based on their (non-)existence. This tool,
however, facilitates the implementation of specific assertions
only and it also ignores variations among images that do not
actually indicate a failure.

1http://pdiff.sourceforge.net

http://pdiff.sourceforge.net
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Image comparison has been used for automating test oracles
in other application domains as well. For instance, such
an approach was used in automative industry [24]. Hereby,
snapshots of the interactive display that is presented to drivers
are taken during tests. These snapshots are compared with
respect to a specification that defines the layout of the display
as well as the set of icons and textual information expected
to be displayed. The comparison involves a set of specialized
techniques; i) pixel-to-pixel comparison for icons, ii) optical
character recognition for textual information, and iii) custom
visual feature extraction for complex display items such as the
level of a gauge. The tool was employed in a simulation envi-
ronment during model-in-the-loop tests. As a result, captured
images are not subject to any variations in that context. In this
study, we aimed at providing a generic solution rather than a
tool dedicated for a particular context and application domain.

Automated test oracles can reach to a verdict based on a
similarity measure calculated with respect to the compared
images [8], [25]. The similarity measurement is defined based
on a set of keypoints extracted from these images. These
keypoints may relate to the color, texture, and shape of objects.
This approach has been applied mainly for desktop applica-
tions and Web applications. Our framework incorporates a
variety of keypoint extraction and comparison metrics rather
than relying on a particular similarity measure only.

Efficiency and reusability of automated test oracles have
been recently evaluated for android devices [9]. In the experi-
mental setup, snapshots of the mobile device screen are taken
via an external camera. These snapshots are compared with
respect to reference images. 3 different kinds of image com-
parison techniques are implemented/used: i) SURF (Speeded
up robust features), ii) Histogram matching, and iii) Template
matching. We compared the accuracy of this tool with respect
to several instances of our framework (Section V).

We previously implemented an automated test oracle [10]
called VISOR for testing viusal output systems. This tool
employs an image processing pipeline for comparing images.
It includes a series of image filters that align the compared
images and remove noise to eliminate differences caused by
scaling and translation. Hence, VISOR provides an efficient
but a dedicated solution for addressing scaling and translation
variations only. In this work, we introduce a configurable
framework that can employ a combination of available tech-
niques in the computer vision domain tuned to address any set
of variations. We evaluated several instances of this framework
by comparing its accuracy with respect to VISOR as well as
other tools previously employed/implemented for test oracle
automation based on image comparison.

There exist a recent survey [5] conducted for analyzing
and categorizing test oracles proposed so far. Our framework
supports the development of so-called specified test oracles
according to the proposed classification. Hereby, the evaluated
image is compared with respect to a specification, which is
also provided in the form of an image, called the reference
image. Hence, our approach adopts so-called visual assertions
according to a previously made classification of test oracles
used for GUI testing [26].

III. DOMAIN ANALYSIS

We performed an analysis summarizing the Computer Vi-
sion based methodologies related to image comparison. Do-
main analysis is an essential step in software product line
engineering [27] to identify commonalities and variations
among the products of a product family. The commonalities
and variations are represented by means of a so-called feature
model [28]. A feature diagram depicts this model, which is
a compact, visual representation of all the products in the
product family.

We created a feature model for ADVISOR as a result of our
domain analysis. ADVISOR represents a family of test oracle
implementations based on image comparison. Each implemen-
tation employs a set of techniques to perform the comparison.
The feature model defines the available techniques that can
be employed as well as the constraints among them (e.g., two
techniques must be used together or one technique cannot be
used with some other technique). Therefore, it also determines
the possible set of test oracle implementations that can be
instantiated with ADVISOR.

The feature diagram of ADVISOR is depicted in Figure 1.
This diagram describes the solution space. Common features
among all the test oracle implementations are modeled as
mandatory features. Possible variations among these imple-
mentations are captured by the set of optional features and the
hierarchical structure. Exactly one feature out of the ones that
are bound with the Alternative connection must be chosen.
At least one or more features must be chosen if they are
connected to their parent with the Or connection. The selection
of an optional or alternative feature can require the inclusion
or exclusion of another feature. Hence, a feature diagram is
provided together with a set of constraints as listed at the
bottom of Figure 1. All the constrains must be satisfied by the
overall selection of features. Therefore, they form a predicate
altogether with a logical AND operator (i.e., ∧) among them.
All the constraints listed here are of type inclusion. That is,
selecting an optional feature requires the selection of another
optional feature that it depends on. This relation is expressed
with the ⇒ symbol. For instance, employing transformation
makes it necessary to employ descriptor extractor and this in
turn, makes it necessary to employ keypoint detector. Since
these three features are always used together, we defined an
inclusion constraint between each pair of these features in both
directions.

We can see in Figure 1 that a test oracle involves four main
features each of which can be implemented using a set of
alternative or complementary algorithms. Image matching is a
mandatory step for comparing the captured and the reference
images with each other. The remaining three features are
optional steps that are used for transforming images before
the comparison is performed. In principle, only the image
matching feature is obligatory to implement a test oracle based
on image comparison. If one knew that the captured images are
by no means subject to any variation at all (even if this would
be rarely the case), then it would be unnecessary to employ any
transformation process. Images can be directly compared with
each other via pixel matching, for instance. Features other than
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Fig. 1: Feature diagram of ADVISOR.

image matching are left optional not to restrict the framework
unnecessarily and keep it as generically applicable as possible.

A captured image may be subject to several changes such
as translation, rotation, scaling; depending on the capturing
method. Images modified by such transformations are needed
to be transformed back into the same planar surface with
corresponding reference images, making them aligned before
comparison. To facilitate such a transformation, keypoints
of an image is extracted and utilized. Hence, an image is
described as a combination of features2, namely keypoints.
Each keypoint has a location in the image. A keypoint’s
surroundings is also described with a so-called keypoint de-
scriptor. The descriptor is designed in such a way that it is
resilient to different image transformations such as illumina-
tion change, translation, rotation, scaling, etc. Locations of
important keypoints are detected by using keypoint detector
which is also called a feature detector. Surroundings of the
extracted keypoint locations are described by using descriptor
extractor algorithms. Finally, an alignment transformation is

2We need to clarify the two different uses of the term “feature” in this
paper. Firstly, this term is used for defining a functionality or capability of a
product in software product line engineering. Secondly, the same term refers to
a measurable property or characteristic of images in computer vision domain.
We adopt the term keypoint instead of this second use to prevent confusion
in the rest of the paper.

computed based on the keypoint locations and descriptors. The
image is then transformed by using transformation algorithms
for aligning it with the reference image.

We discuss algorithms for keypoint detection, descriptor ex-
traction, image transformation and image matching in further
detail in the following subsections.

A. Keypoint Detection and Descriptor Extraction

An image may be represented by local keypoints and global
keypoints [29]. Local keypoints include corners, edges and
lines that take place in images [30], whereas global keypoints
include contour representations, shape descriptors, and tex-
ture [31]. ADVISOR involves many keypoint detector alterna-
tives including FAST [32], Star [33], SIFT [34], SURF [35],
ORB [36], BRIEF [37], BRISK [38] and SimpleBlob that find
local keypoints of an image. Implementations are available
as part of the OpenCV library3. Note that some of the
above algorithms support both keypoint detection and keypoint
description whereas others are only capable of detection or
description.

A descriptor acts like a fingerprint that differentiates a key-
point’s surroundings from others. It is represented as a vector,
which contains information on the surrounding (neighborhood)
pixels of a specific location in an image. Different descriptors
use different window sizes and techniques for representing
the neighborhood. Nevertheless, all of them are designed for
being robust against different possible transformations that an
image can undergo. Some of these transformations include
translation, scaling, rotation, illumination changes, compres-
sion artifacts. This means that even if an image is under severe
transformation, an important keypoint in an image can still
be detected and its surroundings can still be described with
a relatively similar description vector. Since descriptors con-
stitute invariant representations of an image patch regardless
of transformations, they are commonly used for supporting
the image alignment and matching process. ADVISOR uses
BRIEF [37], BRISK [38], FREAK [39], ORB [36], SIFT [34]
and SURF [35] as descriptor extractors.

We briefly review the keypoint detection and descriptor
extraction techniques employed in ADVISOR in the following
subsection.

1) FAST: Features from Accelerated Segment Test
(FAST) [32] is a keypoint detector that is developed for
real-time applications. FAST uses machine learning for high
speed corner detection. A so-called segment test criterion
selects a candidate circular region with sixteen pixels around
a candidate corner. Candidate corner is categorized based
on its relative intensity with respect to a circular region of
adjacent pixels around it by a predefined threshold level.
There are three different categories, namely; darker, similar
and brighter. For instance, a candidate corner is classified
as darker if the difference of its intensity level is greater
than all the pixels in the circular region and the amount of
this difference is larger than the threshold value. A decision
tree [40] with an entropy optimizer is employed to determine
if a pixel is a corner or not. The main strength of the FAST

3http://opencv.org

http://opencv.org
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algorithm is its speed. However, it is difficult to determine
an optimal threshold level, especially when the image is
subject to a high level of noise. Moreover, it is also not scale
invariant. As a result, it may not be effective for noisy images
that are subject to scaling.

2) Star: Star keypoint detector is derived from the Center
Surrounded Extrema (CenSurE) detector [33]. The aim of this
keypoint detector is to find extrema in different scales and
locations. It uses bi-level filters that multiply intensity values
of image pixels with 1 or -1 to reduce the computational
load. These filters take the form of circles, octagons, hexagons
and boxes. Filter performance depends on its form, which
is subject to a trade-off. For instance, octagon filter has a
better accuracy in detecting keypoints, whereas box filter has
better computational speed. Non-maxima suppression method
is used for various scales to find candidate local keypoints.
Detected keypoints are further filtered by a method such as
Harris corner detector. The remaining points are deemed as
the local keypoints by Star keypoint detector.

3) SIFT: Scale Invariant Feature Transform (SIFT) [41] is
used for both keypoint detection and descriptor extraction.
Scale space theory [42] is employed for keypoint detection.
This approach finds keypoints by utilizing a Gaussian pyra-
mid. Algorithm works in various scales of the same image
starting from a lower resolution version and going step by
step to a higher resolution representation. Local extrema is
detected by comparing a sample point with its neighbors in its
below and above resolution scales. After candidate keypoints
are found, accurate localization of keypoints are computed.
Finally, neighborhood pixels are assigned to a histogram’s bin
by quantizing the underlying edge’s orientation. This method
is called Histograms of Oriented Gradients [43] (HOG).
The histogram bin with the maximum value is chosen as a
normalization point. Histogram is rotated in such a manner
that the bin with the maximum value always stays at the
leftmost bin. This provides rotational invariance. Histograms
are extracted around the keypoint location in a 4x4 grid created
in a 16x16 pixels patch around the keypoint. Each histogram
is represented by 8 bins. 16 histograms are extracted. Each
bin is represented as an 8 bit number. This gives a 128 byte
description vector that describes the 16x16 patch around a
keypoint. SIFT keypoints are computationally expensive to
obtain but they lead to better accuracy compared to other
keypoint detection methods.

4) SURF: Speeded Up Robust Features (SURF) [35] is
mainly based on SIFT. Keypoint detector part of this algorithm
is based on Hessian matrix which credits integral images to
decrease computational complexity and as such improve the
performance. Hereby, the determinant of the Hessian is called
as Fast-Hessian detector and it is employed to find location
and scale. The Gaussian distribution is approximated by using
second-order Gaussian derivatives (Laplacian of Gaussians),
which are evaluated by integral images. This approach leads
to a faster computation. In addition, the same integral images
are utilized for calculating box filters of any size in parallel
without creating different resolution representations of the
same image. SURF keypoint detectors are faster that SIFT
but the descriptors are slightly less performant representations

of the neighborhood when compared to SIFT.
5) BRIEF: Binary Robust Independent Elementary Fea-

tures (BRIEF) [37] is used for extracting descriptors in the
form of bit vectors. The trade-off between the speed and
accuracy can be controlled via the length of this vector.
Because of its sensitivity to noise, a preliminary Gaussian
smoothing with 9x9 window size is applied for erasing high
frequency information from the image. A preliminary pixel
pair list to be compared is created and hardcoded in the
algorithm. This may be achieved by different methods such as
uniform sampling, Gaussian sampling, or random sampling.
The bit vector is formed by comparing the intensity levels
of an interest point and its predefined pair. If the first pixel’s
intensity is greater than its pair’s intensity it is encoded as 1,
or zero otherwise. In this study, the dimension of the bit vector
is selected as either of 128, 256 and 512.

6) ORB: Oriented FAST and Rotated BRIEF (ORB) [36]
is a combination of FAST keypoint detector and BRIEF
descriptor extractor together with some enhancements. The
idea is to sustain performance of SIFT for low-powered
devices by using FAST keypoint detector, while using BRIEF
descriptor extractor enhanced for rotation invariance. This is
done by using a technique for measuring corner properties [44]
which extracts orientation from corner intensity. For descriptor
extraction, a more efficient method called steer BRIEF is
introduced which creates a lookup table from angles quantized
by 12 degrees. Whenever an angle from lookup table has a
coherent result, rotation set regarding to the angle is selected
as the dominant orientation.

ORB carries characteristics of both FAST keypoint detector
and BRIEF descriptor extractor which means that computa-
tional load is extremely low.

7) BRISK: Binary Robust Invariant Scalable Keypoints
(BRISK) [38] aims to find keypoints repeatedly in every
viewpoint. Keypoints are fast computed by finding maxima
in scale space with the help of FAST. Descriptor of BRISK
is constructed in binary form. This is achieved by employing
intensity comparison tests that is proposed in BRIEF [37].
However, as an advancement, the pattern is ensured to be
equidistant on concentric circles. Gaussian smoothing is ap-
plied to overcome aliasing effects in the pattern. BRISK’s de-
tector and descriptor are both fast methods making it available
in real-time and low-power platforms.

8) SimpleBlob: A conventional way of segmenting an im-
age is binarizing it using a threshold and finding connected
regions in the binarized image. The connected regions are
called blobs. In order to binarize an image SimpleBlob as-
sumes that the image is grayscale. Therefore, color information
is erased from the image as the first step of this method.
SimpleBlob applies several different binarization thresholds
and corresponding binary images. Blobs are detected, and
their centroids are used as keypoint locations. Blob’s various
properties such as average brightness, bounding box size, pixel
area, eccentricity are combined and used as a descriptor [45].

We used the SimpleBlob blob detection algorithm as it is
implemented as part of the OpenCV library.

9) FREAK: Fast Retina Keypoint (FREAK) [46] is a
method for descriptor extraction inspired from the human
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visual system. FREAK uses circular sampling regions whose
density diminishes through the center of attention. The design
approximates the human visual system. FREAK creates a
binary descriptor that is more suitable for computational
purposes.

Keypoint detectors and descriptors such as BRIEF, BRISK,
ORB, Star, SimpleBlob, FREAK and FAST are all suitable
to be used in real-time applications because of having low
computational load and complexity, whereas SURF and SIFT
algorithms are suitable to be used in more demanding appli-
cations, employing complex transformations.

B. Transformation

Transformation refers to the geometric transformation of all
pixels of an image. It is an essential operation for aligning
two images when the frame capturing method is subject to
translation or scaling effects. These effects might have been
induced by the use of different camera orientations or lens
distortions.

ADVISOR provides two alternatives for application of
global transformations: affine transformation and perspective
transformation.

Affine transformation covers translation, scaling, skewing,
and rotation of an image. It has six degrees of freedom,
meaning that we have six unknowns, and therefore need six
equations to solve the system. Therefore, at least three pairs
of 2D points selected in two different images to be aligned.
Affine transformation always keeps parallel lines parallel. This
approach is sufficient for aligning scaled, rotated and translated
images. An upgrade to affine transformation is perspective
transformation. Perspective transformation is an eight-degree-
of-freedom system. We must use at least four pairs of 2D
points selected in two different images to be aligned. Per-
spective transformation does not preserve parallelism, length
and angle but preserves straight lines. In the end, one can
only say that straight lines still stay straight. Perspective
transformation is the most general transformation and covers
all possible scenarios that an image can undergo. For most of
the scenarios in real test environments, using affine transform
based alignment is sufficient.

C. Image Matching

Image matching is mainly performed for finding same
images under different transformations. It is used as a similar-
ity measurement, which can be utilized for image retrieval,
classification, registration, motion tracking, etc. In the fol-
lowing subsections, we discuss the types of image matching
techniques we employ as part of ADVISOR.

1) Template Matching: Template matching is a type of
shape matching approach that finds a predefined area from one
image in another image. Hereby, the predefined area extracted
from one image slides over the other image in one pixel strides.
Histograms of the template and the corresponding underlying
patch are calculated and matched during this process. Various
histogram matching methods such as cross-correlation, sum
of absolute differences, sum of squared difference, correlation

coefficient and coarse-to-fine [47] [48] are employed. Cross-
correlation has better performance when pixel intensity levels
change in sub-regions of an image but its computational load
is dramatically high especially for big window sizes [49]. On
the other hand, sum of absolute differences method is faster but
its performance is worse when pixel intensity levels change in
sub-regions of an image. Correlation coefficient is more robust
to pixel intensity changes [50]. OpenCV library offers three of
these methods; cross-correlation, sum of squared differences
and correlation coefficient and their normalized versions as a
template matching method. We employed correlation coeffi-
cient method to find template matching score.

In ADVISOR, six different window sizes are used as the
template region for histogram extraction.

2) Histogram Matching: A histogram contains the number
of pixels of an image that suit to a specific criterion. In
this study, we use pixel intensity histograms applied to all
color channels separately. Representing images as histograms
relaxes the image template representation in such a manner
that locations of the pixels are not important anymore. The
only important feature turns out to be the intensity of a pixel.
Changing a pixel’s location wouldn’t change the histogram.
Hence, we don’t directly compare the images pixel by pixel but
compare the histograms extracted from them. This provides ro-
bustness to matching images under translation transformation.
Despite translational robustness, this method might not work
well with color saturated images, which are also available in
one of our data sets.

Several histogram matching methods are proposed. Some
of these methods consider histograms as points in a high
dimensional vector space and calculate distances between the
points. Other methods apply probabilistic similarity metrics
between histograms. Euclidean distance and intersection are
the examples of distance based methods. Probabilistic methods
are based on probability density function (PDF) and Bhat-
tacharyya distance [51], Kullback and Leibler divergence [52],
Hellinger distance [53], Chi-Square [54] and Earth Mover's
distance [55]. OpenCV library offers Correlation, Chi-Square,
Intersection, Bhattacharyya, Hellinger and K-L methods as a
parameter of histogram matching function. In our case study,
Correlation method is employed to calculate matching score
of histograms.

3) Pixel Matching: Pixel matching is a straight-forward
method, where each pixel of image pairs’ are compared in each
channel. This is done by summing up the square difference
(SSD) of pixel values. The lower the value calculated with
SSD, the better the matching is. However, image pairs should
be tightly in the same planar surface as a precondition of
obtaining meaningful results with this method. In order to use
the result of pixel matching with other comparison algorithms,
the obtained values are normalized between 0 and 1 to be
compared with respect to a threshold value.

In case the compared images have to be aligned before
image matching, then keypoint detector, descriptor extractor
and transformation features must be selected to be employed
by the test oracle. These are all used, if selected, before image
matching and as such, they impact the accuracy of image
matching and the overall process. In addition, other effects
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Fig. 2: The overall process.

such as illumination difference between grabbed and reference
images might still negatively influence the results. Hence, it is
expected that the results should be better if all the matching
algorithms are employed together.

IV. IMPLEMENTATION

The overall process followed by ADVISOR is depicted in
Figure 2. ADVISOR takes three inputs: a reference image,
a captured image, and a configuration. ADVISOR compares
the two images according to the parameters given in the
configuration input, and gives a verdict of pass or fail. A pass
verdict means that ADVISOR decided the captured image is
sufficiently similar to the reference image to indicate no error
in the SUT. Conversely, a fail verdict means that the captured
image was found sufficiently different from the reference
image to indicate an error in SUT.

ADVISOR integrates all the techniques discussed in Sec-
tion III and makes them available to the user as features.
The configuration input of ADVISOR is a CSV file that
specifies which of these techniques are to be used for image
comparison. The configuration file is prepared via a web-
based graphical user interface, where the user can select or
deselect features on the feature diagram of ADVISOR (see
Figure 1). We implemented the feature diagram using an online
feature modeling environment, SPLOT4 (Software Product
Lines Online Tools). One can use this environment to create
a configuration file by importing the model and selecting or
deselecting features. Consistency with respect to constraints is
ensured by the tool during this process. The snapshot on the
left-hand side of Figure 3 shows the SPLOT model we created.
One can select or deselect features on this tree structure to

4http://www.splot-research.org

define a configuration as shown on the right-hand side of
Figure 3. The configuration in this example takes FAST as
the keypoint detector, BRIEF as the descriptor extractor, and
Perspective Transform as the transformation. It employs all the
image matching techniques together. The final configuration
can be exported as a CSV file to be fed into ADVISOR.

Fig. 3: Snapshot images taken from the online SPLOT tool that
depict a part of the created feature diagram for ADVISOR and
a configuration defined on this diagram.

We implemented ADVISOR in Python; it is available as an
open-source framework5. In the following section, we present
an empirical evaluation of our approach based on a benchmark
dataset, where we compare the accuracy of several test oracle
configuration instances derived from ADVISOR with those of
previously introduced tools used as test oracles.

V. EVALUATION

In this section, we experimentally evaluate ADVISOR.
To this end, we compare several test oracle configuration
instances derived from ADVISOR with previously introduced
tools. Our first evaluation criterion is accuracy. Hereby, we are
interested in both the overall accuracy and the accuracy for
image pairs that are subject to particular types of variations.
Our second concern is runtime performance. A test suite
might process thousands of images and the efficiency of test
oracle impacts the overall test duration. As such, runtime
performance can play a critical role in the selection of a
tool or its configuration. Therefore, we would like to compare
the runtime performance of various ADVISOR configurations
among themselves and with respect to state-of-the-art test

5https://github.com/ahmetesatgenc/Test-Oracle

http://www.splot-research.org
https://github.com/ahmetesatgenc/Test-Oracle
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oracles, SURFAndroid [9] and VISOR [10]. Accordingly, we
ask the following research questions.

RQ1: How the overall accuracy of various test oracle
implementations compare?

RQ2: How the accuracy of various test oracle implementa-
tions compare when the input images are subject to
pixel shifting, scaling, and color saturation?

RQ3: How the runtime performance of ADVISOR config-
urations and state-of-the-art test oracle implementa-
tions compare?

In the rest of this section, we present the dataset, subject
systems, and the metrics used for evaluation. Then we discuss
the obtained results and threats to validity.

A. Experimental Setup and Dataset

We conducted our experiments on a regular laptop computer
that has Intel I5-6200 2.30 GHz CPU and 8GB RAM. The
computer has JRE 1.8 and 64-Bit OpenJDK installed. We used
PyCharm version 2017.3.2 and OpenCv version V3.4.0.12.

We used a data set that is collected during the testing process
of commercial Digital TV systems as previously introduced
and used for evaluating test oracles in [11]. The set contains
a total of 1000 image pairs (captured and reference images),
each of which is manually labeled by the consensus of two test
engineers in the company as belonging to one of the following
classes:
• failure: the captured image differs from the reference

image, and the pair indicates an error in the system. There
are 456 image pairs in this category.

• pixel shift: the captured image differs from the reference
image because of pixel shifting effects; there is no
indication of an error in the system. There are 42 image
pairs in this category.

• scale: the captured image differs from the reference
image because of scaling effects; there is no indication
of an error in the system. There are 359 image pairs in
this category.

• saturation: the captured image differs from the reference
image because of saturation effects; there is no indication
of an error in the system. There are 143 image pairs in
this category.

We should note that our dataset is collected during func-
tional tests. Hereby, a failure is detected when the system
crashes or provides wrong output, e.g., a particular list of
channel names is expected to appear during channel search
but it does not. Image variations such as pixel shifting, scaling
and saturation occur due to the capturing method or due
to the variations in the platform like screen size/resolution.
Hence, these are not considered as failures. Also note that
in principle it is possible for a captured image to be subject
to multiple effects (e.g. pixel shifting plus scaling). When
manually labeling the image pairs, the test engineers chose
the most apparent effect in such cases.

B. Subject Systems

We include all the subject systems that were previously
evaluated [11] on the dataset we are using. In addition, we

TABLE I: The set of selected ADVISOR configurations that
are used for evaluation.

Config. Keypoint Descriptor Transform Image
Detector Extractor Matching

conf1 BRISK BRISK Perspective (*)
conf2 FAST BRIEF Perspective (*)
conf3 SURF SURF Perspective (*)
conf4 Star ORB Perspective (*)
conf5 SimpleBlob FREAK Affine (*)
conf6 SURF SURF Affine (*)

(*) In all configurations “Histogram - Template - Pixel” features were selected
for image matching.

evaluate two recently proposed test oracles, SURFAndroid [9]
and VISOR [10]. Finally, we create and apply 6 configurations
of ADVISOR, shown in Table I, built by combining the
available features in various ways. These subject systems and
configurations are explained in more detail in the following.

1) SURFAndroid: SURFAndroid is based on the SURF [35]
algorithm that primarily targets image transformation. The
approach extracts the keypoints of an image and uses these
keypoints as reference points for transforming the image.
SURFAndroid utilizes this approach for another purpose:
image comparison. It judges the similarity of two images based
on how much their keypoints resemble each other. SURF can
also be used as part of ADVISOR if it is selected during
configuration. However, ADVISOR uses SURF as a keypoint
detector and descriptor extractor only. The output of SURF is
used for transformation to align a pair of images rather than
image matching to compute similarity between them.

2) VISOR: VISOR, our previous work, was developed in
the form of a pipeline of several image processing filters
followed by an image comparison. The first set of filters
include background color removal, noise removal and bound-
ing box detection. They address major scaling and shifting
variations in images. Finally, two more filters, namely up-
sampling and max-pooling are applied to remedy minor scaling
and translation problems. Up-sampling scales images to the
full image resolution for roughly satisfying the translation and
scale invariance. Max-pooling, decomposes the input image
into a grid of small rectangular blocks. Each block is replaced
with the maximum pixel value that it contains. Although
this causes some information loss in images, it provides
further translation and scale invariance. Image comparison is
performed by simply taking the pixel-by-pixel difference of
the images received from the max-pooling filter. VISOR is
specialized for handling translation and scale invariance with
algorithms dedicated for this purpose. ADVISOR is a gener-
alization of that approach; it does not tie itself to a specific
algorithm or a pipeline. Rather, it is a generic and configurable
framework that can be tuned for a particular application by
selecting and combining various computer vision techniques
as the building blocks.

3) ADVISOR Configurations: The set of selected ADVI-
SOR configurations are listed in Table I, Hereby, we aimed
to combine features that can maximize the accuracy. For this
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TABLE II: Evaluation of a verdict according to image set
categories.

Image Pair Category Test Oracle Verdict Evaluation

fail
Fail TP
Pass FN

pixel shift, scale, saturation
Fail FP
Pass TN

reason, we selected all the sub-features of image matching
(“Histogram - Template - Pixel”) in all configurations.

The choice between the two alternatives for the transform
feature (i.e., affine vs. perspective) does not supposed to have
a significant impact on accuracy. This is because the dataset
includes images captured directly from the system rather than
those captured with an external camera. Hence, they can only
be subject to 2D transformations rather than 3D. We included
configurations that employ both alternatives to test them. Note
that the third and sixth configurations are the same except this
feature.

We varied the selection of keypoint detector and descriptor
extractor sub-features in the tested configurations such that
each choice is tested at least once. Only SIFT was omitted.
SURF, which is employed by SURFAndroid [9] shares the
same approach with SIFT. We also tested configurations,
where the same sub-feature is used for both keypoint detector
and descriptor extractor (See the first, third and sixth config-
urations).

C. Evaluation Criteria

Recall from Figure 2 that ADVISOR, when given an image
pair and a configuration, gives a verdict in the form of either
pass or fail. This verdict is considered a true negative (TN),
true positive (TP), false negative (FN), or false positive (FP)
as defined below:

TN: There is no error and the verdict is pass.
TP: There is an error and the verdict is fail.
FN: There is an error and the verdict is pass.
FP: There is no error and the verdict is fail.
Note that these terms are defined from the perspective of

the test oracle. There exist two possible sources of errors. An
error can take place in the test oracle or in the system under
test. The task of the test oracle is to detect errors in the system
under test. Hence, “positive” means that an error in the system
is detected by the test oracle, leading to a fail verdict. If the
system is indeed subject to an error, this verdict is correct
and it is classified as TP. In this case, the oracle itself is not
subject to an error. However, if an error is detected although
the system under test is not subject to any error, then the
verdict is classified as FP.

Precision and recall are calculated based on the number of
TP, FN and FP verdicts as follows:

Precision =
|TP |

|TP |+|FP |
(1)

Recall =
|TP |

|TP |+|FN |
(2)

Test oracle verdict is determined based on a threshold value,
which is calculated beforehand with an offline training step.
Hereby, we used a part of the dataset for training and used the
F-score measure to find the optimum threshold level for this
part of the dataset. F-score is calculated based on precision
and recall as shown below:

F1 = 2×
(precision×recall)

(precision+recall)
(3)

We repeated the process in Figure 2 for varying threshold
values used during image matching. The image pairs in
the dataset are already labeled with respect to two major
categories: i) those that are associated with failed runs, and
ii) those that are associated with successful runs (test should
pass although images are subject to pixel shifting, scaling
or color saturation). Test oracle is executed during training
with all possible threshold values between 0 and 1 with step
size 0.1. TP, FP and FN cases are determined based on the
oracle verdicts and the categories of the image pairs. Table II
associates the four image pair categories with the possible test
oracle verdicts. For instance, considering the first category in
Table II (image pairs that are associated with failed runs), if the
verdict is fail, then this would be considered as true positive.
The verdict would be false negative if the oracle output was a
pass for such an image pair. We took the threshold value that
led to the maximum F-score.

We applied 10-fold cross validation to eliminate the bias
in the selection of the training dataset for optimizing the
threshold value. That is, we partitioned the dataset into 10
randomly-selected, equally-sized, disjoint segments. Then, an
optimal threshold value was calculated 10 times. Each time,
a different combination of 9 disjoint segments was used for
calculating the threshold; the remaining disjoint segment was
used for testing. Accuracy of the test oracle in each of the
10 tests is calculated based on the accuracy metric, which is
defined as follows.

Accuracy =
|TP |+|TN |

|TP |+|TN |+|FP |+|FN |
(4)

The overall accuracy of the test oracle is calculated as the
average of accuracy measures obtained in 10 test runs.

We simply measured the time it takes to compare each
image pair in the order of milliseconds to evaluate the run-
time performance. We present and discuss the results in the
following.

D. Results and Discussion

In the following, we discuss the obtained results regarding
the evaluation of accuracy (RQ1 and RQ2) and runtime per-
formance (RQ3).

1) Accuracy: The overall results are listed in Table III.
Recall that the fail dataset contains 456 image pairs that are all
associated with failure cases. Hence, the verdict can be either
TP or FN regarding these pairs (See Table II). Image pairs
included in the other 3 datasets (pixel shift, saturation, scale)
are all associated with successful executions although the
captured images are subject to distortions. Hence, the verdict
can be either FP or TN regarding these pairs. Table III lists the
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TABLE III: The overall results for all the configurations and other tools used as test oracles (All the listed numbers represent
rounded up percentage (%) values).

Tools / Pixel Shift Saturation Scale Fail Overall
Configurations TN FP TN FP TN FP TP FN Accuracy

Previously Evaluated Subject Systems
PSNR 69.0 31.0 80.4 19.6 0.0 100.0 86.6 13.4 53.9
SSIM 100.0 0.0 95.8 4.2 98.6 1.4 37.2 62.8 70.3

DSSIM 100.0 0.0 100.0 0.0 100.0 0.0 0.0 100.0 54.4
PDIFF 100.0 0.0 76.2 23.8 97.4 2.6 37.9 62.1 67.4

AF 100.0 0.0 100.0 0.0 100.0 0.0 5.3 94.7 56.8
BT 100.0 0.0 100.0 0.0 100.0 0.0 1.6 98.4 55.1
IM 100.0 0.0 83.9 16.1 96.9 3.1 44.5 55.5 71.3
PIL 100.0 0.0 97.2 2.8 97.2 2.8 42.9 57.1 72.1

CV2-y1 69.0 31.0 76.2 23.8 88.0 12.0 74.5 25.5 79.4
CV2-y2 100.0 0.0 83.2 16.8 98.8 1.2 20.7 79.3 61.0
CV2-y3 100.0 0.0 100.0 0.0 88.8 11.2 30.1 69.9 64.1
CV2-y4 78.5 21.5 100.0 0.0 100.0 0.0 22.2 77.8 63.6
CV2-y5 100.0 0.0 100.0 0.0 100.0 0.0 22.6 77.4 64.7
CV2-y6 2.4 97.6 9.1 90.9 0.3 99.7 100.0 0.0 47.1

Recently Proposed Test Oracle Tools
SURFAndroid 50.0 50.0 61.5 38.5 87.1 12.9 83.3 16.7 80.2

VISOR 95.2 4.8 92.3 7.7 95.8 4.2 93.9 6.1 93.9

ADVISOR
conf1 100.0 0.0 80.0 20.0 100.0 0.0 98.6 1.4 96.5
conf2 100.0 0.0 81.4 18.6 100.0 0.0 98.6 1.4 96.7
conf3 100.0 0.0 81.4 18.6 100.0 0.0 98.6 1.4 96.7
conf4 100.0 0.0 80.7 19.3 100.0 0.0 98.6 1.4 96.6
conf5 87.5 12.5 80.0 20.0 97.1 2.9 98.6 1.4 95.0
conf6 100.0 0.0 87.1 12.9 97.1 2.9 97.3 2.7 95.9

percentage of FP, TN, TP and FN verdicts for all categories of
image pairs separately. The overall accuracy computed based
on these values is provided in the last column. Rows of the
table are separated into 3 groups. The first group of rows
correspond to the list of subject systems that were previously
evaluated with the benchmark dataset [11]. The second set of
rows lists the results for SURFAndroid [9] and VISOR [10].
The last group lists the results for the 6 configurations of
ADVISOR as listed in Table I.

We can see that in general ADVISOR configurations consis-
tently outperform all the other tools under study. In particular,
conf2 and conf3 reached the highest overall accuracy of 96.7%
among all these. One exception to this observation is related
to the results obtained for the saturation dataset. The highest
accuracy for this dataset is obtained with conf6 among other
configurations of ADVISOR. We can see that many of the
previously developed tools (SSIM, DSSIM, AF, BT, PIL, some
configurations of CV2, VISOR) perform (significantly) better
on this dataset; however, their overall accuracy is lower. We
can also see that the overall accuracy of conf6 is lower than
many other ADVISOR configurations. In particular, the ratio
of FN cases is the highest among all the configurations,
leading to the worst accuracy for the fail dataset. This shows
that there is an inherent trade-off regarding the selection of
transformation and matching techniques. Techniques that are
effective for a particular case can turn out be less effective
for other cases. Hence, one should select these techniques
based on the test setup, the frequency of observed cases and

trade-off decisions such as favoring recall over precision, i.e.,
minimizing the number of FN verdicts in expense of increasing
the number of FP verdicts.

All the ADVISOR configurations except conf5 reached
100% accuracy for the pixel shift dataset. This means that
both affine and perspective transformations are able to bring
the captured image to the same planar surface as the reference
image successfully. On the other hand, configurations that
use perspective transform lead to better results for the scale
dataset. This means that perspective transform performs better
than affine transform for images that are subject to scaling
effects.

It was assumed that the highest accuracy would be obtained
when all the image matching features are utilized together (See
Section III). We created 3 more configurations based on conf1
to evaluate the performance of these features separately and
as such validate our assumption. Each of these configurations
employs the same set of features with others; however, it
uses only one of the image matching features to be different
than the other two. Table IV shows the results for these
configurations. We can see that template matching performs
significantly better than the others in terms of accuracy.
However, histogram matching and pixel matching can still be
preferred for certain test setups due to other concerns such as
runtime performance. Results listed in Table IV show that pixel
matching perform the worst among all. This technique is more
sensitive to pixel intensities compared to the other matching
algorithms. As a result, it performs significantly worse for the
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Fig. 4: The time it takes to process an image pair by the state-
of-the-art test-oracles and evaluated ADVISOR configurations.

pixel shift dataset in particular.
2) Runtime Performance: Results regarding runtime perfor-

mance are depicted as a box plot in Figure 4. The plot shows
the time it takes to process an image pair in seconds. The state-
of-the-art test-oracles and evaluated ADVISOR configurations
are listed in the x axis.

We can see that VISOR is by far the fastest test oracle.
It processes an image pair within 0.03 seconds on average.
This result is expected since VISOR employs fast algorithms
dedicated for particular variations. Hence, it is optimized
for performance. Moreover, it is developed to utilize parallel
processing and implemented in C++, instead of using an
interpreted language [10]. Both SurfAndroid and ADVISOR
are implemented in Python. Results show that SurfAndroid
performs the worst both in terms of average image comparison
time and in terms of variance in its runtime performance. The
fourth configuration of ADVISOR (See Table I) is the second
fastest after VISOR. It processes an image pair within 1.5
seconds on average.

The best accuracy values were obtained with the second and
third configurations of ADVISOR. The second one seems to
be better when runtime performance is considered. Overall, we
see that differences among the tools and configurations are in
the order of seconds per image comparison. Hence, differences
in total testing time would be in the order of hours at most even
if it involves the comparison of thousands of image pairs. This
might be acceptable if the whole process is automated. In this
case, one might consider maximizing the accuracy only and
ignore runtime performance. Otherwise, there exists a trade-off
between accuracy and runtime performance. However, we see
that the most accurate tool or configuration is not necessarily
the slowest one.

3) Attaining an Effective Configuration: We determined the
initially selected 6 configurations by aiming at maximizing
the overall accuracy. For this reason, all the sub-features of
image matching (i.e. histogram, template, pixel) are included
in all the 6 configurations. Later on, another experiment is
performed with further 3 configurations derived from the
first configuration. Hereby, all the feature selections for this

configuration are kept the same but only one of the image
matching features is selected at a time. Results (Table IV)
showed that the accuracy is always lower than the one obtained
with the original configuration, as expected.

In most of the configurations, we adopted perspective trans-
form since it is superior to affine transform. We used affine
transform only in the last two configurations. In particular,
the last configuration is derived from the third configuration,
where all the feature selections other than transformation are
kept the same. We did not observe significant differences
with respect to neither accuracy nor runtime performance.
We expect that the difference in accuracy would be much
higher if the images were captured by an external camera.
The positioning of the camera can make it necessary to apply
a perspective transformation to align images.

We varied the selection of keypoint detector and descrip-
tor extractor sub-features in the tested configurations. Ex-
haustively testing every possible combination would take
prohibitively long time. Hereby, we aimed at testing each
alternative at least once. Only SIFT was omitted since it shares
the same approach with SURF. We also tested configurations,
where the the same sub-feature is used for both keypoint
detector and descriptor extractor. Results showed that FAST
keypoint detector (together with BRIEF descriptor) already
leads to the best accuracy for images that are subject to
scaling and pixel shifting. Hence, it makes sense to adopt this
configuration since it leads to better runtime performance with
respect to others. However, it is known that FAST may not be
effective for noisy images. Images in our dataset were captured
directly from the system and therefore they are not subject to
noise that can impact the results.

In fact, the selection of features is not the only variation
that affects the accuracy of test oracles. The utilized techniques
have various parameters that can be tuned. In our experiments,
we used the default values for almost all parameters for each
of the utilized technique. These are the parameters that do not
significantly impact the results. However, we investigated the
effects of some parameters in more detail. The most important
parameter is the threshold parameter that is used during image
matching phase. This parameter is set automatically during
the training phase. We also performed further experiments to
determine the optimal value of the window size parameter used
by the template matching algorithm. Table V lists the overall
results for conf1 when this parameter is varied. Results show
that the accuracy increases as the window size increases. The
maximum accuracy is achieved when it is set as 640x480. We
have not listed the results for other values of this parameter
since the accuracy was not improved further with increased
window size values.

ADVISOR prevents some of the illegal configurations via
constraints that are implemented as part of the feature diagram.
It also adjusts the threshold parameter automatically during the
training phase. Nevertheless, one has to manually configure
the test oracle by (de)selecting features based on the test
setup and the frequency of image effects taking place in the
captured images. In principle, this configuration process can
also be automated. The tool can automatically learn the type
and frequency of image effects that cause differences between
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TABLE IV: Overall results for conf1 when only one of the image comparison algorithms is used.

Pixel Shift Saturation Scale Fail Overall
Configurations TN FP TP FN TN FP TN FP Accuracy

BRISK+Perspective+Histogram 100.0 0.0 67.1 32.9 90.5 9.5 59.3 40.7 73.2
BRISK+Perspective+Template 65.0 35.0 93.5 6.5 98.2 1.8 60.2 39.8 78.7

BRISK+Perspective+Pixel 7.5 92.5 42.1 57.9 68.2 31.8 75.1 24.9 65.2

TABLE V: Overall results for conf1 when the window size parameter for template matching is varied.

Pixel Shift Saturation Scale Fail Overall
Configurations TN FP TP FN TN FP TN FP Accuracy

BRISK+Perspective+640x480 65.0 35.0 93.5 6.5 98.2 1.8 60.2 39.8 78.7
BRISK+Perspective+480x270 100.0 0.0 87.8 12.2 99.7 0.3 10.2 89.8 56.9
BRISK+Perspective+320x180 62.5 37.5 92.8 7.2 98.2 1.8 59.3 40.7 78.1
BRISK+Perspective+160x108 100.0 0.0 93.5 6.5 99.7 0.3 31.4 68.6 67.4
BRISK+Perspective+120x90 100.0 0.0 87.8 12.2 99.7 0.3 10.2 89.8 56.9
BRISK+Perspective+16x20 100.0 0.0 85.7 14.3 98.8 1.8 9.1 90.9 55.8

captured and reference images although the corresponding
tests are not subject to a failure. This knowledge can steer
the configuration process to minimize the number of false
positives. On the other hand, the tool can also learn types
of differences among the images that are associated with
failed tests. This can be taken into account during image
matching to minimize the number of false negatives. However,
these approaches would require training with a much larger
dataset to be effective. Also, this sample dataset should be
representative of the data to be collected with the actual
test setup in terms of the types of image effects and their
frequencies of occurrence. Hence, automated configuration
might not be cost-effective, considering the effort required
for preparation of the manually-labelled dataset for training.
This effort can be amortized only if the test setup remains
unchanged for a long period of time. We leave the investigation
of this trade-off as a possible future direction.

E. Threats to Validity

Our evaluation is subject to external validity threats [56]
since it is based on a single benchmark dataset. This dataset
was collected from a particular application domain.

Internal threats imposed by measurements are mitigated by
using real image pairs collected during regular regression tests
of real products in the industry. Our work did not involve any
change of the dataset throughout the measurements. However,
all the 1000 image pairs in this dataset were previously labeled
manually. Hence, the accuracy and the bias of the labeling
process is a concern that poses a threat to validity for our
evaluation. This process was performed by two engineers in
the company to mitigate this threat.

We compared our results with respect to previously made
measurements on the same dataset to mitigate conclusion and
construct validity threats. We also performed 10-fold cross
validation on the dataset to mitigate these threats.

VI. CONCLUSIONS

We introduced ADVISOR, an adjustable framework for test
oracle automation of visual output systems. The framework

allows the use of a flexible combination and configuration
of alternative techniques from the computer vision domain.
We performed a domain analysis to review these techniques
in terms of their pros and cons for applicability in various
settings. ADVISOR can be configured to utilize a subset of
these techniques that are tuned for a particular application con-
text. We developed a feature model that defines commonalities
and variations in test oracle implementations, the available
techniques as well as constraints and conflicts among them.
One can browse this model and define a test oracle instance
configuration via a Web-based graphical user interface.

We evaluated several instances of our framework with
respect to state-of-the-art tools. We used a benchmark dataset
that includes image pairs collected during regular regression
tests of real Digital TV systems. ADVISOR configurations
significantly outperformed the other tools in terms of the
overall accuracy achieved. Results also showed that there
is an inherent trade-off regarding the configuration options.
Techniques that are effective for a particular image effect like
pixel shifting can turn out be less effective for another effect
such as color saturation. ADVISOR enables one to select these
techniques based on the test setup, the frequency of observed
cases and trade-off decisions.

We evaluated state-of-the-art tools and ADVISOR configu-
rations with respect to runtime performance as well. Overall,
results showed that differences among these are in the order
of seconds per image comparison. Therefore, differences in
total testing time would be in the order of hours assuming
that it involves the comparison of thousands of image pairs.
This might be acceptable if the whole process is automated,
in which case one might consider maximizing the accuracy
only. Otherwise, one has to consider the trade-off between
accuracy and runtime performance. However, we should note
that the most accurate tool or configuration is not necessarily
the slowest one.

The framework is still open to extensions and improve-
ments. In this work, we covered the main features of an image-
comparison based test oracle and their variations. In fact,
some of the features have further sub-features and alternatives
in terms of the algorithms used. For example, the metric
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currently used for template matching is fixed as correlation
coefficient although other alternatives are available such as
cross-correlation and sum of square difference. So, the feature
tree can go deeper if we take these lower-level variations into
account. ADVISOR is an open source framework. It can also
be extended with new techniques in the future, in alignment
with advances in the computer vision domain.

REFERENCES

[1] S. Berner, R. Weber, and R. K. Keller, “Observations and lessons
learned from automated testing,” in Proceedings of the 27th International
Conference on Software Engineering, 2005, pp. 571–579.

[2] D. Rafi, K. Moses, K. Petersen, and M. Mäntylä, “Benefits and limi-
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