Debugging SYCL Programs on Heterogeneous Intel®
Architectures

Barig Aktemur”
tankut.baris.aktemur@intel.com
Intel GmbH
Neubiberg, Germany

Natalia Saiapova
natalia.saiapova@intel.com
Intel GmbH
Neubiberg, Germany

ABSTRACT

Intel recently announced a large initiative named oneAPI that pro-
vides a direct programming model based on SYCL. As part of the
oneAPI distribution, we developed a debugger that can be used
for debugging SYCL programs that offload kernels to CPU, GPU,
or FPGA emulator devices. The debugger is based on GDB. It al-
lows programmers to inspect the host and kernel portion of their
SYCL programs seamlessly in the same debug session. To realize
the debugger, we made enhancements to GDB including SIMD-
based thread views and C++-related improvements. In this work we
present the general architecture of the debugger, provide a sample
session of how it can be used to debug a SYCL kernel running on
a GPU, and discuss the encountered and anticipated challenges
during the development phase. Currently a beta version of the
debugger is publicly available.
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tools; -« Computing methodologies — Parallel programming
languages; - Computer systems organization — Single instruc-
tion, multiple data.
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1 INTRODUCTION

Modern computing problems imply workload diversity. To achieve
the best performance, programmers typically need to resort to a va-
riety of hardware (e.g. CPU, GPU, accelerators) as well as libraries,
tools, and APIs at the expense of increased development effort
and complexity. Intel recently announced a large initiative, named
oneAPI [6], that aims to address these problems by providing a uni-
fied programming model with which programmers can develop ap-
plications across multiple architectures. For a direct-programming
approach, oneAPI supports the SYCL language [12].

Debugging is an indispensable part of the software development
practice. Debug tools play a critical role for the developers to inspect
programs and track down bugs. In this work, we present a debugger
targeted for SYCL programs. Our debugger is based on GDB [9]
and is published as part of the Intel oneAPI Base Toolkit!.

In SYCL, a portion of computation, called the kernel, is offloaded
to a SYCL device, or executed on the host CPU if no underlying
device exists. The device can be the CPU, GPU, or an accelerator, e.g.
an FPGA. Our debugger can be used for debugging SYCL programs
that use the host or the CPU, GPU, or an FPGA software emulator
as the device. In this paper we focus on targeting a GPU device - we
think this is the most interesting use case. The debugger supports
offloading to Intel CPU and Intel GT devices; however, the overall
architecture should apply to any SYCL debugging scenario. The
debugger can be used on the Linux and Windows operating systems.
In this paper, we focus on the Linux use-case. The key features of
our debugger include

o defining breakpoints inside and outside the kernel; perform-
ing common debugging actions for code executed on both
the host CPU and the device, such as inspecting the registers
and the memory, source-level as well as instruction-level
stepping, and back-tracing.

e viewing the SIMD (Single Instruction Multiple Data) lanes
of threads and changing the current lane. Expressions are
evaluated in the context of the current SIMD lane.

e plug-in definitions to be able to evaluate expressions that
contain certain SYCL template functions.

The contributions of this paper are the following:
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e We present the architecture of the debugger based on multi-
target GDB that allows debugging both the host and the
kernel portion of a SYCL program.

e We discuss challenges we faced during the implementation;
in particular, regarding
— implicit pass-by-reference arguments,

- C++ functions with template parameters,

— thread view with SIMD lanes,

- modeling device threads, and

— conditional breakpoints.

While we were able to overcome the former three of these
challenges, we are still working on the latter two. For each
challenge, we present the problem and discuss the solution
we applied or are currently evaluating.

A major advantage of SYCL from a debugging point of view is
that a SYCL program can be executed completely on the host CPU,
without dispatching any kernel to a device. This way, the users
may be able to detect logical errors in their programs by using off-
the-shelf debug tools. Nevertheless, some bugs reveal themselves
only when executed on the device. For such cases, we think that
device-targeting debuggers such as ours are invaluable, where the
user can go all the way down to the level of machine instructions
and registers.

There is a third class of debugging tools that provide device-
agnostic, yet OpenCL-specific debug capabilities. Oclgrind [15] is
such a tool. It is an OpenCL simulator that implements the OpenCL
1.2 APL It takes OpenCL C source or SPIR intermediate-level code
and simulates an OpenCL device. Oclgrind provides a plug-in archi-
tecture where hooks for certain operations (e.g. kernel begin/end,
memory access, work item begin/end) can be defined. Oclgrind
leverages this architecture to also provide an interactive debugger
with which breakpoints can be defined and memory/variables can
be inspected. Because Oclgrind is a simulator, it is deemed to run
orders of magnitude slower than an actual device execution. We
believe that tools like Oclgrind and device-aware debuggers like
ours are complementary to each other and provide the users with
a comprehensive debug capability to tackle various types of bugs.

The paper is organized as follows: Section 2 gives background
information on how a traditional debugger works and what happens
during the runtime of a SYCL program. Section 3 presents the
architecture of our debugger. We show in Section 4 how a sample
SYCL program can be debugged. In Section 5, we talk about the
challenges we faced. Section 6 discusses related work. Finally, in
Section 7, we give our conclusions.

2 BACKGROUND

In this section we give high-level background information about the
working principles of debuggers in general, and about debugging
offloaded computation in the context of SYCL.

2.1 Debugging Applications

Debuggers are tools that allow developers to find issues in their
program by controlling the execution of their program and by
inspecting, or even modifying, program state during its execution.

There are many different types of debuggers for debugging user
applications, device drivers, operating systems, or firmware. They
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all rely on some lower layer or, lacking that, a debug monitor inside
the debuggee, to exercise control over the debuggee. We focus on
application debuggers.

The debugger itself is a separate process. It relies on Operat-
ing System (OS) support for controlling the debuggee process. In
order to start debugging, the debugger sends a request to the OS
to attach itself to the debuggee process. The debuggee can either
be an already running process or it can be a new process that has
been launched by the debugger. The OS is responsible for checking
permissions for one process to control another process.

Once permission has been granted and the debugger is attached
to the debuggee, it receives debug events for the debuggee process.
Any exception is delivered to the debugger instead of the debuggee?.
The debugger may then decide to handle the exception or to inject
it into the debuggee.

The OS further provides a means for reading and writing the
debuggee process’ memory and debuggee threads’ register state.
The debugger works on a copy of the register state that had been
stored when the debuggee thread was scheduled out and that will
be restored when the debuggee thread is scheduled in again. Any
modifications made by the debugger take effect at that time.

Finally, the OS provides a means for the debugger to alter the
execution of the debuggee process. The debugger may interrupt a
running debuggee thread and resume it again. The debugger may
further insert (code) breakpoints® that stop the debuggee at the
intended location. In addition to code breakpoints, debuggers may
also offer breakpoints that trigger when a given memory location
is accessed, when a given value is written, or when a given register
has a given value. All forms of breakpoints depend on hardware
support for an efficient implementation.

The debugger’s main task, then, is to translate between the
source-level world of the user and the machine-level world of
the program. It does so with the help of debug information (e.g.
DWAREF [4]) that is generated by the compiler together with the
machine code. Debug information maps the machine code back to
the source code from which it was generated.

2.2 Debugging Offloading

For SYCL applications, in addition to debugging the host part, we
also need to debug kernels offloaded to attached devices. This re-
quires a similar debug interface we use on the host for controlling
the host application for each device. It also requires debug infor-
mation to be generated both for the host application and for each
kernel.

Building a SYCL application involves multiple compilation steps
as shown in Figure 1. The host compiler extracts kernels from
the SYCL source code. Those are translated into the SPIR-V [13]
intermediate representation and stored in the application binary
(or on the disk, as a separate file) for later processing. The host code
is compiled normally.

2Some exceptions cannot be intercepted by the debugger. On Linux, for example,
the SIGKILL signal terminates a process whether a debugger is attached or not. The
debugger is notified of the debuggee’s termination after the fact.

3Depending on the processor, breakpoints can be implemented as a special instruction
that raises an exception when executed, as a field in the instruction opcode that makes
the instruction raise an exception when executed, or as separate hardware logic that
compares some (optionally masked) state against a configurable value.
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Figure 1: SYCL compilation flow.
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When the SYCL application is executed, the device compiler
translates kernels from SPIR-V into native device code for the de-
vice(s) selected by the application. In the case of Intel’s oneAP], this
second compilation step produces an in-memory ELF [5] file.

Kernels could also be compiled ahead of time. In that case, the
resulting ELF file would be stored in the host application binary. As
with the dynamic compilation approach, the device ELF file would
end up in the host application’s memory where a debugger can find
it.

Information about the source program is generated by the host
compiler front-end and attached to the program’s intermediate rep-
resentation. For kernels, this information is attached to the kernel’s
SPIR-V using the format specified in the OpenCL.DebugInfo SPIR-V
extension [17]. The device compiler takes it from there and adds
DWAREF debug information sections to device ELF file.

3 ARCHITECTURE

Figure 2 shows a high-level overview of the debug architecture for
Intel GT devices on Linux. On Windows, we use a slightly different
architecture, which is not covered here. The boxes in blue highlight
areas where support for offloading debugging needs to be added.
This section focuses on the lower layers. In Section 5.3 we describe
some of the GDB and command-line interface (CLI) changes.

> gdbserver-gt
Intel-gt target

L0 debug driver

Intel Enhancements

host app
LOdriver T
kemel|ptrace

Il DENESE

Figure 2: SYCL debug architecture.

1915|dbg

We use GDB as the debug engine. For debugging the host applica-
tion, we do not need any changes to standard GDB. For debugging
offloaded kernels running on Intel GT devices, we retargeted GDB
to support the Intel GT architecture and to control kernels via a
debug interface provided by a companion driver to Intel’s graphics
device driver.

The debug interface provides access to device thread state and
memory as well as run-control capabilities for stopping, resuming,
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and single-stepping device threads. As part of the oneAPI initiative,
Intel is refining the debug interface and publishing it as part of their
level-zero specification [10]. A goal of the level-zero interface is to
enable third-party tool development. Our current implementation
is using a predecessor of this interface.

GDB’s new multi-target [1] feature allows debugging both host
application and offloaded kernels in the same debug session. We
represent Intel GT devices as separate inferiors* that are debugged
via a remote connection to our retargeted gdbserver. The host ap-
plication can be debugged via either a native or remote connection.

When the host application has started, we can create a second
inferior and connect to our retargeted gdbserver. We pass the host
process identifier and use it to attach to the Intel GT debug compan-
ion driver. Once we are attached, we can debug kernels offloaded by
that host process. We automated those steps using GDB’s Python
API (see Section 4 for a demonstration).

For offloading to an Intel GT device, the SYCL runtime uses the
Intel Graphics Compute Runtime for OpenCL (a.k.a. NEO), as its
backend. NEO includes the Intel Graphics Compiler for OpenCL
(IGC) [2] to jit-compile the kernel. An attached debugger changes
some flows in NEO and IGC:

o IGC generates debug information and disables most opti-
mizations.

o IGC generates a special cookie with a hard-coded breakpoint
as the first instruction of every kernel. We use the hard-coded
breakpoint to detect kernel submissions and the cookie to
identify kernels.

e NEO generates device code to install a system routine for
every kernel. The system routine is an exception handler
that is invoked by the hardware for exceptions on the device
such as breakpoint hits.

e NEO allocates a context save area to hold the thread state

for every device context. Each thread is assigned a slot in
this area. A thread’s offset to its assigned slot is computed
from its coordinates within the device. This memory is used
by the system routine to store the thread state and hence
needs to be mapped into the context’s page tables.
Our current implementation allocates the context save area
per kernel. For some applications, however, that keep many
kernels around, the memory overhead can become signifi-
cant. We are currently investigating a different model where
a single buffer can be shared.

e NEO informs the attached debugger about new kernels and
maps a kernel’s cookie to its corresponding ELF file.

Debuggers need to attach as early as possible so debug can
be enabled for every kernel. Kernels that were built before the
debugger attached cannot be debugged. The new level-zero debug
interface attempts to relax this requirement.

A kernel is wrapped into a hardware context that contains in-
structions to initialize the hardware state and to launch the kernel.
Those instructions specify the dimensions, for example, and hence
define how many threads are needed to execute the kernel.

When the kernel is launched, threads are dispatched to execute
kernel code. They hit the hard-coded breakpoint and enter the

4 An inferior in GDB terminology is the program execution that is under inspection.
Typically, it is a running process or a core-dump file.
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system routine. The system routine stores the thread’s state into
its assigned context save area slot and sends an attention request
to the CPU.

On the CPU side, the debug companion driver polls for device
threads that requested attention. For each thread, the driver tries
to determine the reason for the attention request and sends a corre-
sponding debug event to the attached debugger.

When the first thread hits the kernel entry breakpoint, an event
for a new kernel is generated. We use the kernel’s cookie to find
the corresponding ELF file. To reduce the overhead, the breakpoint
is then removed and further hits from other threads are ignored.

Upon receiving the event for a new kernel, the debugger loads
the kernel’s ELF file and processes its DWARF debug information
using standard GDB functionality. Currently, the debug stack only
supports one kernel at a time per device, so an event for a new
kernel implicitly means that the previous kernel completed. Before
loading the new kernel’s ELF file, we unload the previous kernel’s.

We further remove existing threads and start over with a single
thread for the new kernel. Additional threads are added as they hit
breakpoints. A thread that does not hit any breakpoint is ignored.
This allows us to keep the number of threads and the associated
overhead manageable most of the time. See Section 5.4 for a discus-
sion of that challenge.

3.1 Non-Stop vs. All-Stop

GDB supports two modes for controlling inferior processes: all-stop
and non-stop. In all-stop mode, which is the default, any event stops
the entire inferior process. If more than one thread report events at
the same time, GDB queues the events and reports the first one to
the user. When the user resumes the inferior, GDB reports the next
queued event instead of resuming the process. Only when there are
no more events to report, GDB resumes the inferior process.

In non-stop mode [16], an event stops only the eventing thread.
Other threads continue running. Events are further reported imme-
diately and asynchronous to user commands.

GDB further supports a hybrid mode where the target is running
in non-stop mode and reports events asynchronously to GDB, yet
GDB implements all-stop mode on top. To the user, it appears as
all-stop mode. This all-stop on top of non-stop mode is supported
by Linux native and remote targets.

When debugging heavily multi-threaded inferiors, stopping all
other threads on an event can cause a fair amount of overhead. It
further serializes debugging. The inferior does not make progress
while the user inspects the state of a stopped thread. In non-stop
mode, other threads continue running. When the user is done in-
specting a thread after a breakpoint hit, chances are that the next
thread is already waiting to be examined.

Kernels offloaded to GPUs are by nature very heavily multi-
threaded. Everything that applies to multi-threaded applications
applies to kernels, as well.

Asynchronously stopping individual threads, however, which
is supported by non-stop mode, is not directly supported by Intel
GT hardware and needs to be emulated by stopping all threads and
resuming the ones that were not intended to be stopped. Repeat-
edly stopping individual threads may very soon cause a significant
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overhead, especially when doing this for all threads one-by-one, as
GDB would when implementing all-stop on top of non-stop.

Asynchronously stopping all threads on a device, on the other
hand, can be done efficiently with very little delay between threads.
This allows for an efficient implementation of pure all-stop on Intel
GT devices.

We implemented pure all-stop and are currently looking into
extending our implementation to support non-stop, as well.

4 A SAMPLE DEBUG SESSION

In this section we present a sample debugging session® on the SYCL
program shown in Figure 3. This is a complete SYCL program that
can be compiled and run without any modifications. The program
picks the default SYCL device, and submits a kernel that uses a
parallel_for to process the elements of an input array and write
into an output array. We are assuming that the default SYCL device
on the machine is an Intel GT device; so, the kernel will be offloaded
to that GPU. We are also assuming that the build flow explained
in Section 3 has been followed. In particular, the compiler’s debug
information emission has been enabled and the optimizations have
been disabled for both the host and the kernel portion of the code for
a smooth debug experience. For host, this is achieved by passing the
-g -00 flags to the compiler that comes with the oneAPI distribution.
For the kernel, at the time of writing this paper, IGC turns on debug
info and turns off optimizations in the presence of a debugger.

The debugging session can be started by passing the program
executable as a command-line argument to the debugger — just like
an ordinary debug session with GDB.

$ gdb-oneapi ./sample
GNU gdb (GDB) 8.3.1
Copyright (C) 2019 Free Software Foundation, Inc.; (C) 2020 Intel Corp.

Next, we define breakpoints at the then-branch (line #17), else-
branch (line #19), and at the end of the main function (line #35).
Note that the former two breakpoints are inside the kernel while
the latter is inside the host program.

(gdb) break 17
Breakpoint 1 at @x405ad7: file sycl.cpp, line 17.
(gdb) break 19
Breakpoint 2 at 0x405ae7: file sycl.cpp, line 19.
(gdb) break 35
Breakpoint 3 at 0x4049aa: file sycl.cpp, line 35.

When we run the program, as stated in Section 3, the debugger
automatically spawns a gdbserver-gt process to listen to debug
events, and adds it to the debugging session as a new inferior. This
is done via GDB’s Python APIL The user is given back the GDB
prompt when the program execution hits a breakpoint:

(gdb) run

Starting program: /path/to/sample

<omitted output>

Thread 2.2:1 hit Breakpoint 2, compute(intx, intx)::... at sycl.cpp:19
19 point = -1; // else-branch

The breakpoint at the else-branch is hit by Thread 2.2:1. (The
else-branch is hit before the then-branch because of the instruction
ordering chosen by IGC.) The thread id “2.2:1” means “inferior 2,
thread 2, SIMD lane 1”. That is, the stop event is received from a

SParts of the debugger output have been omitted; these are denoted with ellipses. Some
minor formatting was applied to fit the output to the space in this paper.
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#include <CL/sycl.hpp>
using namespace cl::sycl;

void compute(int input[], int output[]) {
queue device_queue; // picks default device
range<1> range{64};
buffer<int, 1> buffer_in{input, range};
buffer<int, 1> buffer_out{output, range};

device_queue.submit([&](handler& cgh) {
auto in = buffer_in.get_access<access: :mode: :read>(cgh);
auto out = buffer_out.get_access<access::mode: :write>(cgh);

cgh.parallel_for<class kernel>(range, [=](id<1> index) {
int point = in[index];
if (index % 2 == 0)
point = point + 1000; // then-branch
else
point = -1;
out[index] = point;
B
B

// else-branch

}

int main() {
int input[64];
int output[64];

// Initialize the input
for (unsigned int i = 0;
input[i] = i + 100;

i < 64; i++)

compute(input, output);

return 9; // end of main

Figure 3: A sample SYCL program.

thread of inferior 2. This is the inferior that was created automati-
cally by our debugger; it represents the kernel offloaded to the GT
device. To see it, one can issue the info inferiors command. The
“** marker next to the inferior number denotes that it is the current
inferior.
(gdb) info inferiors

Num Description Connection

1 process 32087 1 (native)
* 2 Remote target 2 (remote gdbserver-gt --attach - 32087)
Now that we are inside the kernel, the GT device registers can be
inspected (e.g. via the info registers all command) or the GT
code can be disassembled.
(gdb) x/i $pc
=> oxfffe7b00 <...>: mov (8|MOQ) r23.0<1>:d -1:w

The threads running on a GT device are vectorized; i.e. they have
SIMD lanes. The breakpoint hit was received from SIMD lane 1
of Thread 2.2. Let us display more information about Thread 2.2,
which is our current thread.

(gdb) info thread 2.2
Id Target Id Frame

* 2.2:1 Thread 1073741824 ... at sycl.cpp:19
2.2:[3 5 7] Thread 1073741824 ... at sycl.cpp:19
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The “** marker denotes the current SIMD lane. The second row
in the table above also lists lane ids inside square brackets, i.e.
[3 5 7]. These are the lanes that are currently active. Recall that
we stopped at the else-branch. Because of the condition in the code
(i.e. index % 2 == 0), only the odd-indexed lanes are active. In the
SIMD execution model, this is called branch/thread divergence [14].
Let us delete the breakpoint at the else-branch and resume the
program. This time, we hit the then-branch breakpoint, where the
even-indexed lanes are active.
(gdb) delete 2

(gdb) continue
Continuing.

Thread 2.2:0 hit Breakpoint 1, compute(int*, int*)::... at sycl.cpp:17

17 point = point + 1000; // then-branch

(gdb) info thread 2.2
Id Target Id Frame

* 2.2:0 Thread 1073741824 ... at sycl.cpp:17
2.2:[2 4 6] Thread 1073741824 ... at sycl.cpp:17

The kernel contains a local variable named point. Because the
threads are SIMD, this local variable is vectorized. To inspect the
values, let us print the local variable in the context of the current
lane:

(gdb) print point
$1 = 100

We now switch the lane of the thread and print the variable
again. This time we get its value from the perspective of the new
lane.

(gdb) thread 2.2:4
[Switching to thread 2.2:4 (Thread 1073741824 lane 4)]

#0 compute(int*, intx)::$_0::... at sycl.cpp:17

17 point = point + 1000; // then-branch
(gdb) print point

$2 = 104

Alternatively, one can switch back to the first lane and inspect the
chunk of memory where the variable point is located. Below we
use the x command of GDB to examine the memory. The argument
/8dw means “8 items, in decimal format, word-length each”.

(gdb) thread 2.2:0
[Switching to thread 2.2:0 (Thread 1073741824 lane )]

#0 compute(int*, intx)::... at sycl.cpp:17

17 point = point + 1000; // then-branch
(gdb) x /8dw &point

0x5eb9160: 100 -1 102 -1
0x5eb9170: 104 -1 106 -1

Note that the point values at odd-indexed locations have already

been set to -1 because the else-branch has already been executed.
At this point, one can do other standard debugger activities such

as instruction-level or source-level stepping, back-tracing, etc. Let

us delete the then-branch breakpoint and resume the program. We

hit the breakpoint at the end of the main function.

(gdb) delete 1

(gdb) continue

Continuing.
[Switching to Thread ox7ffff7fd9780 (LWP 32087)]

Thread 1.1 "sample" hit Breakpoint 3, main () at sycl.cpp:35

35 return @; // end of main

GDB seamlessly switches to inferior 1 — the inferior that represents
the host computation (see the output of info inferiorsbelow). At
this point, disassembling prints x86_64, not Intel GT, instructions.
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(gdb) info inferiors

Num Description Connection
* 1 process 32087 1 (native)

2 Remote target 2 (remote gdbserver-gt --attach - 32087)
(gdb) x/i $pc

=> 0x4049aa <main()+106>: add $0x220,%rsp

Again, standard debugger actions can be performed, such as step-
ping, back-tracing, or inspecting the memory, but this time at the
CPU side. Below we print host data contained in the input and
output variables to illustrate this.

(gdb) print input

$3 = {100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110,
.., 162, 163}

(gdb) print output

$4 = {1100, -1, 1102, -1, 1104, -1, 1106, -1, 1108, -1, 1110,
.., 1162, -1}

5 CHALLENGES

We faced several challenges during the development process of the
debugger. In this section we present each of these problems and
the solution approach we took or are evaluating to apply.

The first two of the problems, namely, implicit pass-by-reference
arguments and C++ functions with template parameters, are debug-
ging difficulties caused by the C++ language and are made particu-
larly visible by SYCL’s use of C++. We were able to address these
two problems by enhancing GDB and by utilizing its Xmethods
mechanism for replacing function calls.

The latter three problems we discuss, namely, thread view with
SIMD lanes, modeling device threads, and efficient implementation
of conditional breakpoints, are related to the GPU device. We were
able to overcome the thread view challenge by enhancing GDB. For
the other two challenges, we are still evaluating potential solutions.

5.1 Implicit Pass-By-Reference Arguments

Several key SYCL classes suchascl: :sycl::id,cl::sycl::range,
andcl::sycl::item, follow a common by-value semantics defined
by the SYCL Specification [12, §4.3.3]. SYCL API functions or user-
defined functions may have pass-by-value parameters with one
of the above-mentioned SYCL classes as its type. For instance, the
cl::sycl: :accessor class defines the methods below:

dataT &operator[](id<dimensions> index) const;
dataT operator[](id<dimensions> index) const;

Via this overloaded operator, data elements can be accessed con-
veniently as if accessing elements of an ordinary array. See, for
example, lines #15 and #20 in Figure 3. An expression such as
in[index] means that the operator[] method of the in object
shall be invoked by passing to the method the index value as the
argument. According to the C++ ABI, a pass-by-value parameter is
implicitly pass-by-reference if its type is not trivially copyable [3,
§3.1]. This essentially means that the compiler is supposed to figure
out whether a type is implicitly pass-by-value or not. However,
for expression evaluation during a debug session, finding out this
information and following the ABI is the debugger’s responsibility.
Suppose that a user is in the middle of a debugging session where
they stopped inside the SYCL kernel; for instance, at line #17 in
Figure 3. At this point, the user may want to print data elements to
inspect the current state, e.g. by issuing the following command:

(gdb) print in[index]
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Here, the debugger is being asked to evaluate in[index] and print
the resulting value. This requires the debugger to correctly setup
the program state and initiate a call of the operator[] method by
passing it the index object as the argument. For this, the debugger
must utilize the available debug information and deduce whether
index shall be passed implicitly by reference.

When developing the debugger, we found out that GDB (and
LLDB [18]) has bugs in making C++ function calls that have pass-
by-value parameters. Although this is a general C++ topic, the bug
was revealed particularly because such function calls are common
in SYCL. We reported the bug® to GDB, and implemented patches to
improve and fix its function call mechanism. The patches have been
accepted for inclusion in the GDB code-base’. We have requested
an addendum to the OpenCL Debug Information specification to in-
clude FlagTypePassByValue and FlagTypePassByReference in
the debug info flags. This was needed for propagation of debug
info from the front-end all the way to the jit-compiled kernel code.
Our request was accepted and the flags were included in OpenCL
Debug Information, Version 2 [17].

Calling kernel function from inside the debugger is not supported
for Intel GT devices at the moment. Therefore, the problem we
described applies to SYCL programs running on HOST or offloading
to a CPU device.

5.2 C++ Functions with Template Parameters

The SYCL specification as well as Intel’s implementation of that spec
rely heavily on templated C++ classes and functions. C++ templates
are instantiated by the compiler based on compile-time informa-
tion. Much of that compile-time information is not available to the
debugger and is not reconstructible from the debug information
emitted by the compiler. This poses a problem if the debugger user
wants to evaluate an expression that refers to a template instance.
The symbol for that instance may not be resolvable because, for
instance,

o the user referred to a template instance that did not exist
in the source code, and thus, was not instantiated by the
compiler.

o the debugger does not have sufficient context to correctly
pick a symbol from a set of candidates (e.g. to do function
overload resolution).

o the compiler omitted the code for a symbol due to inlining
or because a function was not being used in the source code.

To give an example, suppose the user stopped at line #17 of the
code in Figure 3, and wanted to print index + 5. The index variable
is of type cl: :sycl: :id<1>, which has an overloaded operator+.
However, the compiler does not emit code for it, because that oper-
ator is not used in the source. Hence, the debugger cannot evaluate
the expression and results in degraded debug experience.

(gdb) print index + 5
Could not find operator+.

This is a well-known problem seen also in the case of C++ STL
containers. GDB offers a mitigation via the so-called Xmethods in its

®https://sourceware.org/bugzilla/show_bug.cgi?id=25054
"The top commit hash of the patch series in GDB’s git repository is c855a9125a.
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Python API®. An Xmethod is a replacement for a function/method
whose signature and the type of the receiver is known. Xmethods
are defined in Python. If an Xmethod definition for a function ex-
ists, GDB invokes that instead of attempting to resolve and call
the function in the debuggee’s binary file. GCC provides pretty-
printers and Xmethods for many STL containers®. We preferred
the same approach and wrote Xmethod definitions for template
SYCL methods that we deem critical for an improved debug expe-
rience. In particular, we provide Xmethods for the operator[] of
the accessor class, which is a template function in Intel’s SYCL
implementation.

Isemann addresses this problem in the context of LLDB by lever-
aging the upcoming C++20 feature, modules [11]. LLDB uses Clang
to parse expressions for evaluation. When Clang does not have
sufficient information to parse a subexpression, LLDB takes the
role of an external AST source and helps Clang continue parsing
with proper context. For this, Isemann combines the information
obtained from DWAREF together with C++ modules, and uses this
combined knowledge to instantiate templates and jit-compile the
instance via LLVM. Although this approach still suffers from the
lack of information about full compile-time environment, user expe-
rience can be greatly improved by providing a solution that applies
to a majority of use cases. GDB supports a compile command!®
that compiles a given expression using libcc1. so and thus can be
used to implement a similar design. However, we are not aware of
any plans or attempts to pursue this approach in GDB further.

The Xmethod approach has a particular advantage for us. On
Intel GT devices, inferior function calls are currently not supported.
That is, the debugger cannot evaluate an expression when debug-
ging a GPU kernel, if the expression involves a function call, re-
gardless of being templated. However, because an Xmethod is a
replacement for a function, from the user’s perspective, it looks
as if a function is being invoked. Hence, expressions that would
otherwise fail can be evaluated, if there exist Xmethod definitions.
This would not be possible with the C++ modules approach.

5.3 Thread View with SIMD Lanes

Intel GT devices expose parallelism in two dimensions: threads
and data elements. First, each Intel GT device is equipped with
several execution units (EU) that can execute multiple hardware
threads concurrently. Second, each Intel GT instruction can process
several data elements simultaneously. That is, they utilize the Single
Instruction Multiple Data (SIMD) model.

SYCL kernels are written with a focus on computing a single
data element, called a work item. A collection of work items (i.e.
a work group) is computed on a single compute unit. Due to its
SIMD nature, an Intel GT thread processes several work items at
once. When it hits a breakpoint, the user is notified about the event
and the program state can be inspected. If standard GDB were
being used, only the first data element that is being processed by
the stopped thread would be available to the user for inspecting

8https://sourceware.org/gdb/onlinedocs/gdb/Xmethods-In-Python html#Xmethods-
In-Python
“https://gce.gnu.org/svn/gec/branches/gee-9-branch/libstde++-v3/python/libstdexx/
v6/
Ohttps://sourceware.org/gdb/current/onlinedocs/gdb/Compiling-and-Injecting-
Code.html
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conveniently. To examine other SIMD channels, the user would
have to use advanced commands (e.g. see the use of x/8wd &point
in Section 4). Also, a conditional breakpoint would not be hit, if the
condition is set for a particular work item that is processed by a
SIMD lane other than the first one.

To address these problems, we extended standard GDB’s thread-
related commands (e.g., thread, info thread, thread apply),
as well as its breakpoint implementation, to take SIMD lanes into
account. In particular, we added a current lane field to GDB’s thread
representation to make the evaluation context SIMD-aware.

The SIMD parallelization we refer to in this section is an im-
plicit vectorization applied by the compiler. Note that SYCL also
allows explicit, i.e. user-specified, vectorization via the vec class [12,
§4.10.2]. In this case, explicit vectorization is applied on top of im-
plicit vectorization. That is, each SIMD lane of a thread operates
on vectorized data. Given that the compiler emits proper debug
information for vector types, GDB is already able to present and
enable inspection of explicit vectorization.

In the following, we describe the key properties of the SIMD
model on Intel GT devices that have influenced our extension. We
refer to the number of SIMD computation channels of an Intel
GT instruction as the execution size [7]. For each instruction, its
execution size can be 1, 2, 4, 8, 16, or 32. Each instruction includes
a 32-bit execution mask that defines the enabled SIMD channels.
SIMD channels may be disabled not only due to the execution size
of the instruction, but also due to conditional control flow or the
size of the underlying problem, when the number of data elements
is not a multiple of the execution size of the instruction!!. A kernel
offloaded to an Intel GT device can be dispatched with either 8,
16, or 32 SIMD width [2]. This means that all instructions inside
the kernel have their execution size smaller than or equal to the
chosen SIMD width. In order to choose the optimal SIMD width for
a kernel, IGC applies heuristics [2]. Currently, in the presence of
the debugger, kernels are always dispatched with SIMD width 8.

We defined the requirements for our implementation as follows:

o If the target architecture does not support SIMD, or the
thread that is currently in focus does not have SIMD lanes
(i.e. its SIMD width is trivially 1), GDB’s existing behavior
remains unchanged for this thread. If the new SIMD syntax
is not used and a thread has SIMD lanes, GDB’s behavior
remains mostly unchanged, except some output messages.

o A thread’s SIMD width is not fixed. A hardware thread
may switch between kernels dispatched with different SIMD
widths. Even within the same kernel, execution size of some
instructions might be smaller than the SIMD width of the
kernel. This flexibility should be allowed.

e GDB shall display the SIMD lanes that are enabled by the
execution mask only. Further, there is no distinction between
a disabled SIMD lane (e.g. inside a branch) and a non-existent
SIMD lane (e.g. lane 15 when the kernel was dispatched with
SIMD width 8). Threads with all-zero execution mask are
marked as inactive. We are considering this as an option for
modeling unavailable threads (see Section 5.4).

" The hardware disables some SIMD channels on the last dispatched thread in this

case.


https://sourceware.org/gdb/onlinedocs/gdb/Xmethods-In-Python.html#Xmethods-In-Python
https://sourceware.org/gdb/onlinedocs/gdb/Xmethods-In-Python.html#Xmethods-In-Python
https://gcc.gnu.org/svn/gcc/branches/gcc-9-branch/libstdc++-v3/python/libstdcxx/v6/
https://gcc.gnu.org/svn/gcc/branches/gcc-9-branch/libstdc++-v3/python/libstdcxx/v6/
https://sourceware.org/gdb/current/onlinedocs/gdb/Compiling-and-Injecting-Code.html
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o After a stop event for a thread with SIMD lanes is received,
GDB focuses on an enabled SIMD lane. The user can switch
between enabled SIMD lanes.

e Mover commands (e.g., step, next, etc.) are applied to the
underlying hardware thread.

Currently, our GDB extension for SIMD is only available for
kernels offloaded to Intel GT devices. The extension relies heavily
on the availability of the execution mask when a thread is stopped.
Additionally, the compiler must generate debug information that
describes SIMD. Currently, IGC does this by emitting a specific
DW_AT_description field to the debug info entry of each variable
that specifies the SIMD width of the vectorized version.

A variable’s location attribute describes the location of lane zero;
the debugger uses the specified SIMD width to infer the location
for other SIMD lanes. This requires the debugger to understand
the layout of vectorized objects. It works well for non-optimized
code, but it does not allow the result of some transformation to be
described. Consider, for example, a gather operation that loads one
field out of a vector of structures into a register. We are currently
looking into describing location expressions as functions of the
SIMD lane, which would allow us to describe arbitrary layouts.

5.4 Modeling Device Threads

Creating a CPU thread involves a system call and some mainte-
nance work to be done by the OS. This already introduces enough
overhead that adding a notification to an attached debugger for the
new thread does not introduce much intrusion into the execution
of the debuggee process.

CPU threads created by one process further remain with that
process until the thread is destroyed again using another system
call and resulting in another notification to an attached debugger.
Debuggers use those two notifications to maintain a precise model
of threads in each debuggee process.

The situation is different on the GPU. For Intel GT devices, the
hardware dispatches available GPU threads to active kernels. From
the point of view of a kernel, the set of threads can change rapidly.
From the point of view of a thread, it may be switching kernels
rapidly or it may be switching between kernels and idle. The poten-
tially high frequency at which threads change their assignments
poses a challenge on how to model device threads in the debugger.

The model we implemented uses kernel entry breakpoints to
synthesize thread creation events. We had initially also used kernel
exit breakpoints to synthesize thread termination events. This has
allowed us to model device threads similar to threads on the CPU.
However, it has also caused very high intrusion, so we decided
to omit exit breakpoints. To further reduce intrusion, we omitted
kernel entry breakpoints, as well. The debugger only knows about
threads that reported an event; a breakpoint hit in most cases. It
does not know whether those threads are still dispatched to this
kernel once the debugger resumes a thread.

We cannot omit kernel entry breakpoints completely, since we
are also using them to detect kernel submissions. We need to stop
a new kernel in order to place breakpoints in the kernel code.

To minimize, if not completely avoid, intrusion, we are currently
looking into a different model. Traditionally, threads can either be
stopped or running. We extend the thread state to allow threads to
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be unavailable, as well. An unavailable thread cannot be interacted
with, similar to a running thread. Unlike a running thread, however,
it cannot be stopped, either. We use this to model threads that are
currently not dispatched to the kernel we are debugging.

Once a thread is dispatched to our kernel, it may stop either via
an interrupt request from the debugger or by hitting a breakpoint.
Its state changes to stopped. When the thread is resumed, its state
changes to running. We do not know whether the thread is still
running or has become unavailable until we try to stop it. At that
time, its state transitions to stopped or unavailable.

This new model requires further changes to how the debugger is
notified about new kernels and how we can guarantee that break-
points are in place before threads are dispatched to execute those
kernels.

5.5 Conditional Breakpoints

We expect users to be interested in inspecting their kernels for a
single or a small set of work items. To do this, the conditional break-
point mechanism of GDB can be used: A hit event of a conditional
breakpoint is reported to the user only if the condition holds. Under
the hood of the debugger’s user interface, however, the following
happens: Once a device thread stops, the notification of this event
goes to gdbserver, which reports all stop events back to GDB. Then,
GDB evaluates the condition of the breakpoint that has triggered
the event. If the condition holds, GDB displays the event to the
user; otherwise, the hit is ignored and the thread is resumed. This
means that even if the condition is meant to hold for a single thread,
potentially a large number of threads may hit a breakpoint and stop,
only to be resumed by the debugger. This evaluation scheme may
cause considerable delays when debugging kernels offloaded to the
device, negatively impacting scalability of the debugger. We can
mitigate this problem by moving the evaluation of the condition
closer to the device. We consider the following options:

e We move the evaluation to gdbserver, so GDB is notified
only about breakpoint hits for which the condition is true.
This way, the communication between gdbserver and GDB
can be avoided.

To keep gdbserver relatively simple, this would require com-
piling the condition into a form that can easily be evaluated
by gdbserver.

e We generate device code for evaluating the condition and
inject it into the kernel. Only threads for which the condition
is true hit the breakpoint.

e For a specific class of conditions, we can pre-generate pa-
rameterized code to evaluate the condition in the system
routine. The debugger can instantiate the parameters and
enable the evaluation. Work item-specific breakpoints could
be implemented this way, for example. Threads for which
the condition is false, return from the system routine. Only
threads for which the condition is true are reported to gdb-
server.

While this approach is not as flexible as the above, it may be
easier to implement.

All these approaches attempt to reduce the amount of handshak-
ing between the debug interface, gdbserver, and GDB.
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6 RELATED WORK

NVIDIA provides a GDB-based debugger for their CUDA program-
ming language called CUDA-GDB [8]. Similar to our debugger,
it can debug code executing on a GPU device. It enhances GNU
GDB with an extensive set of debugging features for working with
NVIDIA hardware to support inspecting GPU thread state, step-
ping though CUDA kernels, and analysing crashed CUDA kernel
core files. This is implemented partially by modifying existing GDB
commands (for example, break) and partially by introducing new
command families prefixed with cuda (for example, info cuda
thread).

Below is the output of a simple debugging session for one of the
samples packaged with the CUDA distribution (vectorAdd). The
program stops inside a kernel at a breakpoint:

Thread 1 "vectorAdd" hit Breakpoint 1, ... at vectorAdd.cu:39
39 CLil = A[i] + B[il;

To print threads of the host application, we use GDB’s ‘info
threads’ command. Note that since the breakpoint was hit on the
device, none of the threads is marked active.

Thread 1 "vectorAdd" hit Breakpoint 1, ... at vectorAdd.cu:39

39 C[i] = A[i] + B[il;
(cuda-gdb) info threads

Id Target Id Frame

1 Thread ... in cuVDPAUCtxCreate ()

from /usr/1ib/x86_64-1inux-gnu/libcuda.so.1

2 Thread ... in accept4 ()

from /1ib/x86_64-1inux-gnu/libc.so0.6

3 Thread ... in poll ()

from /1ib/x86_64-1inux-gnu/libc.so0.6

4 Thread ... in pthread_cond_timedwait@@GLIBC_2.3.2 ()
from /1ib/x86_64-1inux-gnu/libpthread.so.0@

To print device threads, we use the corresponding ‘info cuda
threads® command.

(cuda-gdb) info cuda threads
BlockIdx ThreadIdx To BlockIdx ThreadIdx  Count

Virtual PC Filename Line
Kernel @

* (0,0,0) (0,0,0) (11,0,0) (127,0,0) 2944

0x0000000000b65df8 vectorAdd.cu 39
(11,0,0) (128,0,0) (11,0,0) (159,0,0) 32

0x0000000000b65df0 vectorAdd.cu 37
(11,0,0) (160,0,0) (12,0,0) (95,0,0) 192

0x0000000000b65df8 vectorAdd.cu 39
(12,0,0) (96,0,0) (12,0,0) (127,0,0) 32

0x0000000000b65df@ vectorAdd.cu 37

... (more lines omitted)

Such CUDA-specific commands provide detailed information
about GPU-specific concepts (devices, blocks, warps, threads etc.)
but that information is generally hidden from standard GDB com-
mands. Note how in the breakpoint example GDB reports that it
was hit by "Thread 1" because it does not see GPU threads as actual
threads.

One of our design goals is to blend the device interaction with
the existing GDB commands and concepts as much as possible to
provide a seamless integration of host application and offloaded
kernels in a single debug session.

Difference in abstraction models becomes more visible with
mover commands (i.e. run-control commands that make threads
step or resume execution). In CUDA-GDB, single-stepping a device
kernel always advances all active threads in the warp!? currently

127 “thread” in CUDA terminology corresponds to a “SIMD lane” in Intel GT; a “warp”
corresponds to a “thread”.
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in focus (and never others). GDB’s user-controllable scheduling
settings such as scheduler-locking and schedule-multiple are
not used. In contrast, we expose GPU threads in GDB in the very
same way that host threads are exposed. For this reason, scheduling
settings and existing commands of GDB do have the expected im-
pact on the GPU threads in our debugger. We believe this approach
fits well to the SYCL philosophy that device switching is mostly
seamless from a developer point of view, whereas CUDA prefers an
approach that makes GPU a completely distinct case with its own
set of commands and rules.

7 CONCLUSIONS AND FUTURE WORK

We developed a debugger as part of Intel’s oneAPI initiative. The
debugger is based on GDB and can be used to debug SYCL programs.
We presented the general architecture of the debugger that utilizes
the multi-target feature of GDB, so that the host and kernel part of
the program can be debugged seamlessly in the same session, even
when the kernel is running on an Intel GT device. To this aim, we
added Intel GT target-specific definitions to GDB and addressed a
number of challenges. In particular, we enhanced GDB with SIMD
lane management, used GDB’s Xmethods mechanism as a replace-
ment for calling template methods of SYCL, and improved GDB’s
ability to call C++ functions with pass-by-value parameters. For
our enhancements and additions, we aimed to avoid deviating from
existing GDB mechanisms so that users can leverage their existing
experience when using our debugger.

The work presented here is at the beta phase and is on-going.
For the future, we anticipate challenges related to scalability due to
a high number of threads that exist on GPUs. We discussed device
thread modeling and handling of conditional breakpoints as two of
these potential challenges.

Although we mostly focused on the Linux use case with the SYCL
kernel running on an Intel GT device, the debugger also supports
the Windows operating system, and also the programs that offload
to a CPU or FPGA software emulator as their target SYCL device.
The debugger is available publicly as part of the Intel oneAPI Base
Toolkit at http://software.intel.com/oneapi.
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